Tuolumne Early Users Water Cooler 12-10-2024

Scott Futral (futral2@IlInl.gov)

LLNL-PRES-2001638 | B Lawrence Livermore

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27 344. Lawrence Livermore National Security, LLC

National Laboratory

Tuolumne

Lawre nce Livermore
Natioi pal Labcratory

|

. . Q’l‘l
Lawrence Livermore National Laboratory NVYSE
LLNL-PRES-2001638 National Nuclear Security Administration

Agenda

= Welcome and Introduction to the Tuolumne Early Users Water Cooler — Scott F

El Cap Center of Excellence role — Ramesh Pankajakshan

= User Support for Tuo Early Access and going forward — Elsa Gonsiorowski

Rabbit storage ‘update’ - Elsa Gonsiorowski

Essential Information for Success Using Tuolumne —John Gyllenhaal

= User questions and feedback on current state of Tuolumne - The Users

. . ("“l
L Lawrence Livermore National Laboratory N A‘S‘@é‘l 3
LLNL-PRES-2001638 National Nuclear Security Administration

System Facts

= https://hpc.linl.gov/hardware/compute-platforms/tuolumne

= 1,098 batch nodes

= 46 debug nodes

= 8 login nodes (alias ‘tuo’ works if you are like me and can’t spell.)
= AMD APU Architecture AMD MI300A

= Lustre file system /p/lustre5

. . ("l‘l
L Lawrence Livermore National Laboratory N AVS{%“ 4
LLNL-PRES-2001638 National Nuclear Security Administration

S-

https://hpc.llnl.gov/hardware/compute-platforms/tuolumne

B Lawrence Livermore
National Laboratory

&2 EL CAPITAN

El Capitan Center of Excellence

Judy Hill (judy@linl.gov)

Ramesh Pankajakshan (ramesh@IInl.gov)

e

LLNL-PRES-2001638 | B Lawrence Livermore

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27 344. Lawrence Livermore National Security, LLC

National Laboratory

A Center of Excellence is a close partnership between the DOE
Laboratories and the vendor partner(s)

= Established joint work plans, information

sharing, and collaboration mechanisms @ EI. cnplTnn

= Dedicated vendor staff worked alongside

lab code teams C— AMD1
. . Hewlett Packard
— Some staff assigned to work at lab sites Enterprise
. Hl Lawrence Livermore
= Labs provided access to our codes National Laboratory
— Including classified codes for those with Sandia
security clearance @ National
ﬁ-) Laboratories
= Vendors provided NDA information and - Los Alamos

early access to hardware and software

Forming a Center of Excellence has become a recognized best practice for large DOE system procurements

‘ Lawrence Livermore National Laboratory N A‘S‘Z&% 2

nal Nuclear Security Administratic

LLNL-PRES-2001638

El Capitan COE Resources Available to Tuolumne Users

= For Tri-Lab Users: -
— El Capitan Confluence Pages For access, E-mail:
— El Capitan COE E-mail Distribution Lists — Judy Hill (judy@linl.gov)
— El Capitan Mattermost Ramesh Pankajakshan (ramesh@lInl.gov)

= For All Users:
— (Non-NDA) El Capitan Webinars
* Next: Dec 17 at 2pm: OpenMP Webinar presented by HPE

— El Capitan Hackathons, space-permitting
* Next: Jan 28 — 30 at LLNL

Contact us if you need access instructions to any of these communication mechanisms

‘ Lawrence Livermore National Laboratory N A'S_?ég 3

LLNL-PRES-2001638 National Nuclear Security Administration

Reminder: COE Information is still subject to NDA restrictions

= Do: Discuss this material with other Tri-Lab staff members with “need to know”

= Don’t: Share this information with academics, collaborators or others outside LANL,

LLNL, and SNL

— Exception: CORAL-2 working groups, Others who have NDA/Contractual relations with CORAL-2.
ASK FIRST!!

