
LLNL-PRES-702557
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Migra&ng	to	CTS-1	and	TOSS	3’s	Tri-Lab	
Common	Environment	(TCE)	
LC	Users	Mee)ng	

John	Gyllenhaal	
Livermore	Compu)ng	

September 8, 2016

LLNL-PRES-702557
2	

Just	some	of	the	incredimazing	topics	covered		
by	this	talk,	clickbait	style!	

§  CTS-1	and	the	surprising	myths	about	x86	core	speed!	

§  Taming	hyper-threading,	the	untold	story!	

§  RIP	LC’s	/usr/local:		You	won’t	believe	what	replaced	it!	

§  Shocking	changes	to	the	Intel	compiler’s	C++11	support!	

§ Modules?		Really?		What	were	they	thinking?	

§  JUST	SAY	NO	to	using	these	modules	with	complex	builds!	

§  This	one	weird	trick	will	have	you	never	typing	module	again!	

LLNL-PRES-702557
3	

CTS-1:	Wait!		I	thought	x86	cores	get	faster	with	
each	new	genera&on!		

§  CTS-1	design	chosen	that	maximized	node	throughput	instead	of	core	speed		
—  36	cores/node	(max	throughput)	versus	16	cores/node	(slightly	faster	cores	than	TLCC2)	
—  256	core	job	uses	1/2	the	nodes	but	may	run	20%	slower	(or	just	as	fast,	it	is	app	dependent)	

§  Power	and	temperature	limited	with	significant	processor	fabrica)on	varia)ons	
—  Turbo	mode	dynamically	adjusts	clock	rate	to	keep	within	bounds	(typically	power	limited)	
—  Clocks	up	to	50%	faster	with	1	core	per	socket	versus	all	cores	per	socket	used	
—  Culled	slowest	nodes	out	of	Jade	and	Quartz	and	moved	to	LC’s	test	system	Opal	

§  TLCC2:	Zin,	Cab,	RZAlastor,	Etc.	
—  115W	per	8	core	socket	(Sandy	Bridge)	
—  2.6GHz	base	frequency	
—  2.6-3.3GHz	Turbo	mode	(Linpack	->	2.6GHz)	

§  CTS-1:	Jade,	Quartz,	RZGenie,	etc.	
—  120W	per	18	core	socket	(Broadwell)	
—  2.1GHz	base	frequency	
—  2.1-3.3GHz	Turbo	mode	(Linpack		->	1.9GHz)	

LLNL-PRES-702557
4	

Making	hyper-threading	work	for	you,		
not	against	you	

§  Hyper-threading	always	on	in	TOSS3,	even	on	TLCC2	machines	
—  sysconf(_SC_NPROCESSORS_ONLN)	returns	2	X	number	of	cores	
—  TOSS2’s	dynamic	hyper-threading	hack	caused	problems	and	broke	GPU	support	
— Unfortunately	Linux	can	place	processes	on	threads/cores	non-op)mally	
—  Binding	is	key	to	gelng	good	and	predictable	performance	
—  Shown	to	reduce	noise	impact	on	performance	at	scale	(with	proper	binding)	

§  SLURM	binds	by	default	except	on	machines	like	RZGENIE	
—  Should	get	good	performance/binding	on	node-scheduled	machines	
— Need	–exclusive	on	RZGENIE/RZALASTOR/INCA/etc	to	see	binding	effects		
—  Similar	to	pulng	‘mpibind’	on	srun	line	(srun	–n	16	mpibind	a.out)	

	

LLNL-PRES-702557
5	

RIP	LC’s	/usr/local:			
Enabling	a	tri-lab	common	environment	(TCE)	

§  New	‘local’	packaging	system	->	new	opportuni)es		
—  Tri-lab	common	environment,	MPI	reorganiza)on,	Lmod	modules,	oh	my!				

