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9:05 in the Armadillo room and Webex

20 min | El Capitan Systems Architecture | Adam Bertsch

20 min | Flux for El Capitan Systems | Ryan Day

10 min | ATCC20, Support, and Other Topics | Scott Futral

60 min | Building and Running Successfully | John Gyllenhaal

30 min | Extra time for questions
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El Capitan, the next ASC ATS to be sited at LLNL
will be the first NNSA exascale system

ASC Platform Strategy includes application code transition for all platforms
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▪ HPE provides several critical innovations
— HPE and LLNL have worked with ORNL jointly on non-recurring engineering (NRE) activities
— MI300A, world’s first data center APU directly addresses multiple  challenges
— Uses TOSS software stack, enhanced with HPE software
— El Capitan includes an innovative near node local storage solution (Rabbit)

HPE has delivered a highly capable 
AMD GPU-accelerated system

Late binding of the processor solution has ensured El Capitan provides the best possible value

▪ El Capitan will meet its stockpile 
stewardship simulation mission 

▪ System will feature:
— Peak 2.8 DP exaflops
— Peak power 34.8MW

• HPL 29.6MW
— AMD MI300A APU - 3D chiplet design 

w/AMD CDNA 3 GPU, “Zen 4” CPU, 
cache memory and HBM chiplets 

— Slingshot interconnect
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El Capitan Architecture

Lustre Storage
401 PB, 2.6+ TB/s 

El Capitan
46 River Racks (4 Svc, 42 E1000)

Management Nodes (44)

Gateway Nodes (10/50)

87 Olympus Cabinets, 29 CDUs

LN – Login/CI/CD (32)

Near-Node 
Local Storage

(696)
21 PB, 31 
(24) TB/s

Slingshot 
Dragonfly Fabric

LLNL SCF 
Network

Edge Routers (4)

LLNL IB 
SAN

LLNL NFS 
Network

Compute Nodes (11,104)
4x MI-300A APU

4x Slingshot-11 200GB HCA

512GB HBM3
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▪ 4th Gen AMD  Infinity Architecture:
AMD CDNA  3 and EPYC  CPU “Zen 4” together
— CPU and GPU cores share a unified on-package pool of memory

▪ Groundbreaking 3D packaging
— CPU | GPU | Cache | HBM
— 24 Zen4 cores, 146B transistors, 128GB HBM3

▪ Designed for leadership memory bandwidth and 
application latency

▪ APU architecture designed for power savings
— compared to discrete implementation

AMD INSTINCT  MI300A: The world’s first data center APU

> 8X Expected AI Training 
Performance vs. MI250X

Preliminary data and projections, subject to change



8
LLNL-PRES-2007699

▪ I/O Die (IOD)
— 128 Channel HBM3 Interface
— 256MB AMD Infinity Cache
— Infinity Fabric Network-on-Chip
— 4 x16 PCIe® 5 + 4th Gen Infinity Fabric  Links
— 4 x16 4th Gen Infinity Fabric  Links

AMD Instinct  MI300 Modular Chiplet Package

▪ Accelerator Complex Die (XCD)
— 6 x 38 AMD CDNA  3 Compute Units

▪ HBM3
— 8 physical stacks 
— AMD Instinct  MI300A:  128 GB (8H)
— AMD Instinct  MI300X:  192 GB (12H)

▪ CPU Complex Die (CCD)
— 3 x 8 “Zen 4” Cores
— Replaced by additional 

XCDs on MI300X
▪ AMD Infinity Fabric  AP 

Interconnect

▪ 3.5D Package
— 3D hybrid bonding
— 2.5D silicon interposer
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3D CPU+GPU integration for next-level efficiency

AMD CDNA  2 Coherent Memory Architecture AMD CDNA  3 Unified Memory APU Architecture

▪ Eliminates redundant 

memory copies

▪ High bandwidth, low 

latency communication

▪ Low TCO with unified 

memory APU package

Next-Gen AMD Instinct  APU

Unified Memory
(HBM)

▪ Simplifies programming

▪ Low overhead 3rd Gen 

Infinity interconnect

▪ Industry standard 

modular design

GPUCPU

GPU
Memory

(HBM)

CPU
Memory
(DRAM)

AMD Instinct  MI250 Accelerator AMD Instinct  MI300 Accelerator
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MI300A at HPE: The HPE compute blade
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Rabbit modules are a 4U near node local storage solution 

▪ All in one solution: Rabbit- 4U
— Houses 18 SSD’s (16+ 2 spares) that 

attach to Rabbit-S board
— Locates Storage Processor (AMD 

Epyc CPU) on Rabbit-P board

▪ Compute blades direct attached 
to Rabbit-S through bulkhead 
cables

▪ Rabbit-S to Rabbit-P board 
connections are internal 
(no external cables)

▪ Deployed in LLNL EAS3s
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Rabbit 4U design provides easy access to SSDs

Front
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El Capitan will be the first ATS to use
TOSS and TCE in production

Components not in 
TOSS

Supported Linux Commodity Hardware Platform

Kernel, High Speed Interconnect

User
Environment

Compiler &
Development Tools

Resource Manager (Flux or SLURM)

TOSS
Components

HPSS Hopper

Lustre File Systems

▪ TOSS major components 
— The OS – LLNL’s Linux distribution based on RHEL
— Resource Manager (SLURM or Flux)
— Lustre

RedHat Enterprise Linux
(RHEL)

Tri-Lab Operating System Stack
(TOSS)

Applications

Tri-Lab Compute Environment
(TCE)

▪ The Tri-Lab Compute Environment (TCE) is 
an application development environment 
(DE)
— Compilers (Intel, PGI, GNU, …)
— MPI (MVAPICH, OpenMPI, …)
— Debuggers (TotalView, Allinea)
— Performance Tools
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Prepared by LLNL under Contract DE-AC52-07NA27344. Livermore Computing
Ryan Day, LC Resource Management

6/25/2025
CORAL2 roadshow

Using Flux on ElCap and Tuo
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• Using Flux like Slurm.

