
LLNL-PRES-850102
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Introduction to Livermore Computing GitLab

Neil J. O’Neill

June 14, 2023

2
LLNL-PRES-850102

§ URLs

— LC Collaboration Zone (CZ): https://lc.llnl.gov/gitlab

— LC Restricted Zone (RZ): https://rzlc.llnl.gov/gitlab

— LC SCF: https://lc.llnl.gov/gitlab

Livermore Computing (LC) GitLab Access & Authentication

https://lc.llnl.gov/gitlab
https://rzlc.llnl.gov/gitlab
https://lc.llnl.gov/gitlab

3
LLNL-PRES-850102

§ If you have an account for any LC production machine, then you will have a
corresponding account available on the GitLab instance in the same zone as that
production machine.

§ If you have accounts for both CZ and RZ production machines, then you will have
GitLab accounts available on both the CZ and RZ GitLab instances.

§ You need to login to the GitLab UI in order to activate your account. Your account
needs this activation before you can use command line git commands (clone, push,
pull, etc.).

§ Your account will be automatically deactivated after 90 days of non-use. However, it
can be reactivated simply by logging in to the GitLab UI. All your work will still be
there – deactivation does not delete anything. Git commands don’t count as use.

LC GitLab Accounts

4
LLNL-PRES-850102

§ LC specific docs: https://lc.llnl.gov/confluence/display/GITLAB/GitLab+CI

§ General GitLab docs: https://docs.gitlab.com/

§ Google search:
— “gitlab pipeline variables”

§ Issues at gitlab.com: https://gitlab.com/gitlab-org/gitlab/-/issues
— Need to sign up for a free account to search

§ Livermore Computing Compute Platforms (a.k.a. Production Machines)
— https://hpc.llnl.gov/hardware/compute-platforms

§ What computer accounts do I have?
— “my info” portlet at MyLC
— https://lc.llnl.gov/lorenz/mylc/mylc.cgi

Documentation

https://lc.llnl.gov/confluence/display/GITLAB/GitLab+CI
https://docs.gitlab.com/
https://gitlab.com/gitlab-org/gitlab/-/issues
https://hpc.llnl.gov/hardware/compute-platforms
https://lc.llnl.gov/lorenz/mylc/mylc.cgi

5
LLNL-PRES-850102

§ “GitLab is a web-based platform that helps developers collaborate on large and
complex projects using Git, a popular version control system.”

§ GitLab Service as a Service (SaaS) at gitlab.com. Very similar to GitHub.

§ Gitlab self-hosted (what we have at LC)
— LC has an “Ultimate” license for all its GitLab instances.

What is GitLab?

6
LLNL-PRES-850102

§ Remote git repository

§ Continuous Integration (CI) automation

§ Web development environment (VS Code)

§ Project organization and collaboration
— Groups and sub-groups
— Project membership with roles

§ Code change auditing and control
— Merge requests
— Approver lists
— Branch restrictions

§ Issue tracking

GitLab Main Features

7
LLNL-PRES-850102

§ A distributed version control system created by Linus Torvalds in 2005.

§ Versions an entire repository as a whole rather than individual files or directories.
Each version is called a “commit.”

§ Used internally by GitLab for storing repositories.

§ Installed on all LC production machines (“man git”).

§ git clone ssh://git@czgitlab.llnl.gov:7999/my-awesome-group/my-
awesome-project.git

§ Primary documentation: https://git-scm.com/doc

git

https://git-scm.com/doc

8
LLNL-PRES-850102

Groups and Projects

Group

Sub-
Group

Project Project

Sub-
Group

Project

Group

Project Project

https://docs.gitlab.com/ee/user/group/
https://docs.gitlab.com/ee/user/project/

Note: each project contains only a single repository

9
LLNL-PRES-850102

Create Group Menu

10
LLNL-PRES-850102

Create Group

11
LLNL-PRES-850102

Fill in Create Group form

12
LLNL-PRES-850102

Your New Group

13
LLNL-PRES-850102

Create a New Project

14
LLNL-PRES-850102

Fill in Create Project Form

15
LLNL-PRES-850102

Your New Project Page

16
LLNL-PRES-850102

Create New Files and Directories from within GitLab

17
LLNL-PRES-850102

Edit Files from within GitLab

18
LLNL-PRES-850102

Commit Changes from within GitLab

19
LLNL-PRES-850102

View Repository from Project Page

20
LLNL-PRES-850102

VSCODE IDE is also Available from within GitLab
(GitLab calls it “Web IDE”)