§  Goal:	Enable	tri-labs	to	install	same	sopware	in	same	loca)on	
—  /usr/tce	chosen	as	name-conflict-free	blank	slate	(/usr/llnl-rocks	had	my	vote)	
—  LLNL	only	popula)ng	/usr/tce	in	TOSS3,	not	/usr/local		
—  Unlikely	that	TOSS2	MPI	executables	can	be	made	to	work	on	CTS-1	running	TOSS3	

•  Might	work	if	use	mvapich2	v2.2		and	Intel	16	
•  Might	be	possible	on	TLCC2	w/TOSS3	(Zin)	
–  Note:	patchelf	can	change	and	lengthen	rpath	
–  Talk	to	me	if	want	to	arempt	this	

§  /opt	has	different	goals	(avoid	IMHO)	
—  Func)onal	common	tes)ng	environment	
—  Uses	Linux’s	an)-rpath	model	
—  Versions	can	change	with	TOSS	updates		

LLNL-PRES-702557
6	

You	can	lead	a	horse	to	/usr/tce-laced	Kool-Aid...	

§  We	cannot	force	other	labs	to	switch	to	using	/usr/tce		
—  DEG-equivalent	folks	from	LANL	and	Sandia	par)cipated	in	its	design	

•  We	worked	to	enable	different	usage	models	as	much	as	possible	
—  The	change	is	as	significant	for	their	users	as	it	is	for	our	users		
—  We	believe	there	is	strong	en)cements	for	using	/usr/tce	(we	think	it	will	happen)	

§  Just	installing	a	requested	subset	of	/usr/tce	would	enable	awesomeness	
—  TOSS3	binaries	built	here	could	just	run	there	
—  Build	there	using	same	hard-coded	paths	to	/usr/tce	compilers	and	MPIs	
—  Their	users	could	just	pretend	/usr/tce	simply	doesn’t	exist!	

§  New	/usr/projects	->	/usr/apps	symlink	at	LLNL	enables	common	tri-lab	data	paths	
—  Sandia	expected	to	add	/usr/projects	->	/projects	symlink	also	

LLNL-PRES-702557
7	

Now	with	50%	less	hoop	jumping	for		
working	Intel	C++11	support!	

§ Made	gcc	4.9.3	default	used	by	Intel	and	by	LC	TOSS3	users	
—  C++11	support	in	icpc	needed	gcc	4.9.3	headers	or	later	to	work	well	

•  RHEL	7’s	gcc	4.8.5	default	just	doesn’t	cut	it	(normally	LC	uses	system	default)	

— Using	path	to	pick	g++	caused	no	end	of	problems	(so	now	ignores	path)	
•  Use	icpc	-gxx-name=/usr/tce/packages/gcc/gcc-4.9.3/bin/g++	to	change	g++	version	

—  S)ll	need	-std=c++11		op)on	for	C++11	

§  Change	in	behavior	from	TOSS2	
— Many	C++11	users	bit	by	old	scheme	

C++11 C++03

LLNL-PRES-702557
8	

An	exponen&al	number	of	MPI	builds,	all	for	you	

§  Some	TOSS2	compiler	compa)bility	assump)ons	bit	some	folks	later	on	
— We	lived	on	the	edge	in	TOSS2	by	using	same	MPI	build	for	en)re	compiler	family	

•  C++	ABI	is	crazy-unstable	but	C++	MPI	interface	were	disabled	at	LLNL	which	helped	
•  Some	MPIs	are	now	wriren	in	C++(!),	which	can	bite	you	even	if	you	just	use	C++	
•  Fortran	ABIs	change	periodically	and	recently	causing	weird	MPI	problems	in	FORTRAN	

§  Buying	disk	space	is	easy,	figuring	out	ABI	compa)bility	matrix	is	hard!	
— MPI	headers	made	incompa)ble	with	even	minor	version	changes	(ARRG!)	
—  Solu)on:	MPI	build	for	each	MPI/Compiler	version	(exponen)ally	growth)	

•  Newer	MPIs	might	only	be	built	with	newer	or	popular	compiler	versions	(less	growth)	

LLNL-PRES-702557
9	

The	great	thing	about	naming	conven&on	
standards	is	there	are	so	many	to	choose	from!	