• Flux differences from Slurm.

• Priority, limits, queues, etc on CORAL2 systems.

• CORAL2 specific features.

• Where to find out more.

Overview
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Slurm command Flux command

srun flux run | flux submit

sbatch flux batch

salloc flux alloc

squeue flux jobs -A

scancel flux cancel

• Most Slurm commands and flags have an equivalent Flux 
command

You can use Flux like Slurm

Slurm flag Flux flag

-N -N

-n -n

-t -t

-A --bank

-p -q

https://hpc.llnl.gov/banks-jobs/running-jobs/batch-system-cross-reference-guides
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We have wrappers for many Slurm commands

[day36@tuolumne2151:~]$ which srun
/usr/global/tools/flux_wrappers/bin/srun

[day36@tuolumne2151:~]$ ls /usr/global/tools/flux_wrappers/bin/
bankinfo  mshare    sbatch showq   squeue  sxterm
checkjob  quickreport  sbcast sinfo   srun   utilizationreport
jobinfo  salloc    scancel slurm2flux  suflux

[day36@tuolumne2151:~]$ salloc -N1 -p pdebug -t 15 -v
# running: flux --parent alloc --nodes=1  --queue=pdebug  --time-limit=900s  --verbose 
jobid: f22WbqzS3gJj
flux-job: f22WbqzS3gJj started                         00:00:03
[day36@tuolumne1015:~]$
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Flux differences: 
--parent and dependent jobs

[day36@tuolumne2151:~]$ flux alloc -N 1 -q pdebug
flux-job: f22WqgCeuuf5 started                           00:00:04

[day36@tuolumne1012:~]$ flux jobs -A
   JOBID USER   NAME    ST NTASKS NNODES   TIME INFO

[day36@tuolumne1012:~]$ flux --parent jobs -A
   JOBID QUEUE   USER   NAME    ST NTASKS NNODES   TIME INFO

f22SL6vpUBxT pbatch  jones289 ./train_s+  S    4    4    12h eta:2.044h
f22SL79RN5tT pbatch  jones289 ./train_s+  S    4    4    12h
…

[day36@tuolumne1012:~]$ flux --parent batch --dependency=afterany:$(flux getattr jobid) ...



19LLNL-PRES-2007699

Flux differences: 
--exclusive and mpibind

[day36@dane7:~]$ salloc -N1 -p pdebug --exclusive srun -n2 numactl -s | grep physcpu
…
physcpubind: 168 169 170 171 172 173 174 175 176 177 178 …
physcpubind: 112 113 114 115 116 117 118 119 120 121 122 …
[day36@dane7:~]$ salloc -N1 -p pdebug --exclusive srun -n2 --exclusive numactl -s | grep physcpu
…
physcpubind: 56 168
physcpubind: 0 112

[day36@tuolumne2151:~]$ flux alloc -N1 -q pdebug --exclusive flux run -n2 numactl -s | grep physcpu
physcpubind: 95
physcpubind: 94

[day36@tuolumne2151:~]$ flux alloc -N1 -q pdebug --exclusive flux run -N1 -n2 --exclusive numactl -s | \
grep physcpu
physcpubind: 1 2 3 4 5 6 7 9 10 … 
physcpubind: 49 50 51 52 53 54 55 57 58 …

Mpibind assigns both of these tasks to the same GPU

Mpibind assigns these tasks to different GPUs
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Mpibind and system cores
CURRENTLY:
[day36@tuolumne2151:~]$ flux alloc -N1 -q pdebug
flux-job: f22WyYbNQe9M started                                             00:00:04

[day36@tuolumne1012:~]$ echo $MPIBIND_RESTRICT
1-7,9-15,17-23,25-31,33-39,41-47,49-55,57-63,65-71,73-79,81-87,89-95,…

[day36@tuolumne1012:~]$ flux run -N1 -n2 --exclusive numactl -s | grep physcpu
physcpubind: 1 2 3 4 5 6 7 9 10 11 12 13 14 15 17 18 19 20 21 22 23 …
physcpubind: 49 50 51 52 53 54 55 57 58 59 60 61 62 63 65 66 67 68 69 70 71 …

[day36@tuolumne1012:~]$ MPIBIND_RESTRICT= flux run -N1 -n2 --exclusive numactl -s | \
grep physcpu
physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 …
physcpubind: 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 …

SOON:
[day36@tuolumne2151:~]$ flux alloc -o resource.rediscover=true -o resource.norestrict=true ...
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Other useful Flux commands: 
queued and completed jobs

[day36@tuolumne2151:~]$ flux jobs -A
   JOBID QUEUE   USER   NAME    ST NTASKS NNODES   TIME INFO

f22SL7ZdLMm1 pbatch  jones289 ./train_s+  S    4    4    12h eta:1.664h
…
f228wkgYA4vT pbatch  shin9   submit/es+  D    8    8    1d depends:after-finish=f228wkW1MApP
f22X2AZS4poq pdebug  mast2   flux     R    1    1  2.265m tuolumne1026
…

