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Major Disruption at Large Scale
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Weak Scaling Pynamic
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Pynamic running on LLNL Sierra Cluster

1944 nodes, 12 tasks/node,
NFS and Lustre file system
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Challenges Arise L aeae, ) JOLICH
from File Access Storms

= Caused by dynamic linker searching and loading dynamic
linked libraries

" | File metadata operations: File read operations:
# of tests = # of processes # of reads = # of processes
X # of locations X # of libraries

X # of libraries

= serial (1 task): 5,671 open/stat calls
= parallel (23,328 tasks) : 132,293,088 open/stat calls

= Existing Solutions:
= NFS Accelerators
= Cray DVS
= Directories of Symlinks
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File Access Is Uncoordinated!
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Loading is nearly unchanged since 1964 (MULTICS)
|d-linux.so uses serial POSIX file operations that are not

coordinated among process.
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How SPINDLE Works L sam 4 JULICH
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File metadata operations: File read operations:
# of tests = # of locations # of reads = # of libraries
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Spindle Solves Scalability
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Problems in Application Startup
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Weak Scaling Pynamic with and without SPINDLE
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Launching SPINDLE

= SPINDLE wrapper call:

% use spindle
Prepending: spindle (ok)

% spindle srun -n 512 myapp.exe <args>

= Executable is not modified
= SPINDLE scalably loads:
= Library files (from dependencies and dlopen)
= EXxecutable
= Scripts
= Python .py/.pyc/.pyo files
= fork/exec’d processes
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= Spindle accelerates loading of libraries and Python files at scale.
= Ready to use on Linux/x86 64
= BlueGene/Q Port under development
= More information:
= Source Code: https://github.com/hpc/Spindle
= Documentation: https://computation-rnd.linl.gov/spindle

= Publication: https://computation-rnd.linl.gov/spindle/pdfs/spindle-paper.pdf
(best paper award at ICS 2013)

Questions?

Matthew LeGendre
legendrel@linl.gov
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