
1

El Capitan Systems
Getting Started Workshop
June 25, 2025

Livermore Computing (LC)
Adam Bertsch, Ryan Day, Scott Futral, John Gyllenhaal

Prepared by LLNL under Contract DE-AC52-07NA27344.

LLNL-PRES-2007699

2

9:05 in the Armadillo room and Webex

20 min | El Capitan Systems Architecture | Adam Bertsch

20 min | Flux for El Capitan Systems | Ryan Day

10 min | ATCC20, Support, and Other Topics | Scott Futral

60 min | Building and Running Successfully | John Gyllenhaal

30 min | Extra time for questions

Agenda

LLNL-PRES-2007699

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-

AC52-07NA27344. Lawrence L ivermore National Secur ity, LLC

El Capitan Architecture

Adam Bertsch
El Capitan Integration Lead / Livermore Computing Advanced Technology Office

June 25th, 2025

4
LLNL-PRES-2007699

El Capitan, the next ASC ATS to be sited at LLNL
will be the first NNSA exascale system

ASC Platform Strategy includes application code transition for all platforms

Advanced
Technology

Systems (ATS)

Commodity
Technology

Systems (CTS)

Advanced
Architecture
 Prototype

Systems (AAPS)

May 2023

ATS-1:Trinity (LANL/SNL)

ATS-2: Sierra (LLNL)

CTS-1

Astra (SNL)

ATS-3: Crossroads (LANL/SNL)

ATS-4: El Capitan (LLNL)

CTS-2

Vanguard-2 (SNL)

ATS-6 (LLNL)

CTS-3

Vanguard-3 (SNL)

ATS-5 (LANL)

CTS-4

Accept

Plan

NRE

Use

Retire

Fiscal Year‘20 ‘21 ‘22 ‘23 ‘24 ‘25 ‘26 ‘27 ‘28 ‘29 ‘30 ‘31

5
LLNL-PRES-2007699

▪ HPE provides several critical innovations
— HPE and LLNL have worked with ORNL jointly on non-recurring engineering (NRE) activities
— MI300A, world’s first data center APU directly addresses multiple challenges
— Uses TOSS software stack, enhanced with HPE software
— El Capitan includes an innovative near node local storage solution (Rabbit)

HPE has delivered a highly capable
AMD GPU-accelerated system

Late binding of the processor solution has ensured El Capitan provides the best possible value

▪ El Capitan will meet its stockpile
stewardship simulation mission

▪ System will feature:
— Peak 2.8 DP exaflops
— Peak power 34.8MW

• HPL 29.6MW
— AMD MI300A APU - 3D chiplet design

w/AMD CDNA 3 GPU, “Zen 4” CPU,
cache memory and HBM chiplets

— Slingshot interconnect

6
LLNL-PRES-2007699

El Capitan Architecture

Lustre Storage
401 PB, 2.6+ TB/s

El Capitan
46 River Racks (4 Svc, 42 E1000)

Management Nodes (44)

Gateway Nodes (10/50)

87 Olympus Cabinets, 29 CDUs

LN – Login/CI/CD (32)

Near-Node
Local Storage

(696)
21 PB, 31
(24) TB/s

Slingshot
Dragonfly Fabric

LLNL SCF
Network

Edge Routers (4)

LLNL IB
SAN

LLNL NFS
Network

Compute Nodes (11,104)
4x MI-300A APU

4x Slingshot-11 200GB HCA

512GB HBM3

7
LLNL-PRES-2007699

▪ 4th Gen AMD Infinity Architecture:
AMD CDNA 3 and EPYC CPU “Zen 4” together
— CPU and GPU cores share a unified on-package pool of memory

▪ Groundbreaking 3D packaging
— CPU | GPU | Cache | HBM
— 24 Zen4 cores, 146B transistors, 128GB HBM3

▪ Designed for leadership memory bandwidth and
application latency

▪ APU architecture designed for power savings
— compared to discrete implementation

AMD INSTINCT MI300A: The world’s first data center APU

> 8X Expected AI Training
Performance vs. MI250X

Preliminary data and projections, subject to change

8
LLNL-PRES-2007699

▪ I/O Die (IOD)
— 128 Channel HBM3 Interface
— 256MB AMD Infinity Cache
— Infinity Fabric Network-on-Chip
— 4 x16 PCIe® 5 + 4th Gen Infinity Fabric Links
— 4 x16 4th Gen Infinity Fabric Links