= Results from machines (including Tuolumne) must be approved by HPE/AMD for
publication or presentations. This includes results in public github repos.

= Reminders here: https://Ic.linl.gov/confluence/x/qg2Clw

. . (\,‘vl
L Lawrence Livermore National Laboratory N AVS.{_%“ 4
LLNL-PRES-2001638 National Nuclear Security Administration

S-

https://lc.llnl.gov/confluence/x/qg2CJw

Don’t fix bugs later; fix them now.

— Steve Maguire

Report any and all issues to the LC Hotline!

(925) 422-4531

= The Hotline will work with the El Capitan Center of Excellence to report compiler bugs
and other issues to HPE and AMD

. . al
‘ Lawrence Livermore National Laboratory N A'S&i“ 5
LLI National Nuclear Security Administration

NL-PRES-2001638

B Lawrence Livermore
National Laboratory

User Support, Documentation
Rabbit Status

Tuolumne Early Users Water Cooler

December 19, 2024 Elsa Gonsiorowski

———

LLNL-PRE L
M Lawrence Livermore

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore Nati L
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC atlona aboratory

LC Documentation

https://hpc.11nl.gov

HPC@LLNL About Livermore Computing Accounts Banks & jobs Hardware Services Software Documentation Updates & Events.

Livermore Computing: HPC at\LLNL | 0urMachines

Lawrence Livermore National Laboratory

LLNL-PRES-2001638

NS

tonal Nuclar Socuy 4

https://hpc.llnl.gov

Using El Capitan Systems

Navigate to Documentation > Users Guides >
Using El Capitan Systems

m QuickStart m Compilers and User Environment
B C++ Code Examples ® LC Magic Modules Guide
m Fortran Code Examples m Cray Modules Guide
m Explicit Paths Build Example m Spack Guide
® Announcements and Presentations ® Running Jobs with Flux and mpibind
m Known Issues m Debugging Tools
m Hardware Overview m Performance Tools
m MPI Overview m Math Libraries
m GPU Programming m File Systems and Rabbits
Lawrence Livermore National Laboratory NYSE

LLNL-PRES-2001638 N i Sy S

LC Hotline Support

Contact us 1-925-422-4531

Technical Consultants

. Visit us B453 R1103 (Q-clearance area)
m option 1

= Ic-hotline@linl gov

Monday-Friday

Account Specialists 8am-12pm, 1-4:45pm

Except LLNL holidays
m option 2

m Ic-support@linl.gov

Lawrence Livermore National Laboratory NYSE 4
LLNL-PRES-2001638 AL

El Capitan Systems Vendor Support

m Rob Noska, HPE
m Austin Ellis, AMD

Lawrence Livermore National Laboratory NIYSE
LLNL-PRES-2001638 e

LC Hotline Support

Contact us 1-925-422-4531

Technical Consultants

. Visit us B453 R1103 (Q-clearance area)
m option 1

= Ic-hotline@linl gov

Monday-Friday

Account Specialists 8am-12pm, 1-4:45pm

Except LLNL holidays
m option 2

m Ic-support@linl.gov

Lawrence Livermore National Laboratory NYSE ¢
LLNL-PRES-2001638 I VA W

Rabbit Rack-local Storage

= 1 Rabbit node: m Test users wanted

m 18 SSDs

= 1 AMD Epyc CPU m Can be used similar to

m PCle connection to local compute network-attached storage, for
nodes cross-node access

= Connected to rack-level switch m Will be able to support Lustre, XFS,

Tuolumne Static Setup GFS2

m Configurable storage via Flux

m Available to all jobs orchestration
W /1/ssd on compute nodes m Will be able to perform data staging
m 763GB, node-local access via Cray DW directives

Lawrence Livermore National Laboratory NIYSE
LLNL-PRES-2001638 AN

M Lawrence Livermore
National Laboratory

Essential Information for Success Using Tuolumne
(Flux, Compilers, Settings, and More!)

