Scalable Library Loading with SPINDLE

LC User Meeting

B Lawrence Livermore
National Laboratory

LLNL-PRES-638575

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Matt LeGendre, Wolfgang Frings, Dong Ahn,
Todd Gamblin, Bronis de Supinski, Felix Wolf

Library Loading Causes

Lawrence Livermore
National Laboratory

&

Major Disruption at Large Scale

Execution Time in Seconds

360,00

300,00

240,00

180,00

120,00 -

60,00

0,00

Weak Scaling Pynamic
3o s ~#-Pynamic Pynamic on Sierra: 1.1
1" GB library data, 495
shared libs, 215 utility
287,6
249,0
156,6
125,4
82,4
0 128 256 384 512 640 768 896 1024 1152 1280 1408
Job Size in Nodes (12 processes/node)

Pynamic running on LLNL Sierra Cluster

1944 nodes, 12 tasks/node,
NFS and Lustre file system

Scalable Library Loading with Spindle 2

#) jOLICH

FORSCHUNGSZENTRUM

LI- Lawrence Livermore

Challenges Arise L aeae,) JOLICH
from File Access Storms

= Caused by dynamic linker searching and loading dynamic
linked libraries

" | File metadata operations: File read operations:
of tests = # of processes # of reads = # of processes
X # of locations X # of libraries

X # of libraries

= serial (1 task): 5,671 open/stat calls
= parallel (23,328 tasks) : 132,293,088 open/stat calls

= Existing Solutions:
= NFS Accelerators
= Cray DVS
= Directories of Symlinks

Scalable Library Loading with Spindle 3

File Access Is Uncoordinated!

O

Lawrence Livermore
National Laboratory

Loading is nearly unchanged since 1964 (MULTICS)
|d-linux.so uses serial POSIX file operations that are not

coordinated among process.

dynamic

&
~

I{linker
AJJllll

dynamic

i linker
,Fﬂlllll

AN

Scalable Library Loading with Spindle

LA A

#) JOLICH

FORSCHUNGSZENTRUM

LI- Lawrence Livermore

How SPINDLE Works L sam 4 JULICH

dynamic _ Requesting dir/file:
g linker v 1. Request from leader
im q -
il v~ 2. Leader reads from disk
dynamic | o
) linker v 3. Leader distributes to peers
/‘LJ[‘ dir
dynamic
' “)|linker
i XVLJL dir
M : dynamic
i “)|linker
T‘L_‘ /:_JL dir
File metadata operations: File read operations:
of tests = # of locations # of reads = # of libraries

Scalable Library Loading with Spindle 5

Spindle Solves Scalability

Lawrence Livermore o
u'NationaI Laboratory O J U I—I C H

FORSCHUNGSZENTRUM

Problems in Application Startup

Execution Time in Seconds

360,0

w
38
o

240,0

180,0

120,0 -

91;

60,0

0,0

Weak Scaling Pynamic with and without SPINDLE

s3ha ~#-Pynamic Pynamic on Sierra: 1.1 GB
T —+—Pynamic with SPINDLE|| !erary data, 495 shared
1 libs, 215 utility libs

287,6

249,0
— 179,5
152,3
125,4 132,7
121,9
96,6 1109 | 107,8
82,4
128 256 384 512 640 768 896 1024 1152 1280 1408

Job Size in Nodes (12 processes/node)

Scalable Library Loading with Spindle 6

. &t M) JOLICH
Launching SPINDLE

= SPINDLE wrapper call:

% use spindle
Prepending: spindle (ok)

% spindle srun -n 512 myapp.exe <args>

= Executable is not modified
= SPINDLE scalably loads:
= Library files (from dependencies and dlopen)
= EXxecutable
= Scripts
= Python .py/.pyc/.pyo files
= fork/exec’d processes

Scalable Library Loading with Spindle 7

Conclus: Ly) JOLICH
O n C u S I O n FORSCHUNGSZENTRUM

= Spindle accelerates loading of libraries and Python files at scale.
= Ready to use on Linux/x86 64
= BlueGene/Q Port under development
= More information:
= Source Code: https://github.com/hpc/Spindle
= Documentation: https://computation-rnd.linl.gov/spindle

= Publication: https://computation-rnd.linl.gov/spindle/pdfs/spindle-paper.pdf
(best paper award at ICS 2013)

Questions?

Matthew LeGendre
legendrel@linl.gov

Scalable Library Loading with Spindle 8