[day36@tuolumne2151:~]$ flux jobs -A -o deps
   JOBID QUEUE   NAME    URG PRI      STATE   DEPENDENCIES

f22SL7ZdLMm1 pbatch  ./train_s+ 16  99724     SCHED  
…

[day36@tuolumne2151:~]$ flux jobs -a -o endreason
   JOBID QUEUE   USER   NAME    ST  T_INACTIVE INACTIVE-REASON

f22WyYbNQe9M pdebug  day36   flux    CD  Jun18 11:11 Exit 0
f22WtaJY2ka3 pdebug  day36   flux     F  Jun18 10:53 Exit 1
f22WpvMnMktw pdebug  day36   flux    CA  Jun18 10:45 Canceled: interrupted by ctrl-C
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Job priority and standby

Flux uses FairTree (https://slurm.schedmd.com/fair_tree.html) for fairshare priority. View banks and users with 
`flux account` or `bankinfo`:

[day36@tuolumne2151:~]$ bankinfo -T root -v
Name           Shares  Norm Shares     Usage  Norm Usage  Level FS  Priority  Type
ROOT              1   0.000000  1076809737.3   0.000000     --     --  Bank
parent         331000   0.114221  277095302.8   0.257330     --     --  Bank
 childA           373   0.000129      0.0   0.000000     --     --  Bank
 childB          1000   0.000345    36436.5   0.000034     --     --  Bank
…
overhead           1   0.000000  661799186.3   0.614592     --     --  Bank
 guests            1   0.000000  626133217.7   0.581471     --     --  Bank
 lc              1   0.000000   25017080.6   0.023233     --     --  Bank

 standby          1   0.000000   10648888.0   0.009889     --     --  Bank

https://slurm.schedmd.com/fair_tree.html
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Queues, limits, and DATs

Please observe any social limits in `news job.lim.CLUSTER`. You can list queues and nodes with 
`flux queue list` and ̀ flux resource list`. You can submit jobs to any `enabled` queue, but 
they will only run if the queue is also `started`. 

The normal queues are:
pbatch: 24 hour time limit, max job is 4096 nodes (elcap) or 256 nodes (tuo).
pdebug: 1 hour time limit, intended for interactive debugging. Please don’t use more than half of the 
nodes during working hours.

Other queues you may encounter:
plarge: intended for larger scale debug runs on elcap. Generally started Thursdays by request.
pdat_MMDD: created for specific users for Dedicated Application Times (DATs).
pall: Mostly used for system admin testing, but may be used by full system DATs.
pci: very small queue for Gitlab CI jobs.
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CORAL2 Specific Capabilities: Spindle

Spindle improves application start-up scalability by staging libraries and python.

Without Spindle application processes 
overwhelm the shared file system loading 
libraries at start-up.

With Spindle application processes coordinate 
library loading for faster start-up.
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CORAL2 Specific Capabilities: Spindle
Spindle is on by default. Turn it off with:
 export SPINDLE_FLUXOPT=off 
     -or-
 flux run -o spindle.level=off …
     -or-
 flux run -o fastload …

Make spindle more efficient for many jobs in an allocation with:
 export SPINDLE_PATH=/collab/usr/global/tools/spindle/toss_4_x86_64_ib_live
 $SPINDLE_PATH/bin/spindle --start-session
   flux run ...
   flux run ...
   flux submit ...
   #wait for job completion
 $SPINDLE_PATH/bin/spindle --end-session
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CORAL2 specific options:
--setattr=gpu-mode=TPX|CPX|SPX

The MI300A GPUs on ElCap and Tuo can be made to appear as multiple logical GPUs with TPX and CPX mode:

[day36@tuolumne2151:~]$ flux alloc -N1 -q pdebug --setattr=gpumode=TPX -o resource.rediscover
flux-job: f22XDH7AQwa7 start                                   00:00:04
[day36@tuolumne1006:~]$ /opt/rocm-6.2.4/bin/rocm-smi
============================================ ROCm System Management Interface ===========================
====================================================== Concise Info =====================================
Device  Node  IDs        Temp     Power   Partitions     …
       (DID,   GUID)  (Junction)  (Socket)  (Mem, Compute, ID)        

=========================================================================================================
0    4   0x74a0,  6167  47.0°C    129.0W   NPS1, TPX, 0     …
1    5   0x74a0,  40982  47.0°C    129.0W   NPS1, TPX, 1     …
… 
10    14   0x74a0,  24562  46.0°C    76.0W   NPS1, TPX, 1     …
11    15   0x74a0,  55282  46.0°C    76.0W   NPS1, TPX, 2     …
=========================================================================================================
================================================== End of ROCm SMI Log ==================================
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Questions?

• https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems

• https://hpc-tutorials.llnl.gov/flux/

• https://hpc.llnl.gov/banks-jobs/running-jobs

• https://flux-framework.readthedocs.io/en/latest/

• `flux help`

• `flux command help` / `man flux command`

• lc-hotline@llnl.gov / 925-422-4531

Learn more
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New ATS Governance Model: Split between persistent projects and 
standard ATCC process, not necessarily split evenly between labs

• 40% of the machine will be used for persistent projects​
• This 40% is divided evenly between the tri-labs, and reassessed on a six-month cadence ​
• This means each lab has 24.333 El Capitan days for persistent projects​
• LLNL intends on using this to provide free energy to highest priority projects and enable staging for 

future “60% projects”​

• 60% of the machine will follow “standard” ATCC proposal driven process​
• Proposals will be collected by each lab​
• Ideally labs will have a streamlined way of adjudicating proposals​

• For each six month chunk of time, LC will need​
• Banks for each project​
• POC for each project​
• El Capitan days for each project in the six month time frame​
• Tracking information about how each project is aligned within NA-10 programs​
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A few details about the “60% projects”
•  Early in the life of the machine, these projects will include ML studies​
• Important to help us really track cost of ML studies relative to standard mod/sim 

workloads​
• LLNL will ask LSCI projects to develop proposals. LSCI has a bi-annual report 

writing requirement so, these proposals are consistent with HQ needs.​
• Proposals will result from staging calculations from persistent projects
• WPD and WSC management are aligned on encouraging applications
• We should take the opportunity to review our proposal process to determine if 

we can make it easier for the users​
• We need to make sure we understand what LC needs to start proposal projects 

efficiently​
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ATCC-20 Request for Proposals Distributed

July 21, 2025

ATCC-20 Proposals Due to Lab POCs

August 8, 2025

Selected ATCC-20 proposals and allocations are distributed for each resource; a tri-lab list is generated for 
ATPAC and HQ to review and approve.