John Gyllenhaal, Livermore Computing (LC)

Tuolumne Watercooler
Tuesday December 10th, 2024

LLNL-PRES-2001638 I Lawrence Livermore
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE- Natlonal Laboratory
AC52-07NA27 344. Lawrence Livermore National Security, LLC

Goals and Scope

= Present concise and actionable rules of thumb for using El Cap systems like Tuolumne
— Present key concepts and commands for compiling applications and running on El Cap systems

— Make you aware of the existence of several complex technical details that may impact your application
* If your application is impacted, will indicate how to reach out to get focused help

= Aiming for biggest impact with a “short” presentation

— Presenting the key points of dozens of hours of presentations over the last few years
» There will be longer, deeper dives in the future
— Will not dive into all the juicy technical details or be able provide full answers to questions
* The “real” answers to “why” are often quite complex, confusing, time consuming, and requiring NDAs

= No NDA required for this talk’s info
— Often limits discussion of the technical details that drive the rules of thumb presented

= Snapshot in time
— Systems still evolving as new functionality comes online (some things changing this week!)

. . ("“l
L Lawrence Livermore National Laboratory N S‘@é‘\
National Nuclear Security Administration

LLNL-PRES-2001638

Where to get help and key documentation for today’s talk
(Take a screen shot now!)

Point of contact for getting help or asking questions
— LC Hotline: Ic-hotline@lInl.gov or 925-422-4531

Tuolumne’s web quickstart guide
— https://hpc.linl.gov/documentation/user-guides/using-el-capitan-systems/quickstart

Run and scheduling jobs with Flux
— https://hpc-tutorials.linl.gov/flux/
— https://hpc.linl.gov/banks-jobs/running-jobs/batch-system-cross-reference-guides

Accessing LC systems smoothly with ssh
— https://dev.linl.gov/security-access/ssh/

Accellerating PyTorch, TensorFlow, or any ML code using RCCL

— https://lc.linl.gov/confluence/display/LC/2023/06/02/RCCL+performance+on+Tioga#RCCLperformanceonTio
ga-InstalltheAWS-OFI-RCCLplugin

— https://Ic.linl.gov/confluence/display/LC/Distributed+PyTorch+on+CORAL+2+systems#DistributedPyTorchonCORAL2
systems-Extra:InstallAWS-OFI-RCCLplugin

— Sample build script /collab/usr/global/tools/rccl/toss_4 x86 64 ib_cray/rocm-6.2.1/buildme

. . [0
L Lawrence Livermore National Laboratory N A‘S@g“ 3

LLNL-PRES-2001638 urity Administration

Accessing Tuolumne (Tuo) and ssh key hints and gotchas

Can use ssh tuo.lInl.gov or ssh tuolumne.llnl.gov from outside LC without VPN
— Or you can bounce through oslic.llnl.gov if that doesn’t work for you

You cannot use ssh keys to connect to LC supercomputers from outside LC
— Must use a two-factor authentication to get into an LC supercomputer
« Can proxy through initial connection (usually oslic for CZ)
— https://dev.lInl.gov/security-access/ssh/ has ssh config files and info that may help
« lan Lee’s .ssh/config files are FOR PLACEMENT ON YOUR WORKSTATION ONLY NOT LC SUPERCOMPUTERS
« Placing in your LC .ssh/config file very common mistake that breaks CORAL1 and causes unnecessary authentications

We require you to use 4k bits (or larger) rsa ssh keys (without passphrase) on LC

— ssh-keygen -t rsa -b 4096 -N “”
« LC has common home directories, so empty passphrase does not reduce security and is approved for use at LC

— Will enable you to ssh between LC machines without password or passphrase

Do not put LC private keys on different zones (don’t share CZ and RZ private keys)

— Do not copy your CZ LC .ssh/id_rsa file outside the CZ!
« Do not put on RZ or on non-LC machine

