Commodity Technology Systems 2 (CTS-2) Update

LLNL-PRES-850876

Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

ASC Platform Timeline

Livermore Computing History with Linux Clusters

LLNL Leadership in Linux Clusters Enabled Future Platform Path for Commodity Technology Systems

Overview of NNSA Commodity Technology Systems (CTS)

A Brief History of Commodity Systems for NNSA

Commodity platforms have successfully delivered to ASC & Institutional simulation programs 16+ years

CTS-2 Performance Results Show Substantial Improvements over CTS-1 (circa 2016)

CTS-2 Scalable Unit Architecture

CTS-2 Scalable Unit (SU)

CTS-2 Scalable Unit (SU)							
Nodes	CPU Cores	Memory Capacity	Target Theoretical Peak (FP64)				
196 Total 190 Compute	~21.5K	DDR5: 49 TB DDR5: 98 TB HBM2e: 25 TB	~1.4 PF/s				

Los Alamos

wrence Livermore National Laboratory

Sandia National

- Initial system delivered in September 2022
- Based on Dell C6620 & 760 servers
- 4th Generation Intel Xeon Scalable CPU
 - 56 cores/socket or 112 cores/node
 - Default: 256 GB DDR5
 - Alternative: 512 GB DDR5
 - Alternative: 128 GB HBM2e
- Cornelis Networks High Speed Network
 - Omni-Path 2x100 Gb/s
- CoolIT direct-to-chip liquid cooling
- 480V 3-phase power
- Software Environment
 - TOSS4 based on RHEL 8.x
 - Tri-Lab Common Environment (TCE2)

CTS-2 Architecture: Network Topology

Maximize small/medium job throughput with 2:1 Tapered Network and more compute nodes!

Lawrence Livermore National Laboratory

LLNL-PRES-850876

Sandia National Laboratories

Scalable Units are the "Legos" that scale to Multi-SU platforms

#SU's	# Nodes	PFlops	
1	192 - 200	1.45 – 1.5	
2	384 - 400	2.9 - 3.0	
4	768 - 800	5.8 - 6	
6	1,152 – 1,200	8.7 – 9.0	
8	1,536 – 1,600	11.6 - 12.0	
12	2,304 - 2,400	17.3 – 18.0	

Many different system sizes can be deployed depending on programmatic needs

Evolution of Power & Cooling Requirements for Commodity Systems 26 kW per rack 24 kW per rack Next generation 28 kW per rack 8 kW air cooled 66 kW per rack 26 kW air 28 kW air • 16 kW liquid cooled · All solutions liquid cooled cooled • 21 kW air cooled 208V power cooled Fielded 1 liquid 480V & 208V 45 kW liquid cooled cooled solution 480V power 208V power power TLCC1 TLCC2 CTS-1 CTS-2 Power and Cooling Trends for Commodity Systems kiloWatts (kW) / rack 75 Ω TLCC1 TLCC2 CTS-1 CTS-2 ■ Air ■ Liquid ■ Total

Technology power density has reached a threshold where liquid cooling is a requirement for HPC platforms!

Lawrence Li

LLNL-PRES-850876

CTS-2 Deployments @ LLNL

- Mutt (TOSS Testbed)
- RZWhippet serial cluster
- Poodle (CZ) serial cluster
- 48 HBM nodes are being added July 2023

- ASC Bengal 6 SU
- Delivered; Power-on in July 2023
- LLNL Dane 8 SU
- Delivered; Power-on June 2023

LLNL-PRES-850876

Sandia

Vational

.aboratories

CTS-2 Phase 1 Deployment Plan Sept. 2022 - April 2023

Lab	System Name	System Size	# Nodes	FP64 PetaFlops	Total Memory Capacity	Program
LLNL	Mutt	~1 SU	145	1.5 PF/s	49 TB	ASC (Testbed)
LLNL	RZWhippet	1 rack	41	0.25 PF/s	8 TB	ASC
LLNL	Poodle	1 rack	41	0.25 PF/s	8 TB	ASC
LLNL	RZHound	2 SU	386	3.0 PF/s	93 TB	ASC
LLNL	Bengal	6 SU	1,170	9.1 PF/s	295 TB	ASC
SNL	Amber	8 SU	1,544	12.1 PF/s	393 TB	ASC
LLNL	Dane	8 SU	1,544	12.1 PF/s	393 TB	ASC, Inst., PSAAP
SNL	Stout	8 SU	1,544	12.1 PF/s	393 TB	Inst.