August 29, 2025

ATCC-20 Projects Notified of Allocation

September 5, 2025

ATCC-20 Start on El Capitan & Crossroads

September 22, 2025

ATCC-20 Key Dates
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Resources and Support for El Cap Systems

• Elcap and Tuolumne are officially considered ‘Limited Availability’ mode
• Request access for Tuolumne through LC-IDM and specify the ‘bank’
• Elcap requests for access are gated by IC activities
• The use of ‘standby’ is appreciated. 
• LC Hotline is ready to support user issues
• Vendor support from HPE and AMD from Application Analysts:
 Rob Noska, Jared Hansome, Austin Ellis
• Center of Excellence support continues and has been vital to problem 

resolution and performance improvements
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Documentation for El Cap systems is here:

Using El Capitan Systems | HPC @ LLNL 

(https://hpc.llnl.gov/documentation/user-
guides/using-el-capitan-systems)

https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems
https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems
https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems
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Questions?
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Prepared by LLNL under Contract DE-AC52-07NA27344. Livermore Computing (LC)
John Gyllenhaal

Wednesday June 25th, 2025

El Capitan Systems Getting Started Workshop

Building and Running Successfully on 
El Capitan Systems

LLNL-PRES-2007699
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▪ Present concise and actionable rules of thumb for using El Capitan
− Present key concepts and commands for compiling applications and running on El Cap systems
− Make you aware of the existence of several complex technical details that may impact your application

• If your application is impacted, will indicate how to reach out to get focused help

▪ Aiming for biggest impact with a “short” presentation 
− Presenting the key points of dozens of hours of NDA presentations over the last few years
− Will not dive into all the juicy technical details or be able provide full answers to questions

• The “real” answers to “why” are often quite complex, confusing, time consuming, and requiring NDAs

▪ No NDA required for this talk’s info
− Often limits discussion of the technical details that drive the rules of thumb presented

▪ Snapshot in time
− Systems still evolving as new and improved functionality comes online

Goals and Scope
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▪ Point of contact for getting help or asking questions
− LC Hotline: lc-hotline@llnl.gov or 925-422-4531

▪ El Capitan user guides (mi300a’s: elcap, tuolumne or tuo, rzadams  mi250x’s/EAS: rzvernal, tioga, tenaya)
− https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems

▪ Run and scheduling jobs with Flux
− https://hpc-tutorials.llnl.gov/flux/
− https://hpc.llnl.gov/banks-jobs/running-jobs/batch-system-cross-reference-guides

▪ Accessing LC systems smoothly with ssh
− https://hpc.llnl.gov/documentation/user-guides/accessing-lc-systems

▪ Accelerating PyTorch, TensorFlow, or any ML code using RCCL (internal modules, files, websites)
− Use either module ‘rccl/working-env’  or ‘rccl/fast-env-slows-mpi’ to be compatible with system’s current MPI
− Sample build script /collab/usr/global/tools/rccl/toss_4_x86_64_ib_cray/rocm-6.2.1/buildme
− https://lc.llnl.gov/confluence/display/LC/2023/06/02/RCCL+performance+on+Tioga#RCCLperformanceonTioga-

InstalltheAWS-OFI-RCCLplugin
− https://lc.llnl.gov/confluence/display/LC/Distributed+PyTorch+on+CORAL+2+systems#DistributedPyTorchonCORAL2sys

tems-Extra:InstallAWS-OFI-RCCLplugin

Where to get help and key documentation for today’s talks
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▪ Elcap is on the Secure (SCF) classified network and Tri-labs users should use cross-realm authentication

▪ RZadams is in the Restricted Zone (RZ)  and Tri-lab users should use IHPC cross-realm authentication

▪ Tuolumne is in the Collaboration Zone (CZ) and you can ssh tuo.llnl.gov or ssh tuolumne.llnl.gov without VPN

▪ You cannot use ssh keys to connect to LC supercomputers from outside LC (in any zone)
− Must use a two-factor authentication or tri-lab cross-realm authentication to get into an LC supercomputer 
− https://dev.llnl.gov/security-access/ssh/ has ssh config files and info that may help with ssh proxy setups

• Can proxy through initial connection ( often oslic for CZ, rzslic for RZ, and cslic for SCF) for additional connections
• Ian Lee’s .ssh/config files are FOR PLACEMENT ON YOUR WORKSTATION ONLY (!) NOT ON LC SUPERCOMPUTERS
• Placing in your LC .ssh/config file very common mistake that breaks CORAL1 and causes unnecessary authentications

▪ We require you to use 4k bits (or larger) rsa ssh keys (without passphrase) on LC
− ssh-keygen -t rsa -b 4096 -N “”

• LC has common home directories, so empty passphrase does not reduce security and is approved for use at LC
− Will enable you to ssh between LC machines without password or passphrase

▪ Do not put LC private keys on different zones (don’t share CZ, RZ, or SCF private keys)
− Do not copy your CZ LC .ssh/id_rsa file outside the CZ or RZ key outside of the RZ!