. . (\,‘vl
L Lawrence Livermore National Laboratory N AVS.{_%“ 4

LLNL-PRES-2001638

High-level El Cap MI300A APU-based Node Overview

= Four sockets per node
— Each socket contains one powerful GPU, 21 user cores (+ 3 system) (2 HW threads/core), and 128 GB HBM3 memory
« Roughly 120GB memory per socket available to users (OS and system processes use the rest)
— Each node has 4 GPUs, 84 user cores and 12 system cores and 512GB HBM3 memory
— GPUs, CPUs, 0OS, ram disks (i.e., /tmp) all share same HBM3 "GPU” memory (no DRAM) and unified address space

— Four NUMA domains per node
 Best practice: 4 MPI ranks per node, each using 1 GPU with memory and cores from same socket via binding

= Binding is critical, everything must be on same socket for good performance
— Microbenchmarks run up to 10X slower if GPU accessing memory from different socket
 Although you can actually access all 480GB avail memory from one GPU, it will be slow!
« Using hipMalloc for most or all memory allocations gives great binding and page size settings automatically
— Running 3X+ slower than expected is usually due to bad binding, often due to missing flux run option --exclusive (-x)
« More binding, page size, and running with flux guidance in later slides

= May be able to share a single GPU with up to 4 MPI tasks with caveats (and luck)
— 2X hardware-based GPU sharing usually works by default, env variables can often allow efficient 4X GPU sharing
« If you need to share GPUs (i.e., UQ of tiny runs), reach out for more details on what to try (not covered more in this overview)

— Performance falls off cliff if GPU falls back to software-based context switching of GPU
« May fall off performance cliff for other reasons. 10% or less overhead expected for working-well cases.

. . ("“l
L Lawrence Livermore National Laboratory N S‘@é‘\

LLNL-PRES-2001638

Maximizing Application Performance under the Flux Scheduler

= Pro tip: Always use --exclusive (or -x) with flux run and don’t specify other constraints
— Only specify --nodes=# (or -N #) and --ntasks=# (or -n #) or --tasks-per-node=#
— Do NOT explicitly specify --cores-per-task=# (or -c #) or --gpus-per-task=# (or --g #) for HPC runs
» Those -c and -g options are for packing nodes for UQ or regression testing, may yield poor performing bindings

— --exclusive (or -x) tells flux to optimally divide node resources between tasks for performance using mpibind
* In general, need 4 (or multiple of 4) tasks per node for optimal performance due to 4 sockets

= 84 (of 96) cores dedicated to user processes, 12 cores reserved for system and lustre
— Those 84 cores to bind to currently specified by MPIBIND RESTRICT (must be set to scale well):
« MPIBIND_RESTRICT=1-7,9-15,17-23,25-31,33-39,41-47,49-55,57-63,65-71,73-79,81-87,89-95,97-103,105-111,113-
119,121-127,129-135,137-143,145-151,153-159,161-167,169-175,177-183,185-191
— To actually be able to use all 96 cores, unset MPIBIND RESTRICT (but will have a lot of noise at scale)
* To enable use all of cores, we have to tell flux about all 96 of them which is why MPIBIND _RESTRICT needed

= The ‘srun’ wrapper for flux automatically adds --exclusive for you
— srun -N 4 --ntasks-per-node=4 ...

. . ("“l
L Lawrence Livermore National Laboratory N S.{_qé“

LLNL-PRES-2001638

Early access mode on Tuolumne, socially scheduled

= 1100 nodes in pbatch, 24 hour time limit

— Currently no technical limits on job sizes and job quantity to maximize flexibility
« Be a good neighbor, ask for advice, and do not monopolize Tuolumne, many users need to be able to run big jobs

= Be a good neighbor!
— Do no use more than half of UP nodes without permission (550 nodes if all up, 512ish better target max size)
« Goal: Enable 2 different users to be able to run big jobs at once
« It is early days, unlikely all nodes will stay up and available (e.g., 1039 pbatch available nodes up on 11/9/24)
— You may idle a large number of nodes if requested node count cannot be fulfilled until other big job finishes
 Flux backfill scheduling can help if you pick a run time shorter than when that big job is expected to start
 Please monitor your jobs to make sure they are not unexpectedly blocking everyone (common issue but backfill helps)