§  MPI	implementers	moving	to	standard	MPI	compiler	wrapper	names	
— Many	TOSS2	mvapich1-specific	MPI	wrapper	names	no	longer	exist	on	TOSS3	
—  Use	only	these	wrapper	names	to	work	across	mvapich2,	Open	MPI,		and	Intel	MPI		

•  C:	mpicc	(C),	mpicxx	(C++),	mpif77	(FORTRAN77),	mpif90	(FORTRAN	90	and	later)	

§  Path	to	MPI	wrapper	now	completely	specifies	MPI	and	Compiler	version	
— MPI	wrappers	ignores	PATH	when	selec)ng	compiler	to	prevent	terribad	build	

issues	
•  /usr/tce/packages/mvapich2/mvapich2-2.2-intel-16.0.3/bin/mpicxx	
•  /usr/tce/packages/openmpi/openmpi-2.0.0-pgi-16.3/bin/mpicxx	
•  /usr/tce/packages/impi/impi-5.1.3-gcc-4.9.3/bin/mpicxx	

—  Recommend	hardcoding	full	paths	to	MPI	wrappers	in	your	build	system	
•  Makes	builds	independent	MPI	and	compilers	selected	in	current	environment	

LLNL-PRES-702557
10	

Modules?	Really?			
Lmod	and	working	in	a	post-dotkit	world	

§  TACC’s	Lmod	module	implementa)on	won	our	comprehensive	bakeoff		
—  Designed	to	navigate	large	number	of	compiler	and	MPI-specific	packages	

•  We	project	an	impressive	number	in	five	years	by	the)me	TOSS3	re)res	
—  Growing	Lmod	user	base	and	ac)ve	support	from	TACC	
—  Used	by	/opt	in	TOSS3	and	supports	most	‘classic’	env	modules	(which	/opt	mostly	uses)	

§  Mixing	dotkits	with	modules	can	lead	to	strange	and	confusing	states	
—  Recommend	por)ng	user	dotkits	to	modules	(it	is	prery	straighxorward)	

•  We	can	also	help	you	mix	modules	with	dotkits	if	you	really	need	to		
—  LC	Hotline	or	DEG	can	help	put	user	modules	in	/usr/apps/modulefiles	(not	world	writable)	

§  Mixing	/usr/tce	and	/opt	modules	can	lead	to	strange	and	confusing	states	
—  Using	just	one	set	best	(usually	/usr/tce).	Please	let	us	know	if	you	feel	you	need	to	mix	them!	

LLNL-PRES-702557
11	

Look	at	all	the	pre^y	modules	

§  ‘module	list’	shows	what	modules	are	currently	loaded	
—  Default:	Intel/16.0.3,	mvapich2/2.2,	and	StdEnv	(adds	/usr/tce/bin,	etc.) 		

§  ‘module	avail’	lists	modules	available	for	loading	
—  Includes	modules	specific	to	currently	selected	compiler	and	MPI	

•  Because	we	default	to	a	specific	compiler	and	MPI,	these	typically	are	visible		

---------------------- /usr/tce/modulefiles/MPI/intel/16.0.3/mvapich2/2.2 -------------------
 fftw/3.3.4 (D)

-------------------------- /usr/tce/modulefiles/Compiler/intel/16.0.3 ---------------------------
 impi/5.1.3 mvapich2/2.2 (L) openmpi/1.10.2 openmpi/2.0.0 (D)

----------------------------------- /usr/tce/modulefiles/Core -----------------------------------
 StdEnv (L) intel/14.0.3
 gcc/4.8-redhat intel/15.0.6
 gcc/4.9.3 (D) intel/16.0.2
 gcc/6.1.0 intel/16.0.3 (L,D)
 |lines 1-12| ß Don’t hit control-C here, hit ‘q’

Note: Hitting ^C in middle of ‘module avail’ puts tcsh in odd history-free state

LLNL-PRES-702557
12	

The	magic	of	Lmod	

§  ‘module	load	package1	<package2>’		load	packages,	updates	dependences	
> which mpicc
/usr/tce/packages/mvapich2/mvapich2-2.2-intel-16.0.3/bin/mpicc