First Wave of CTS-2 Platforms will be Production in 2023 (late summer)

National

Laboratories

CTS-2 May-Dec. 2023 Deployment Plan

Lab	System Name	System Size	# Nodes	FP64 PetaFlops	Total Memory Capacity	Program	
LLNL	Mutt	+48 HBM nodes	193	1.4 PF/s	37 TB (DDR5) 6 TB (HBM2e)	ASC (Testbed)	
UoRochester / LLE	-	2 SU	396	2.8 PF/s	203 TB	Lab for Laser Energetics	
Naval Nuclear Lab	-	2 SU	396	2.8 PF/s	203 TB	NNL Programs	
Sandia	-	4 SU	344+	2.8 PF/s	88 TB	Institutional	
Sandia	-	-	50	12 PF/s (GPU)	16 TB (HBM3)	Institutional	
Idaho National Lab	-	2 SU	396	2.8 PF/s	102 TB	INL Programs	
KCNSC	-	1 SU	198	0.9 PF/s	51 TB	KCNSC (outside CTS-2)	
LLNL	-	1 SU	198	0.9 PF/s	51 TB	GS	
LLNL	-	1 SU	198	1.4 PF/s	51 TB	GS	
Sandia	-	6 SU	1,170	9.1 PF/s	295 TB	GS	
LLNL	-	~3 SU	594	4.2 PF/s	153 TB	GS	

CTS-2 Memory Options: Traditional DDR or High-Bandwidth Memory

Is 3-4X increase in memory BW but ½-¼ the memory capacity a good trade-off? Are ASC codes and capacity workloads ready and able to utilize the extra bandwidth? Would at least a 30% performance improvement be worth ½-¼ of the memory capacity?

_awrence Liver

LLNL-PRES-850876

CTS-2 Architecture Performance Tradeoffs: GPUs vs. CPU+HBM

Processor	DDR5 Capacity	HBM Capacity	GB/core	Theoretical Memory Bandwidth	Actual Memory Bandwidth	Theoretical Peak (FP64)
CPU+GPU	256 GB	320 GB	-	16 TB/s	14 TB/s	240 TF/s
CPU+HBM	-	1,280 GB	1.1-1.2	32 TB/s	20 TB/s	72 TF/s

For given cost, CPU+HBM provides more HBM memory capacity & performance.

Lawrence Livermore National Laboratory

LLNL-PRES-850876

al Laboratory

Sandia National

Laboratories

Supply Chain Issues, Lease to Own, & Deployment Timeline

- Dell and CTS-2 components suppliers all report supply chain issues
 - Some components have 6-9 months lead time
 - These issues will likely continue through at least all of 2022, if not longer.
- Dell working with suppliers to mitigate risks as much as possible
 - NNSA supplying accurate forecasts for system orders will help.
 - Dell prioritizing CTS-2
- NNSA received a Defense Priority (DPAS) rating for CTS-2
 - Places CTS-2 systems on high priority list with system integrator and component suppliers.
 - CTS-2 will have a DX rating (perhaps DO for some systems)
 - El Capitan has a "DO" DPAS rating
 - DPAS will help, but the application of rating is on specific components & quantities not entire systems

LUNI - PRES-850876

Supply Chain Issues, Lease to Own, & Deployment Timeline

- Ordering a new CTS-2 system takes time
 - 0-2 months for modifying build of materials for specific system and data center
 - 1-2 months for setting up lease to own (LTO)
 - Formally order system
 - 2-3 months for Dell to acquire parts (best case)
 - 1 month to build, test, and deliver to lab
 - At least 1 month to integrate, test, and stabilize system at Lab
 - 6-15 months for facilities preparation
- <u>6-15</u> months needed from time program decides to order system until system production

LLNL-PRES-850876

CTS-2 Summary

- First "large" LLNL CTS-2 platforms:
 - Target production late summer/early fall
 - Currently being integrated & tested or waiting for facilities power
- Future CTS-2 purchases could include:
 - Base CPU + DDR (solid foundation for entire LLNL application portfolio)
 - CPU + HBM (good for memory bandwidth bound codes)
 - CPU + GPU (no unified memory; HPC+AI/ML)
- Need input from LLNL programs & User community

Questions?

CTS-2 Lead: Matt Leininger (matt@llnl.gov)

Cluster Integration Lead: Trent D'Hooge (<u>dhooge1@llnl.gov</u>)

CTS-2 Integration Lead: Jim Silva (silva50@llnl.gov)