AMD Instinct MI300 Modular Chiplet Package

▪ Accelerator Complex Die (XCD)
— 6 x 38 AMD CDNA 3 Compute Units

▪ HBM3
— 8 physical stacks
— AMD Instinct MI300A: 128 GB (8H)
— AMD Instinct MI300X: 192 GB (12H)

▪ CPU Complex Die (CCD)
— 3 x 8 “Zen 4” Cores
— Replaced by additional

XCDs on MI300X
▪ AMD Infinity Fabric AP

Interconnect

▪ 3.5D Package
— 3D hybrid bonding
— 2.5D silicon interposer

9
LLNL-PRES-2007699

3D CPU+GPU integration for next-level efficiency

AMD CDNA 2 Coherent Memory Architecture AMD CDNA 3 Unified Memory APU Architecture

▪ Eliminates redundant

memory copies

▪ High bandwidth, low

latency communication

▪ Low TCO with unified

memory APU package

Next-Gen AMD Instinct APU

Unified Memory
(HBM)

▪ Simplifies programming

▪ Low overhead 3rd Gen

Infinity interconnect

▪ Industry standard

modular design

GPUCPU

GPU
Memory

(HBM)

CPU
Memory
(DRAM)

AMD Instinct MI250 Accelerator AMD Instinct MI300 Accelerator

10
LLNL-PRES-2007699

MI300A at HPE: The HPE compute blade

11
LLNL-PRES-2007699

Rabbit modules are a 4U near node local storage solution

▪ All in one solution: Rabbit- 4U
— Houses 18 SSD’s (16+ 2 spares) that

attach to Rabbit-S board
— Locates Storage Processor (AMD

Epyc CPU) on Rabbit-P board

▪ Compute blades direct attached
to Rabbit-S through bulkhead
cables

▪ Rabbit-S to Rabbit-P board
connections are internal
(no external cables)

▪ Deployed in LLNL EAS3s

12
LLNL-PRES-2007699

Rabbit 4U design provides easy access to SSDs

Front

13
LLNL-PRES-2007699

El Capitan will be the first ATS to use
TOSS and TCE in production

Components not in
TOSS

Supported Linux Commodity Hardware Platform

Kernel, High Speed Interconnect

User
Environment

Compiler &
Development Tools

Resource Manager (Flux or SLURM)

TOSS
Components

HPSS Hopper

Lustre File Systems

▪ TOSS major components
— The OS – LLNL’s Linux distribution based on RHEL
— Resource Manager (SLURM or Flux)
— Lustre

RedHat Enterprise Linux
(RHEL)

Tri-Lab Operating System Stack
(TOSS)

Applications

Tri-Lab Compute Environment
(TCE)

▪ The Tri-Lab Compute Environment (TCE) is
an application development environment
(DE)
— Compilers (Intel, PGI, GNU, …)
— MPI (MVAPICH, OpenMPI, …)
— Debuggers (TotalView, Allinea)
— Performance Tools

14LLNL-PRES-2007699

Prepared by LLNL under Contract DE-AC52-07NA27344. Livermore Computing
Ryan Day, LC Resource Management

6/25/2025
CORAL2 roadshow

Using Flux on ElCap and Tuo

15LLNL-PRES-2007699

• Using Flux like Slurm.

• Flux differences from Slurm.

• Priority, limits, queues, etc on CORAL2 systems.

• CORAL2 specific features.

• Where to find out more.