— If need to run a large number of small GPU jobs, bundle them into larger allocations if possible (flux makes this easy)
« Much better on scheduler and for enabling large jobs (flux was designed to do this for UQ and regression tests)

= 44 nodes in pdebug, 1 hour time limit
— For building codes, code development, debugging, and testing
— You can build and test in pbatch if need longer run time
— Please do not do production work in pdebug (i.e., running chained jobs 24 hours a day)

. . [0
L Lawrence Livermore National Laboratory N A‘S@g“ 7

LLNL-PRES-2001638

Always allocate Interactive Compute Nodes for
Compiling, Testing, and Debugging

= Always allocate a pdebug (or pbatch) compute node for compiling and testing your code

— Please do not run big compiles or application runs on the login nodes!
* Crashing or OOMing login nodes can kill all running jobs and app runs can get login node GPUs into bad states
— We understand that this may be the different than other supercomputer sites policies

= The ‘pdebug’ poolis only for compiling/testing/debugging, not production work

— Use as few nodes as feasible (no more than half total) and do not block queue with large requests
» Use ‘pbatch’ allocations if need to debug or test large node count jobs or long running jobs

= Please do not game the system
— We rely on social contracts and good neighbor polices not strong technical controls
» Continuing to abuse login nodes, file systems, batch queues, etc., after being warned not to has gotten users banned
— Hogging pdebug nodes with obvious production work most common form of abuse, do not abuse pdebug!
* We know those idle nodes look tempting, but you are preventing others from getting their work done

= Need help or system seems hung, contact LC Hotline Ic-hotline@IInl.gov or 925-422-4531
— Please feel free to ask how you get can something done “the right way”

. . [0
L Lawrence Livermore National Laboratory N A‘S‘f_%“ 8

LLNL-PRES-2001638

mailto:lc-hotline@llnl.gov

How to avoid “bad” nodes for your code

= What to do if some nodes appear problematic for your application?
— Please report it to the LC Hotline and tell us the symptoms to see if it needs to be replaced

— Tell flux to NOT schedule your allocations on those node(s) with --requires=-host:namel,name2,...
* Note the - before the -host. This indicates do not use those hosts.

= Batch and interactive examples if tuolumne1005,tuolumnel007 in pdebug appear bad
— flux batch --queue=pdebug --requires=-host:tuolumne1005,tuoclumnel007
— flux --parent alloc --nodes=2 --queue=pdebug --time-limit=1h --requires=-host:tuolumne1005,tuolumne1007

= You can also request specific nodes (=host, no - before host) but please use sparingly
— Will delay launching of your allocation and can be hard to tell why delay in flux queries
— These constraints puts higher load on flux scheduler, so not want queue flooded with these request

— You must specify exactly all the nodes desired to run on with --requires=host:namel,name?2,...
* flux --parent alloc --nodes=2 --queue=pdebug --time-limit=1h --requires=host:tuolumne1006,tuolumne1008

= Currently no way to specify nodes to avoid or use with salloc/sbatch “slurm” wrappers

. . ("“l
L Lawrence Livermore National Laboratory N S.{_qé“

LLNL-PRES-2001638

PyTorch, TensorFlow, or using RCCL, need to use AWS Plugin

= RCCL (ML-optimized communications) using TCP sockets is very slow on CORAL2’s network
— AWS wrote open-source RCCL Plugin (librccl-net.so) to use libfabric to greatly accelerates RCCL on slingshot

— Currently you need to build it for your application if using RCCL/PyTorch/TensorFlow

« May bundle with future LC rocm installs (exploring tradeoffs and testing options)
« LD_LIBRARY_PATH needs to point to the directory that contains the plugin library