21
LLNL-PRES-850102

Web IDE (VSCODE)

22
LLNL-PRES-850102

Find Your Clone URLs

23
LLNL-PRES-850102

Cloning from the Command Line: SSH & HTTP

> git clone ssh://git@czgitlab.llnl.gov:7999/my-awesome-group/my-awesome-project.git
Cloning into 'my-awesome-project'...
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 6 (delta 0), reused 0 (delta 0), pack-reused 0
Receiving objects: 100% (6/6), done.

> git clone https://lc.llnl.gov/gitlab/my-awesome-group/my-awesome-project.git
Cloning into 'my-awesome-project'...
Username for 'https://lc.llnl.gov’: myusername
Password for 'https://myusername@lc.llnl.gov':
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 6 (delta 0), reused 0 (delta 0), pack-reused 0
Receiving objects: 100% (6/6), done.

HSS

HTTP

24
LLNL-PRES-850102

§ SSH Keys
— Use 4096-bit RSA keys
— Enter your keys into your GitLab account: https://lc.llnl.gov/gitlab/-/profile/keys
— https://dev.llnl.gov/securityaccess/ssh/
— https://dev.llnl.gov/securityaccess/ssh/cz_user/
— https://dev.llnl.gov/securityaccess/ssh/rz_user/
— https://lc.llnl.gov/confluence/display/GITLAB/GitLab+FAQ#GitLabFAQ-

Q.HowdoIsetupSSHkeysonanLCsystem?

§ Personal Access Token (PAT)
— Create here: https://lc.llnl.gov/gitlab/-/profile/personal_access_tokens
— When asked for “password” use PAT instead.
— PATs generated on LC GitLab instances have a 30 day lifetime.

Authentication for git Commands

https://lc.llnl.gov/gitlab/-/profile/keys
https://dev.llnl.gov/securityaccess/ssh/
https://dev.llnl.gov/securityaccess/ssh/cz_user/
https://dev.llnl.gov/securityaccess/ssh/rz_user/
https://lc.llnl.gov/confluence/display/GITLAB/GitLab+FAQ
https://lc.llnl.gov/confluence/display/GITLAB/GitLab+FAQ
https://lc.llnl.gov/gitlab/-/profile/personal_access_tokens

25
LLNL-PRES-850102

§ Makes use of software agents (systemd services) called “runners” running on the login
nodes of all LC production machines. This allows GitLab to run scripts on any
production machine in the Computer Center.

§ Individual scripts (literally bash scripts) that get run on runners are referred to as
“jobs”.

§ A collection of jobs, possibly dependent on one another and possibly running on
different machines is referred to as a “pipeline”.
— https://docs.gitlab.com/ee/ci/pipelines/

§ The idea behind CI is that software projects get built and tested every time any
significant change is made.

GitLab Continuous Integration (CI)

https://docs.gitlab.com/ee/ci/pipelines/

26
LLNL-PRES-850102

§ GitLab uses the “configuration as code” principle, and defines piplelines using a YAML
file, .gitlab-ci.yml, located in the top-level of each project repository. This file is
created by the user.
— https://docs.gitlab.com/ee/ci/yaml/

§ “YAML is a human-friendly data serialization language”
— https://yaml.org/

§ The .gitlab-ci.yml file is a complete description of your CI pipleline, including what jobs
are run, when they run, where they run, and what they do when they are run.