Overview

16LLNL-PRES-2007699

Slurm command Flux command

srun flux run | flux submit

sbatch flux batch

salloc flux alloc

squeue flux jobs -A

scancel flux cancel

• Most Slurm commands and flags have an equivalent Flux
command

You can use Flux like Slurm

Slurm flag Flux flag

-N -N

-n -n

-t -t

-A --bank

-p -q

https://hpc.llnl.gov/banks-jobs/running-jobs/batch-system-cross-reference-guides

17LLNL-PRES-2007699

We have wrappers for many Slurm commands

[day36@tuolumne2151:~]$ which srun
/usr/global/tools/flux_wrappers/bin/srun

[day36@tuolumne2151:~]$ ls /usr/global/tools/flux_wrappers/bin/
bankinfo mshare sbatch showq squeue sxterm
checkjob quickreport sbcast sinfo srun utilizationreport
jobinfo salloc scancel slurm2flux suflux

[day36@tuolumne2151:~]$ salloc -N1 -p pdebug -t 15 -v
running: flux --parent alloc --nodes=1 --queue=pdebug --time-limit=900s --verbose
jobid: f22WbqzS3gJj
flux-job: f22WbqzS3gJj started 00:00:03
[day36@tuolumne1015:~]$

18LLNL-PRES-2007699

Flux differences:
--parent and dependent jobs

[day36@tuolumne2151:~]$ flux alloc -N 1 -q pdebug
flux-job: f22WqgCeuuf5 started 00:00:04

[day36@tuolumne1012:~]$ flux jobs -A
 JOBID USER NAME ST NTASKS NNODES TIME INFO

[day36@tuolumne1012:~]$ flux --parent jobs -A
 JOBID QUEUE USER NAME ST NTASKS NNODES TIME INFO

f22SL6vpUBxT pbatch jones289 ./train_s+ S 4 4 12h eta:2.044h
f22SL79RN5tT pbatch jones289 ./train_s+ S 4 4 12h
…

[day36@tuolumne1012:~]$ flux --parent batch --dependency=afterany:$(flux getattr jobid) ...

19LLNL-PRES-2007699

Flux differences:
--exclusive and mpibind

[day36@dane7:~]$ salloc -N1 -p pdebug --exclusive srun -n2 numactl -s | grep physcpu
…
physcpubind: 168 169 170 171 172 173 174 175 176 177 178 …
physcpubind: 112 113 114 115 116 117 118 119 120 121 122 …
[day36@dane7:~]$ salloc -N1 -p pdebug --exclusive srun -n2 --exclusive numactl -s | grep physcpu
…
physcpubind: 56 168
physcpubind: 0 112

[day36@tuolumne2151:~]$ flux alloc -N1 -q pdebug --exclusive flux run -n2 numactl -s | grep physcpu
physcpubind: 95
physcpubind: 94

[day36@tuolumne2151:~]$ flux alloc -N1 -q pdebug --exclusive flux run -N1 -n2 --exclusive numactl -s | \
grep physcpu
physcpubind: 1 2 3 4 5 6 7 9 10 …
physcpubind: 49 50 51 52 53 54 55 57 58 …

Mpibind assigns both of these tasks to the same GPU

Mpibind assigns these tasks to different GPUs

20LLNL-PRES-2007699

Mpibind and system cores
CURRENTLY:
[day36@tuolumne2151:~]$ flux alloc -N1 -q pdebug
flux-job: f22WyYbNQe9M started 00:00:04

[day36@tuolumne1012:~]$ echo $MPIBIND_RESTRICT
1-7,9-15,17-23,25-31,33-39,41-47,49-55,57-63,65-71,73-79,81-87,89-95,…

[day36@tuolumne1012:~]$ flux run -N1 -n2 --exclusive numactl -s | grep physcpu
physcpubind: 1 2 3 4 5 6 7 9 10 11 12 13 14 15 17 18 19 20 21 22 23 …
physcpubind: 49 50 51 52 53 54 55 57 58 59 60 61 62 63 65 66 67 68 69 70 71 …

[day36@tuolumne1012:~]$ MPIBIND_RESTRICT= flux run -N1 -n2 --exclusive numactl -s | \
grep physcpu
physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 …
physcpubind: 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 …

SOON:
[day36@tuolumne2151:~]$ flux alloc -o resource.rediscover=true -o resource.norestrict=true ...