= |nstructions for building and using AWS RCCL plugin here:
— Example of build, testing, and verifying RCCL on Tioga (remember to use --exclusive or -x on Tuolumne)
« https://lc.linl.gov/confluence/display/LC/2023/06/02/RCCL+performance+on+Tioga#RCCLperformanceonTioga-
InstalltheAWS-OFI-RCCLplugin

— PyTorch specific instructions:
« https://lc.linl.gov/confluence/display/LC/Distributed+PyTorch+on+CORAL+2+systems#DistributedPyTorchonCOR

AL2systems-Extra:InstallAWS-OFI-RCCLplugin
— A very useful sample build script:
/collab/usr/global/tools/rccl/toss_ 4 x86_64 ib_cray/rocm-6.2.1/buildme

. . al
‘ Lawrence Livermore National Laboratory N A‘ 0(.?95'\ 10
National Nuclear Security Administration

LLNL-PRES-2001638

How to choose between CC, crayCC, and magic compiler wrappers

= cc/CC/ftn interface provides “CRAY” magic with everything specified by Cray module files
— Automatically add -Ixpmem, -Impi_gtl hsa, libsci, etc. based on modules loaded (9 modules loaded by default)
— Useful for those that value the traditional cray interface
— Best practice: Have same Cray and rocm modules loaded when compiling and running executable

= New craycc/crayCC/crayftn and mpicc/mpicxx/mpifort provides module-less Cray environment
— Common interface but YOU must link in -Ixpmem, -Impi_gtl_hsa, libsci, etc. explicitly for best performance
— Enables cmake, autotools, spack in cray environment but need to add extra link options for performance
— Best practice: Add RPATHSs to your all your libraries for consistent running of executable

= The -magic wrappers provide “LC” magic where environment is totally ignored
— Load compiler with -magic extension (cce/18.0.1-magic or rocmcc/6.2.1-magic) to get LC magic
« mpicc/mpicxx/mpifort automatically switch to magic versions with -magic compiler loaded
— Auto adds RPATHSs to compilers and rocm and adds -Ixpmem -Impi_gtl _hsa (but not libsci or Cray libraries)

— Best practice: Use full path to compiler in build system (should have -magic in path)
» CXX= /usr/tce/packages/cray-mpich/cray-mpich-8.1.31-rocmcc-6.2.1-magic/bin/mpicxx

. . [0
L Lawrence Livermore National Laboratory N A‘S‘.@g“ 11

LLNL-PRES-2001638

Why don’t we load the rocm module by default?

= Having a ROCM_PATH set to a different rocm than your application uses can cause errors!

— AMD designed ROCM_PATH to allow plugging in debug rocm .so files at runtime
* So setting ROCM_PATH to a different rocm can cause your application to mix two different rocm library sets
— Everyone else (cce, cmake, etc) uses ROCM_PATH to find which rocm you are using

= The -magic compilers add link line options to make executable ighore ROCM_PATH
— -L/opt/rocm-6.2.1/lib -WI,-rpath,/opt/rocm-6.2.1/lib -lamdhip64 -lhsakmt -lhsa-runtime64 -lamd_comgr
— We recommend you add something like the above to your link line (for the correct rocm, of course)

. . [0
L Lawrence Livermore National Laboratory N A‘S‘.@g“ 12

LLNL-PRES-2001638

Spindle on by default starting this afternoon (12/10/2024)

= Linux and python .so search algorithm at scale causes denial-of-service attack on file systems
— Without mitigation, can take hours to start executable and makes LC filesystems unresponsive during that time

— Rapid small-scale runs of many python launches can cause same file systems issues
* 4 nodes running 10 executable invocations per core per second used 99.9% of file system resources until mitigated
— Please do not initialized CONDA, python, or spack in your .bashrc file. Can cause huge file system load!

