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§ Run ‘ml avail’ or ‘module avail’ to list available modules (‘man ml’ for details)
— LC uses lmod module hierarchies, so you must have a compiler loaded to see MPI modules available
— CTS2 default similar to CTS1 env but newer versions ‘intel-classic-tce/2021.6.0 mvapich2-tce/2.3.6’
— New with CTS2: we now provide both portable and ‘LC magic’ versions of dev environment
— Snapshot of modules available on CTS2 on 9/6/2022 with defaults loaded:

CTS2 initial environment is focused on Intel compilers and Mvapich2

------------------------------- /usr/tce/modulefiles/Compiler/intel-classic-tce/2021.6.0 -------------------------------
mvapich2-tce/2.3.6 (L)    openmpi-tce/4.1.2

----------------------------------------- /usr/tce/modulefiles/toolchains/Core -----------------------------------------
gcc-tce/10.3.1                 intel-classic-tce/2021.6.0 (L,D)    intel-classic/2021.6.0 (D)    rocm/5.1.1
intel-classic-tce/19.0.4    intel-classic/19.0.4                       intel-tce/2022.1.0                rocm/5.2.0
intel-classic-tce/19.1.2    intel-classic/19.1.2                       intel/2022.1.0                      rocm/5.2.1 (D)

---------------------------------------------- /usr/tce/modulefiles/Core -----------------------------------------------
StdEnv (S,L)    cmake/3.19.2    cmake/3.23.1 (D)    ninja/1.10.2      patchelf/0.13 (D)    subversion/1.14.1
cloc/1.84                cmake/3.21.1    git/2.29.1   (D)         patchelf/0.10    python/2.7.18
cmake/3.14.5         cmake/3.22.4    git/2.31.1                 patchelf/0.12    python/3.9.12 (D)
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§ ’LC Magic’ versions of compilers/MPI ignore environment and modules minimizes env changes
— Modules do not modify LD_LIBRARY_PATH, instead compiler wrappers adds extra RPATHs to link line
• Goal is to get same shared libraries app was built with no matter what modules loaded

— Modules do not set CC, CXX, F77, FC, MPICH_CC, MPICH_CXX, MPICH_F77, MPICH_FC env variables
• Setting CXX in default modules tends to break build system subshells, since may redefine what build system specified

— MPI wrappers (mpicc, mpicxx, mpif90, etc) ignore MPICH_CC, MPICH_CXX, MPICH_F77, MPICH_FC 
• Full path to MPI wrapper determines exactly which compiler is used, good for reproducible builds but non-standard!

§ Portable versions of compilers/MPI uses environment and modules may change environment
— Modules set LD_LIBRARY_PATH and may rely on same modules being loaded at run time as compile time
• Can make it complicated to get right if running different apps compiled with different modules

— MPI wrappers (mpicc, mpicxx, mpif90, etc) use MPICH_CC, MPICH_CXX, MPICH_F77, MPICH_FC settings
• Build system/spack can specify exactly which compiler to use even if not in path.   Many build systems expect this!

— Users may need to manually add additional RPATHs to link line for consistent behavior
• Many users end up using shortcut of hardcoding compiler and mpi modules into their dot files to workaround this issue

— Spack builds these portable versions in /usr/tce, so dev env reproducible elsewhere

Summary of differences between ‘LC magic’ (-tce) and 
portable (without -tce) versions of compilers and MPI
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§ TOSS3/CTS1’s gcc is 4.9.3 and TOSS4/CTS2 uses gcc/10.3.1 for robust C++17 support

§ TOSS3/CTS1’s ‘intel/19.1.2’ module maps to ‘intel-classic-tce/19.1.2’ on TOSS4/CTS2
— intel-classic is Intel’s name for the older compilers that were the workhorse on TOSS3
— Avoid intel-classic-tce/19.0.4 since it does not support gcc/10.3.1 base (uses gcc/8.3.1 instead)

§ TOSS3/CTS1’s ‘intel/oneapi.2022.1’ module maps to ‘intel-tce/2022.1.0’ on TOSS4/CTS2
— This is Intel’s new clang-base ‘intel’ compiler, but clang-derived fortran compiler not yet stable
— We recommend using very stable intel-classic instead, especially if you plan to compile any fortran code

§ TOSS3/CTS1’s ‘mvapich2/2.3.6’ module mostly maps to ‘mvapich2-tce/2.3.6’ on TOSS4/CTS2
— Same mvapich2 but the -tce version currently ignores MPICH_CC, MPICH_CXX, etc.  so not perfect mapping
— ‘LC Magic’ follows rules used on CORAL1 but not TOSS3 due to use on CORAL2, see proposals to change

§ CTS2 Systems currently defaults to intel-classic-tce/2021.6.0 mvapich2-tce/2.3.6

Mapping compilers/MPI from CTS1 (TOSS3) to CTS2 (TOSS4)
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§ A subset of CTS2 will start with Flux and not Slurm.  Eventually all clusters will run Flux.
— RZWHIPPET (CTS2), TIOGA (EAS3/CORAL2), CORONA run flux natively today
— Goal for ‘friendly users’ to help us find and fix limitations with flux relative to Slurm

§ My ’mnemonic’ for mapping to flux:  ‘flux mini ‘ replaces the ‘s’ in three key slurm commands
— salloc -> flux mini alloc // flux mini alloc -N 2 -t 60m    (currently default time units is seconds)
— srun -> flux mini run         // flux mini run -N 2 -n 4 ./a.out
— sbatch -> flux mini batch

§ Other slurm commands that don’t follow ‘flux mini’ rule however
— sinfo -> flux resource list
— squeue -> flux jobs -A
— See ‘man flux mini’ and ‘man flux jobs’ for more details

§ Slurm emulation wrappers available via ‘ml flux_wrappers’
— salloc, srun, sbatch, sxterm, squeue, and showq (I have requested a sinfo wrapper)

Flux is replacing Slurm as resource scheduler and job launcher soon
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§ Instead of -tce on compiler package name, place -llnl at end of compiler version instead: 
— LC magic designator intel-classic-tce/2021.6.0 becomes intel-classic/2021.6.0-llnl
— Advantage: Change has ‘ml avail’ group portable and magic versions under same package name ‘intel-classic’

§ Instead of -tce on MPI package name, use compiler ‘magic’ mode to trigger MPI magic
— Advantage : Change allows same MPI package name to work in both modes without reloading MPI
— New ‘magic’ version default could become : intel-classic/2021.6.0-llnl mvapich2/2.3.6

§ Stop setting CC, CXX, FC, F77 (and don’t set MPICH_CC, etc.) in portable version modules
— Setting CC, CXX, FC, F77 breaks complex builds systems for huge codes due to subshell builds
— Goal of reducing use of LC Magic to only those that need magic by making portable version default instead
— If CC, etc. removed, new default could become: intel-classic/2021.6.0 mvapich2/2.3.6

§ Suggestions and feedback welcome!   We are exploring many proposals now.

Recent feedback has LC exploring different configurations of 
development environment.   Some current proposals…
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Burning Questions?
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