Accessing El Capitan Systems:
Ssh Key Hints and Gotchas
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▪ Four sockets per node 
− Each socket contains one powerful GPU, 21 user cores (+ 3 system) (2 HW threads/core), and 128 GB HBM3 memory

• Roughly 120GB memory per socket available to users (OS and system processes use the rest)
− Each node has 4 GPUs, 84 user cores and 12 system cores and 512GB HBM3 memory 
− GPUs, CPUs, OS, ram disks (i.e., /tmp) all share same HBM3 ”GPU” memory (no DRAM) and unified address space
− Four NUMA domains per node 

• Best practice: 4 MPI ranks per node, each using 1 GPU with memory and cores from same socket via binding
− Each GPU can now be split into 3 (TPX mode) or 6 (CPX mode) virtual GPUs per socket at node allocation time but support is still evolving

▪ Binding is critical, everything must be on same socket for good performance
− Microbenchmarks run up to 30X slower if GPU accessing memory from different socket

• Although you can actually access all 480GB avail memory from one GPU, it will be slow!
• Using hipMalloc for most or all memory allocations gives great binding and page size settings automatically

− Running 3X+ slower than expected is usually due to bad binding, often due to missing flux run option --exclusive (-x)
• More binding, page size, and running with flux guidance in later slides

▪ May be able to share a single GPU (or virtual GPU) with up to 4 MPI tasks with caveats (and luck)
− 2X hardware-based GPU sharing usually works by default, env variables can often allow efficient 4X GPU sharing

• If you need to share GPUs (i.e., UQ of tiny runs), reach out for more details on what to try (not covered more in this overvi ew)
− Performance falls off cliff if GPU falls back to software-based context switching of GPU

• May fall off performance cliff for other reasons.   10% or less overhead expected for working-well cases.

High-level El Cap MI300A APU-based Node Overview
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▪ SPX mode (1 big GPU per socket), 4 GPUs/node is the default mode
− Combines 6 GPU chiplets and uses one chiplet’s scheduling hardware to drive GPU
− Maximizes memory available per GPU (~120 GBs) and very powerful GPUs
− Only mode is MPI currently certified by HPE to work (some hangs in other modes)

▪ CPX mode (6 virtual GPUs per socket, 1 per chiplet) yields 24 GPUs/node
− flux alloc ... --setattr=gpumode=CPX --conf=resource.rediscover=true
− Every virtual GPU uses own chiplet’s scheduling hardware
− Reports for 15-20% performance gains for small inputs that fit in tiny memory/GPU

▪ TPX mode (3 virtual GPUs per socket) yields 12 GPUs/node
− flux alloc ... --setattr=gpumode=TPX --conf=resource.rediscover=true
− Original focus but CPX mode appears to yield most performance benefit

SPX mode and the new TPX / CPX GPU Modes
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▪ Pro tip: Always use --exclusive (or -x) with flux run and don’t specify other constraints
− Only specify --nodes=# (or -N #) and --ntasks=# (or -n #)  or --tasks-per-node=#
− Do NOT explicitly specify --cores-per-task=# (or -c # ) or --gpus-per-task=# ( or --g #) for HPC runs

• Those -c and -g options are for packing nodes for UQ or regression testing, may yield poor performing bindings 
− --exclusive (or -x) tells flux to optimally divide node resources between tasks using mpibind

• In general, need 4 (or multiple of 4) tasks per node for optimal performance due to 4 sockets
• -o mpibind=verbose tells mpibind to print bindings (.e.g.: mpibind: task  3 nths 21 gpus 3 cpus 73-79,81-87,89-95)
• mpibind sets env variable ROCR_VISIBLE_DEVICES=3 in order to map GPU 0 request by app to GPU 3

▪ 84 (of 96) cores dedicated to user processes, 12 cores reserved for system and lustre
− Those 84 cores to bind to currently specified by MPIBIND_RESTRICT (must be set to scale well):

• MPIBIND_RESTRICT=1-7,9-15,17-23,25-31,33-39,41-47,49-55,57-63,65-71,73-79,81-87,89-95,97-103,105-111,113-
119,121-127,129-135,137-143,145-151,153-159,161-167,169-175,177-183,185-191

• To actually be able to use all 96 cores, unset MPIBIND_RESTRICT (but will have a lot of noise at scale)
− New flux allocation-based mechanism to totally hide system cores by default coming soon!

• Having flux hide the system cores at allocation time restores expected flux behavior to some flux options

▪ The ‘srun’ wrapper for flux automatically adds --exclusive for you
− srun -N 4 --ntasks-per-node=4 …

Maximizing Application Performance
 under the Flux Scheduler
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▪ Always allocate a pdebug (or pbatch or pdev) compute node for compiling and testing your code
− Please do not run big compiles or application runs on the login nodes! 

• Crashing or OOMing login nodes can kill all running jobs and app runs can get login node GPUs into bad states
− Other Tri-lab supercomputer centers have the opposite policy, but this is how our center was designed

• We understand that this may be the different than other supercomputer sites policies

▪ The ‘pdebug’ pool is only for compiling/testing/debugging, not production work
− Use as few nodes as feasible (no more than half total) and do not block queue with large requests

• Use ‘pbatch’ allocations if need to debug or test large node count jobs or long running jobs

▪ Please do not game the system 
− We rely on social contracts and good neighbor polices not strong technical controls 

• Continuing to abuse login nodes, file systems, batch queues, etc., after being warned not to has gotten users banned
− Hogging pdebug nodes with obvious production work most common form of abuse, do not abuse pdebug!