§ Note that if you have a .gitlab-ci.yml file in your project then GitLab will attempt to run
it whenever you make a new commit. Put “[skip-ci]” somewhere in your commit
comment to prevent this.

.gitlab-ci.yml file

https://docs.gitlab.com/ee/ci/yaml/
https://yaml.org/

27
LLNL-PRES-850102

Simple .gitlab-ci.yml

28
LLNL-PRES-850102

See a List of Your Pipelines

29
LLNL-PRES-850102

See an Individual Pipeline

Simple 1-Job Pipeline

30
LLNL-PRES-850102

See the Log for a Particular Job

31
LLNL-PRES-850102

§ Serial operations in pipelines can be controlled either by using “stages” or by using
directed acyclic graphs (dags)

§ Stages (basic pipelines)
— Jobs declare what stage they belong to via the “stage” keyword.
— All jobs in each stage will run before the next stage is started.
— Default stages (.pre, build, test, deploy, .post)
— Can create custom stages with “stages” keyword in .gitlb-ci.yml
— See: https://docs.gitlab.com/ee/ci/yaml/#stages

§ Directed Acyclic Graphs
— Jobs use the “needs” keyword to declare which other jobs in the pipeline they depend on.
— See: https://docs.gitlab.com/ee/ci/yaml/#needs

Stages vs. Directed Acyclic Graphs

https://docs.gitlab.com/ee/ci/yaml/

32
LLNL-PRES-850102

test_1:
 stage: test
 tags:
 - oslic
 - shell
 script:
 - echo "This is test_1 on oslic"
test_2:
 stage: test
 tags:
 - ruby
 - shell
 script:
 - echo "This is test_2 on ruby"
test_3:
 stage: test
 tags:
 - lassen
 - shell
 script:
 - echo "This is test_3 on lassen“

build_1:
 stage: build
 tags:
 - oslic
 - shell
 script:
 - echo "This is build_1 on oslic"
build_2:
 stage: build
 tags:
 - ruby
 - shell
 script:
 - echo "This is build_2 on ruby"
build_3:
 stage: build
 tags:
 - lassen
 - shell
 script:
 - echo "This is build_3 on lassen"

Multi-stage Pipeline .gitlab-ci.yml

test
stage

build
stage

33
LLNL-PRES-850102

Multi-stage Pipeline Run

34
LLNL-PRES-850102

DAG-based Pipeline .gitlab-ci.yml

test_1:
 tags:
 - oslic
 - shell
 script:
 - echo "This is test_1 on oslic"
test_2:
 tags:
 - ruby
 - shell
 script:
 - echo "This is test_2 on ruby"
test_3:
 needs:
 - test_1
 - test_2
 tags:
 - quartz
 - shell
 script:
 - echo "This is test_3 on quartz"

build_1:
 needs: [test_1, test_2, test_3]
 tags:
 - oslic
 - shell
 script:
 - echo "This is build_1 on oslic"
build_2:
 needs: [build_1]
 tags:
 - ruby
 - shell
 script:
 - echo "This is build_2 on ruby"
build_3:
 needs: [build_1]
 tags:
 - quartz
 - shell
 script:
 - echo "This is build_3 on quartz"

35
LLNL-PRES-850102

DAG-based Pipeline Run

36
LLNL-PRES-850102

§ Need to use both a “machine” tag and a “runner type” tag.
— Machine: oslic, ruby, quartz, etc.
— Runner type: shell, batch, slurm, lsf, flux

§ Need to have an account on the tagged machine or job will fail.

§ Note that these “tags” have nothing to do with git commit tags.

§ “batch” will get you a runner type that matches the main batch schedular used on a particular
machine. For example, slurm on quartz, or LSF on lassen.

§ Lists of available tags for production machines can be found here:
https://lc.llnl.gov/confluence/display/GITLAB/GitLab+CI#GitLabCI-
RunnerDeploymentsandStatus (but info may be out of date).

§ 100% up-to-date tag information can always be found in SettingsàCI/CDàRunners from a
project page.