> module load gcc/4.9.3

Due to MODULEPATH changes the following have been reloaded:
 1) mvapich2/2.2

> which mpicc
/usr/tce/packages/mvapich2/mvapich2-2.2-gcc-4.9.3/bin/mpicc

§  ‘module	save’	saves	new	default	login	state	in	~/.lmod.d/default	
—  Can	also	save	and	load	named	package	sets	if	desired	(‘module	save	app1’)	

§  ‘module	restore’	puts	modules	back	to	just	logged	in	state	

LLNL-PRES-702557
13	

JUST	SAY	NO	to	using	MPI	&	compiler		
modules	with	complex	builds	

§  Using	modules	or	dotkits	with	complex	builds	is	asking	for	big	
trouble	
—  Build	systems	some)mes	spawn	new	shells	that	revert	to	default	environments	

•  Already	have	seen	this	problem	with	early	TOSS3	adopters	(and	on	TOSS2)	
•  If	you	have	to	modify	your	doxiles	to	successfully	build,	you	may	have	this	problem	

—  Typing	‘make’	in	wrong	window	creates	bad	.o	files	deep	in	tree	
•  Plague	for	developers	working	on	mul)ple	projects	using	different	compilers	
•  Full	clean	rebuilds	become	required	first	step	when	weird	problems	happen	

§  Use	modules	to	find	full	paths	to	compilers	and	then	use	the	full	
path	
—  E.g.,	/usr/tce/packages/mvapich2/mvapich2-2.2-gcc-4.9.3/bin/mpicxx	
—  E.g.,	/usr/tce/packages/gcc/gcc-4.9.3/bin/g++	
—  /usr/tce’s	compilers	and	MPI	wrappers	don’t	require	modules	be	used	

§  Using	modules	for	quick	and	easy	builds	much	less	of	a	problem	

LLNL-PRES-702557
14	

Avoid	the	mutant	giant	spider	dog	bite!	

§  ‘Module	spider’	will	find	“hidden”	/opt	compiler	and	MPI	modules	
—  ‘Module	avail’	usually	berer	choice	than	‘module	spider’	

•  Default	MPI	and	compilers	enable	this	
—  ‘Module	keyword’	will	also	list	/opt	modules	

> module spider intel
Versions:
 intel/14.0.3
 intel/15.0 <- from /opt, not /usr/tce compatible
 intel/15.0.6
 intel/16.0 <- from /opt, not /usr/tce compatible
 intel/16.0.2
 intel/16.0.3

> module spider intel/16.0

 intel: intel/16.0

 You will need to load all module(s) on any one of the lines below before the "intel/16.0" module is available to load.
 opt <- Don’t use compiler and MPI’s from /opt (other tools may be ok but tell us so we can add to /usr/tce)

LLNL-PRES-702557
15	

This	one	weird	trick	will	have	you	
never	typing	module	again!	

§ ml:	A	convenient	tool	(included	with	lmod)	
— ml	 	means	module	list				(what’s	loaded)	
— ml	avail	 	means	module	avail	(what	can	be	loaded)	
— ml	foo										means	module	load	foo	
— ml	-bar				 	means	module	unload	bar	
— ml	foo	-bar	means	module	unload	bar;	module	load	foo	
— ml	can	be	used	everywhere	module	can	be		

•  Considered	a	bug	if	you	ever	have	to	type	‘module’	again	
•  ml	swap	intel	gcc 	(swap	intel	compiler	module	for	default	gcc	compiler)	
•  ml	show	foo										 	(show	what	module	foo	will	do)	
•  ml	wha&s	foo 	(show	descrip)on	of	module	foo)	
•  ml	keyword	intel 	(show	modules	with	intel	in	the	descrip)on	text)	

—  See	h^p://lmod.readthedocs.io/en/latest/010_user.html	

LLNL-PRES-702557
16	

Ques&ons?	