• We know those idle nodes look tempting, but you are preventing others from getting their work done

▪ Need help or system seems hung, contact LC Hotline lc-hotline@llnl.gov or 925-422-4531
− Please feel free to ask how you get can something done “the right way”

Always Allocate Interactive Compute Nodes for 
Compiling, Testing, and Debugging

mailto:lc-hotline@llnl.gov
mailto:lc-hotline@llnl.gov
mailto:lc-hotline@llnl.gov
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▪ What to do if some nodes appear problematic for your application?
− Please(!) report it to the LC Hotline and tell us the symptoms so we can see if it needs to be replaced
− Tell flux to NOT schedule your allocations on those node(s) with --requires=-host:name1,name2,…

• Note the - before the -host.   This indicates do not use those hosts.

▪ Batch and interactive examples if tuolumne1005,tuolumne1007 in pdebug appear bad
− flux batch --queue=pdebug --requires=-host:tuolumne1005,tuolumne1007
− flux --parent alloc --nodes=2 --queue=pdebug --time-limit=1h --requires=-host:tuolumne1005,tuolumne1007

▪ You can also request specific nodes (=host, no - before host) but please use sparingly
− Will delay launching of your allocation and can be hard to tell why delay in flux queries
− These constraints puts higher load on flux scheduler, so not want queue flooded with these request
− You must specify exactly all the nodes desired to run on with --requires=host:name1,name2,…

• flux --parent alloc --nodes=2 --queue=pdebug --time-limit=1h --requires=host:tuolumne1006,tuolumne1008

▪ Currently no way to specify nodes to avoid or use with salloc/sbatch “slurm” wrappers

How to avoid “bad” nodes for your code
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▪ cc/CC/ftn interface provides “CRAY” magic with everything specified by Cray module files
− Automatically add -lxpmem, -lmpi_gtl_hsa, libsci, etc. based on modules loaded
− Useful for those that value and are familiar with the traditional cray interface
− Best practice: Have same Cray and rocm modules loaded when compiling and running executable

▪ New craycc/crayCC/crayftn and mpicc/mpicxx/mpifort provides module-less Cray environment
− Common interface but YOU must link in -lxpmem, -lmpi_gtl_hsa, libsci, etc. explicitly for best performance
− Enables cmake, autotools, spack in cray environment but need to add extra link options for performance
− Best practice: Add RPATHs to your all your libraries for consistent running of executable

▪ The -magic wrappers provide “LC” magic where the environment is totally ignored
− Load compiler with -magic extension (cce/19.0.0-magic or rocmcc/6.4.1-magic) to get LC magic

• mpicc/mpicxx/mpifort automatically switch to magic versions with -magic compiler loaded
− Auto adds RPATHs to compilers and rocm and adds -lxpmem -lmpi_gtl_hsa (but not libsci or Cray libraries)
− Best practice: Use full path to compiler in build system (should have -magic in path)

• CXX= /usr/tce/packages/cray-mpich/cray-mpich-8.1.32-rocmcc-6.4.1-magic/bin/mpicxx

▪ NOTE: Beta compiler/mpi/rocm versions are deleted once release versions become available 

How to choose between CC, crayCC, and 
“LC” -magic compiler wrappers
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▪ AMD HIP compilation  (with LC -magic)
− ml rocmcc/6.4.1-magic cray-mpich/8.1.32
− mpiamdclang++ -D__HIP_PLATFORM_AMD__ -I/opt/rocm-6.4.1/include -O3 -g --offload-

arch=gfx942 -std=c++11 --rocm-path=/opt/rocm-6.4.1 -x hip -mllvm -amdgpu-early-inline-
all=true -mllvm -amdgpu-function-calls=false -fhip-new-launch-api --driver-mode=g++ 
rush_larsen_gpu_hip_mpi.cc -o rush_larsen_gpu_hip_mpi

− /usr/tce/packages/cray-mpich/cray-mpich-8.1.32-rocmcc-6.4.1-magic/bin/mpiamdclang++

▪ CCE HIP compilation (with LC -magic)
− ml cce/19.0.0-magic cray-mpich/8.1.32
− mpicrayCC -D__HIP_PLATFORM_AMD__ -I/opt/rocm-6.4.1/include -O3 -g --cuda-gpu-

arch=gfx942 -std=c++11 --rocm-path=/opt/rocm-6.4.1 -x hip rush_larsen_gpu_hip_mpi.cc  -o 
rush_larsen_gpu_hip_mpi

− /usr/tce/packages/cray-mpich/cray-mpich-8.1.32-cce-19.0.0-magic/bin/mpicrayCC

C++ HIP compiler examples, no Fortran HIP support
(mi300a’s architecture name is gfx942)
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▪ AMD C++ OpenMP Offloading 
− ml rocmcc/6.4.1-magic cray-mpich/8.1.32 
− mpiamdclang++  -O3 -g -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa

-Xopenmp-target=amdgcn-amd-amdhsa -march=gfx942 rush_larsen_gpu_omp_mpi.cc   -o 
rush_larsen_gpu_omp_mpi

− /usr/tce/packages/cray-mpich/cray-mpich-8.1.32-rocmcc-6.4.1-magic/bin/mpiamdclang++

▪ CCE Fortran OpenMP Offloading 
− ml  cce/19.0.0-magic cray-mpich/8.1.32
− mpicrayftn -O3 -g -fopenmp -haccel=amd_gfx942 rush_larsen_gpu_omp_mpi_fort.F90 

 -o rush_larsen_gpu_omp_mpi_fort
− /usr/tce/packages/cray-mpich/cray-mpich-8.1.32-cce-19.0.0-magic/bin/mpicrayftn