LC “tags” to Choose Runner Host

https://lc.llnl.gov/confluence/display/GITLAB/GitLab+CI
https://lc.llnl.gov/confluence/display/GITLAB/GitLab+CI

37
LLNL-PRES-850102

Runner Tag and Status Information

38
LLNL-PRES-850102

§ All LC production machines exclusively use instances of the Jacamar runner
— https://ecp-ci.gitlab.io/docs/admin.html#jacamar-ci
— Technically, Jacamar is an instance of a GitLab “custom executor”—

https://docs.gitlab.com/runner/executors/custom.html

§ Jacamar was developed as a project within the larger Exascale Computing Project
(ECP) and has become the de facto standard at DOE HPC computing facilities.

§ Jacamar runners have two modes of operation
— “shell”: your job script runs in a bash shell under your account on a login node of the selected

cluster.
— “batch”: your job script runs in a bash shell within a batch allocation under your account. The type

of node (login, compute, launch) on the cluster that your script will run on depends on the type of
schedular installed on the cluster. See the table here for details:
https://lc.llnl.gov/confluence/display/GITLAB/GitLab+CI#GitLabCI-runnersRunners

Jacamar Runner

https://ecp-ci.gitlab.io/docs/admin.html
https://docs.gitlab.com/runner/executors/custom.html
https://lc.llnl.gov/confluence/display/GITLAB/GitLab+CI

39
LLNL-PRES-850102

§ Select by using the tag “shell”.

§ Runs in a bash shell under your user account.

§ Uses a non-interactive shell, so environment may not be the same as you get during a
normal interactive login. This can cause things that work when run interactively “by
hand” not to work when run as a GitLab CI job.

Jacamar Shell Runner

40
LLNL-PRES-850102

§ Select by using the generic tag “batch”, or one of the specific tags “slurm”, “lsf”, or
“flux”.

§ Specify schedular options with special variables in .gitlab-ci.yml file.

— these variables can be specified in the global “variables” section, or in the “variables” section for
any particular job.

Jacamar Batch Runner

variables:
LLNL_SLURM_SCHEDULER_PARAMETERS: "--nodes=1 -p pdebug"
LLNL_LSF_SCHEDULER_PARAMETERS: "-q pbatch -nnodes 2"

 LLNL_FLUX_SCHEDULAR_PARAMETERS: "-N2 –n1"

41
LLNL-PRES-850102

§ By default, Jacamar will create a directory at ~/.jacamar-ci to use as the top-level
directory for all your GitLab CI builds.

§ Depending on what your builds look like, this can cause you to exceed your home
directory disk quota. See here for ways to protect your home directory quota:
https://lc.llnl.gov/confluence/display/GITLAB/First+pipeline+with+LC+Gitlab+CI#Firstp
ipelinewithLCGitlabCI-Protectyourhomequota

§ Example build directory path (created by gitlab-runner). Reused – never deleted.
— ~/.jacamar-ci/builds/QcvJxi8A/004/gitlab/my-awesome-group/my-awesome-project

Jacamar Build Directories

runner id

co
ncu

rre
nt id

project

gro
up

https://lc.llnl.gov/confluence/display/GITLAB/First+pipeline+with+LC+Gitlab+CI
https://lc.llnl.gov/confluence/display/GITLAB/First+pipeline+with+LC+Gitlab+CI

42
LLNL-PRES-850102

§ Provides a code auditing/approval step for software projects.

§ Typical work flow:
1. Create new branch of your repo (my-awesome-branch)
2. Make your changes to my-awesome-branch.
3. Commit your changes.
4. Run CI pipeline against my-awesome-branch (assume success).
5. Create merge request requesting to merge my-awesome-branch into main branch.
6. Merge request approval (by defined approvers) and my-awesome-branch is merged into main

branch.

§ https://docs.gitlab.com/ee/user/project/merge_requests/

Merge Requests

https://docs.gitlab.com/ee/user/project/merge_requests/

43
LLNL-PRES-850102

Merge Request (cont.)