= Main symptom is slow launch times (or sysadmins killing your job and contacting you)
— With Spindle, full El Cap scale launches typically take less than 2 minutes
— Without mitigation, full El Cap scale launches take > 2 hours and make all CZ filesystems very slow
— If it is taking more than 2 minutes to launch your application, please reach out to us

= Spindle uses advanced algorithms at launch time to mitigate file system load
— Multiple levels of optimization (default ‘medium’)
» Spindle works around glibc bugs uncovered with fastload2 (previous automatic mitigation technique)

— If suspect Spindle causing issues, spindle can be turned off with env variable SPINDLE_FLUXOPT=disable
« Many other options like flux run -o spindle.level=off or per-user configuration in ~/.spindle/spindle.conf

. . [0
L Lawrence Livermore National Laboratory N A‘S@g“ 13

LLNL-PRES-2001638

Turning on GPU-aware MPI and using xpmem can significantly
increase MPI performance

= Starting with cray-mpich/8.1.30 (July 2024), -magic compilers automatically add libraries
— -Ixpmem -L/opt/cray/pe/mpich/8.1.30/gtl/lib -Impi_gtl_hsa -WI,-rpath,/opt/cray/pe/mpich/8.1.30/gtl/lib
— -Ixpmem doubles bandwidth on node using cpu-level MPI
— Can turn off with --no-xpmem and/or --no-gtl if suspect libraries causing issues or unexpected slowdowns

= |f not using -magic compilers, recommend add to link line (here for cray-mpich/8.1.31)
— -Ixpmem -L/opt/cray/pe/mpich/8.1.31/gtl/lib -Impi_gtl_hsa -WI,-rpath,/opt/cray/pe/mpich/8.1.31/gtl/lib

= Turn on GPU-aware MPI by setting env variable MPICH_GPU_SUPPORT_ENABLED=1

— Must have GTL library linked in for this to work (punts otherwise)
— Yields another 2X+ on-node memory bandwidth increase over xpmem

= ABI used by GTL changed with rocm/6.0

— rocm/5.7.1 requires use of older cray-mpich/8.1.27
— ABI stable after rocm/6.0 (but beta testing found issues and got them fixed before GA versions).

. . ("“l
L Lawrence Livermore National Laboratory N A‘S‘@é‘\ 14
LLI National Nuclear Security Administration

NL-PRES-2001638

hipMalloc, HSA_XNACK=1, and 2mb pages options

GPU performs best with 2mb pages and requires pages touched by GPU mapped into GPU

— Use hipMalloc when possible to allocate memory, get 2mb pages mapped in GPU that can be used on CPU
« Doing this will greatly simplify your life and maximize GPU performance

CPUs and GPUs share memory but cpu-based allocators not auto mapped to GPU
— setting env variable HSA_XNACK=1 will page-fault in CPU pages into GPU (with slight overhead)
— CPU default 4k page size will cause ~15% performance overhead on GPU due to GPU TLB size

Enabling transparent huge pages makes most > 2mb CPU allocations have 2mb pages
— Must be enabled at compute node allocation time
* flux alloc --setattr=thp=always -N1
« salloc -N1 --thp=always
— Recommended starting point if allocating memory on CPU to be used on GPU (need HSA_XNACK=1 also)

Linking in -lhugetlbfs and enabling in allocation can put < 2mb CPU allocations in 2mb pages

— Must be enabled at compute node allocation time and can coexist with thp
flux --parent alloc --setattr=hugepages=512G --setattr=thp=always -N 1
« alloc --hugepages=512G --thp=always -N 1
« Must also set env variable HUGETLB_MORECORE=yes (and need HSA_XNACK=1 also)

. . ("“l
L Lawrence Livermore National Laboratory N IS{%“ 15
National Nuclear Security Administration

LLNL-PRES-2001638

Burning Questions?

w Lawrence Livermore National Laboratory

LLNL-PRES-2001638

	Slide 1: Tuolumne Early Users Water Cooler 12-10-2024
	Slide 2: Tuolumne
	Slide 3: Agenda
	Slide 4: System Facts
	Slide 5