▪ Mixed AMD C++ and Cray Fortran magic module
− ml rocmcc/6.4.1-cce-18.0.1m-magic

OpenMP GPU compiler examples, C++ and Fortran
(mi300a’s architecture name is gfx942)
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▪ Starting with cray-mpich/8.1.30 (July 2024), -magic compilers automatically add libraries
− -lxpmem -L/opt/cray/pe/mpich/8.1.32/gtl/lib -lmpi_gtl_hsa -Wl,-rpath,/opt/cray/pe/mpich/8.1.32/gtl/lib
− -lxpmem doubles bandwidth on node using cpu-level MPI
− Can turn off with --no-xpmem and/or --no-gtl if suspect libraries causing issues

▪ If not using -magic compilers, recommend add to link line (here for cray-mpich/8.1.32)
− -lxpmem -L/opt/cray/pe/mpich/8.1.32/gtl/lib -lmpi_gtl_hsa -Wl,-rpath,/opt/cray/pe/mpich/8.1.32/gtl/lib

▪ Turn on GPU-aware MPI by setting env variable MPICH_GPU_SUPPORT_ENABLED=1
− Must have GTL library linked in for this to work (punts otherwise)
− Yields another 2X+ on-node memory bandwidth increase over xpmem
− However freeing GPU MPI buffers can cause memory growth (see later slide for mitigations)

▪ ABI used by GTL changed with rocm/6.0
− rocm/5.7.1 requires use of older cray-mpich/8.1.27 
− ABI stable after rocm/6.0 for rocm/6.* but enhanced for cray-mpich/8.1.33 in rocm/6.4.*

Turning on GPU-aware MPI and using xpmem can 
significantly increase MPI performance
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▪ Having a ROCM_PATH set to a different rocm than your application uses can cause errors!
− AMD designed ROCM_PATH to allow plugging in debug rocm .so files at runtime

• So setting ROCM_PATH to a different rocm can cause your application to mix two different rocm library sets
− Everyone else (cce, cmake, etc) uses ROCM_PATH to find which rocm you are using
− Having a conflicting ROCM_PATH can break you both at compile time and run time!

▪ The -magic compilers add link line options to make executable ignore ROCM_PATH
− -L/opt/rocm-6.4.1/lib -Wl,-rpath,/opt/rocm-6.4.1/lib -lamdhip64 -lhsakmt -lhsa-runtime64 -lamd_comgr
− We recommend you add something like the above to your link line (for the correct rocm, of course)
− This is key for published executables where users may have a different rocm loaded

▪ Major ABI change expected with rocm/7.0.0 that MPI & CCE will not support until early 2026

Why don’t we load the rocm module by default? 
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▪ RCCL (ML-optimized comm) using TCP sockets is very slow on CORAL2’s network
− AWS’s open-source RCCL Plugin (librccl-net.so) uses libfabric to greatly accelerates RCCL on slingshot
− Currently you need to build it for your application if using RCCL/PyTorch/TensorFlow (see below)

• LD_LIBRARY_PATH needs to point to the directory that contains the plugin library
− You MUST also currently either load a rccl module or set env variables to make compatible with slingshot

• ’ml rccl/working-env’  currently sets one env variable to prevent libfabric conflict between rccl and MPI that causes hangs
•  ‘ml rccl/fast-env-slows-mpi`currently sets 8 tuning parameters that accelerates rccl at the expense of MPI performance
• Planned future upgrade of using ‘kdreg2’ with libfabric is expected to eliminate the need for loading rccl/working-env

▪ Instructions for building and using AWS RCCL plugin available
− A very useful sample build script: /collab/usr/global/tools/rccl/toss_4_x86_64_ib_cray/rocm-6.2.1/buildme
− Example of build, testing, and verifying RCCL on Tioga (remember to use --exclusive or -x on Tuolumne)

• https://lc.llnl.gov/confluence/display/LC/2023/06/02/RCCL+performance+on+Tioga#RCCLperformanceonTioga-
InstalltheAWS-OFI-RCCLplugin

− PyTorch specific instructions:
• https://lc.llnl.gov/confluence/display/LC/Distributed+PyTorch+on+CORAL+2+systems#DistributedPyTorchonCORAL2syste

ms-Extra:InstallAWS-OFI-RCCLplugin

PyTorch, TensorFlow, or using RCCL, 
need to use AWS Plugin and RCCL module to set env vars
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▪ Linux and python .so search algorithm at scale causes denial-of-service attack on file systems
− Without mitigation, can take hours to start executable and makes LC filesystems unresponsive for everyone
− Rapid small-scale runs of many python launches can cause same file systems issues

• 4 nodes running 10 executable invocations per core per second used 99.9% of file system resources until mitigated
− Please do not initialized CONDA, python, or spack in your .bashrc file.   Can cause huge file system load!
− Please build for just the one GPU.   Building for both mi300a and mi250x can double file sizes.

▪ Main symptom is slow launch times (or sysadmins killing your job and contacting you)
− With Spindle, full El Cap scale launches typically take less than 2 minutes
− If it is taking more than 2 minutes to launch your application, please reach out to us!

▪ Spindle uses advanced algorithms at launch time to mitigate file system load (caches directory contents)
− Spindle in ‘medium’ mode is invoked flux run by default on Elcap and Tuolumne but not any other machines
− Tuning is sometimes needed to make compatible with new applications (breaks POSIX standard to reduce load)

• If small scale testing with SPINDLE_FLUXOPT=disable reveals functionality change (i.e., fixes issue) contact us for help!
• This is the first thing to try if get unexpected segfaults or get errors that files or libraries cannot be found

− But you must use another method to mitigate file system load if you turn spindle off at scale!   Contact us for help!
• Options include ‘fastload’ (previous automatic mitigation technique) and ‘build_libcache’ and other Spindle modes.

▪ NOTE: Putting large executables in lustre may also be helpful even with Spindle at scale

Applications must reduce file system load to something 
manageable!   Tools like Spindle can help!
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▪ Don’t write data to workspace (/usr/WS*)  or home (/g/g*) directories!
− Write your data to /p/lustre# (/p/lustre4 on elcap and /p/lustre5 on tuolumne)
− Very easy to crush NFS servers with parallel reads and writes and they have limited quotas

• Hammering the small quotas on those systems is also very hard on the systems

▪ Lustre supports large default quotas and more can be requested  
− Elcap 100TB (space) /10M (inodes) Tier 1 quota (default, form for requesting more) 
− Tuolumne 50TB (space) /5M (inodes) Tier 1 quota (default, form for requesting more) 
- Not backed up, so don’t put only copy of key files on lustre

- Rabbits provide node-local temporary ssd storage (deleted when job completes)
- /l/ssd (200GB current size).    Other rabbit options supported and being tested.

▪ Tape archive (htar, ftp storage) can provide long storage for key data
− 300TB default quota for tape storage currently

Where (and where not) to write and save data
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▪ OOM killer priorities dialed in by flux since mid May 2025 
− Running out of memory now kills user tasks first and no longer breaking the nodes

• GPU memory usage is not currently visible to kernel, so flux now paints user tasks as first to kill
− No longer need to sysadmins to reboot and bring back up 1000s of nodes a day 
− Longer term work on making GPU memory visible to OS and cgroups continues

▪ Unrecoverable Memory Faults now successfully causes retirement of ‘suspect’ memory 
− Until mid May 2025, complex interactions prevented ‘suspect’ memory from actually being retired 

• This continued reuse of ‘suspect’ memory dramatically negatively impacted mean time to failure
− Each memory block can now only get one unrecoverable error before being taken out of use
− Too much retired memory triggers node memory replacement to prevent noticeable shrinkage

▪ GPU-aware MPI unexpected memory growths tracked down 
− Software fixes expected July and August 2025 (next slide)

▪ These are examples of why early access shakeout periods key for stable production usage

Early access testing allowed us to identify and fix key issues 
before production use
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▪ rocm/6.4.2 allows execution of applications without read-bit set
− One non-readable application currently also requires ROCM_PATH=/opt/rocm-6.4.2

▪ cray-mpich/8.1.33 supports new IPC signal cache management algorithm
− Freeing GPU MPI buffers can cause memory growth with current IPC cache algorithm

• OS cannot reuse freed memory because other GPUs nave mapped it into their address space
• Workarounds: Don’t free GPU mpi buffers or reuse freed memory via memory pools not the OS

− New algorithm ‘signals’ other GPUs on same node to unmap memory so can be freed
• Disabled by default since new.  Must set GTL_DISABLE_HSA_IPC_SIGNAL_CACHE=0 to enable
• Requires rocm/6.4.* since relies on new rocm signal ABI implemented starting in rocm/6.4.0

▪ cce/20.0.0 supports rocm/6.4.* natively
− Most cce/19.0.0 + rocm/6.4 issues tied to setting DEBUG_HIP_7_PREVIEW=1

Solutions expected to be delivered in July/August 2025
(based on testing of beta versions of software)
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▪ GPU performs best with 2mb pages and requires pages touched by GPU to be mapped into GPU
− Use hipMalloc when possible to allocate memory, get 2mb pages mapped in GPU that can also be used on CPU 

• Doing this will greatly simplify your life and maximize GPU performance
• Do not need any of the more complicated options below if use hipMalloc for all GPU memory allocations 

▪ CPUs and GPUs share memory but cpu-based allocators not auto mapped to GPU
− setting env variable HSA_XNACK=1 will page-fault in CPU pages into GPU (with slight overhead)
− CPU default 4k page size will cause 15% or more performance overhead on GPU due to GPU TLB size

▪ Enabling transparent huge pages makes most > 2mb CPU allocations have 2mb pages
− Must be enabled at compute node allocation time

• flux alloc --setattr=thp=always -N1
• salloc -N1 --thp=always

− Recommended starting point if allocating memory on CPU to be used on GPU (need HSA_XNACK=1 also)

▪ Linking in -lhugetlbfs  and enabling in allocation can put < 2mb CPU allocations in 2mb pages
− Must be enabled at compute node allocation time and can coexist with thp

flux --parent alloc --setattr=hugepages=512G --setattr=thp=always  -N 1
• salloc --hugepages=512G --thp=always -N 1
• Must also set env variable HUGETLB_MORECORE=yes (and need HSA_XNACK=1 also)

hipMalloc, HSA_XNACK=1, and 2mb pages options
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Rocprofv3/rocprof-sys/rocprof-compute – Best for GPU deep dives, not scaling

HPCToolkit – Whole application profiling with good GPU support

HPE Perftools (was CrayPAT) – HPC-focused profiling and tracing

Caliper – Application integrated profiling 

Performance Tools

Print GPU metrics on command line Visualize small GPU traces on with perfetto
https://lc.llnl.gov/perfetto or https://rzlc.llnl.gov/perfetto

Show CPU+GPU metrics on code regions Visualize CPU+GPU traces across nodes
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TotalView – Visual HPC and GPU debugger

rocgdb – Serial GPU debugger from AMD based on GDB

gdb4hpc – Parallel GPU debugger from HPE based on GDB

ASAN – Compiler-based memory correctness tools

STAT – Core dump and stack trace analysis

Debugging Tools
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Questions?
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Questions?
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