21LLNL-PRES-2007699

Other useful Flux commands:
queued and completed jobs

[day36@tuolumne2151:~]$ flux jobs -A
 JOBID QUEUE USER NAME ST NTASKS NNODES TIME INFO

f22SL7ZdLMm1 pbatch jones289 ./train_s+ S 4 4 12h eta:1.664h
…
f228wkgYA4vT pbatch shin9 submit/es+ D 8 8 1d depends:after-finish=f228wkW1MApP
f22X2AZS4poq pdebug mast2 flux R 1 1 2.265m tuolumne1026
…

[day36@tuolumne2151:~]$ flux jobs -A -o deps
 JOBID QUEUE NAME URG PRI STATE DEPENDENCIES

f22SL7ZdLMm1 pbatch ./train_s+ 16 99724 SCHED
…

[day36@tuolumne2151:~]$ flux jobs -a -o endreason
 JOBID QUEUE USER NAME ST T_INACTIVE INACTIVE-REASON

f22WyYbNQe9M pdebug day36 flux CD Jun18 11:11 Exit 0
f22WtaJY2ka3 pdebug day36 flux F Jun18 10:53 Exit 1
f22WpvMnMktw pdebug day36 flux CA Jun18 10:45 Canceled: interrupted by ctrl-C

22LLNL-PRES-2007699

Job priority and standby

Flux uses FairTree (https://slurm.schedmd.com/fair_tree.html) for fairshare priority. View banks and users with
`flux account` or `bankinfo`:

[day36@tuolumne2151:~]$ bankinfo -T root -v
Name Shares Norm Shares Usage Norm Usage Level FS Priority Type
ROOT 1 0.000000 1076809737.3 0.000000 -- -- Bank
parent 331000 0.114221 277095302.8 0.257330 -- -- Bank
 childA 373 0.000129 0.0 0.000000 -- -- Bank
 childB 1000 0.000345 36436.5 0.000034 -- -- Bank
…
overhead 1 0.000000 661799186.3 0.614592 -- -- Bank
 guests 1 0.000000 626133217.7 0.581471 -- -- Bank
 lc 1 0.000000 25017080.6 0.023233 -- -- Bank

 standby 1 0.000000 10648888.0 0.009889 -- -- Bank

https://slurm.schedmd.com/fair_tree.html

23LLNL-PRES-2007699

Queues, limits, and DATs

Please observe any social limits in `news job.lim.CLUSTER`. You can list queues and nodes with
`flux queue list` and ̀ flux resource list`. You can submit jobs to any `enabled` queue, but
they will only run if the queue is also `started`.

The normal queues are:
pbatch: 24 hour time limit, max job is 4096 nodes (elcap) or 256 nodes (tuo).
pdebug: 1 hour time limit, intended for interactive debugging. Please don’t use more than half of the
nodes during working hours.

Other queues you may encounter:
plarge: intended for larger scale debug runs on elcap. Generally started Thursdays by request.
pdat_MMDD: created for specific users for Dedicated Application Times (DATs).
pall: Mostly used for system admin testing, but may be used by full system DATs.
pci: very small queue for Gitlab CI jobs.

24LLNL-PRES-2007699

CORAL2 Specific Capabilities: Spindle

Spindle improves application start-up scalability by staging libraries and python.

Without Spindle application processes
overwhelm the shared file system loading
libraries at start-up.

With Spindle application processes coordinate
library loading for faster start-up.

25LLNL-PRES-2007699

CORAL2 Specific Capabilities: Spindle
Spindle is on by default. Turn it off with:
 export SPINDLE_FLUXOPT=off
 -or-
 flux run -o spindle.level=off …
 -or-
 flux run -o fastload …

Make spindle more efficient for many jobs in an allocation with:
 export SPINDLE_PATH=/collab/usr/global/tools/spindle/toss_4_x86_64_ib_live
 $SPINDLE_PATH/bin/spindle --start-session
 flux run ...
 flux run ...
 flux submit ...
 #wait for job completion
 $SPINDLE_PATH/bin/spindle --end-session

26LLNL-PRES-2007699

CORAL2 specific options:
--setattr=gpu-mode=TPX|CPX|SPX

The MI300A GPUs on ElCap and Tuo can be made to appear as multiple logical GPUs with TPX and CPX mode:

[day36@tuolumne2151:~]$ flux alloc -N1 -q pdebug --setattr=gpumode=TPX -o resource.rediscover
flux-job: f22XDH7AQwa7 start 00:00:04
[day36@tuolumne1006:~]$ /opt/rocm-6.2.4/bin/rocm-smi
== ROCm System Management Interface ===========================
== Concise Info =====================================
Device Node IDs Temp Power Partitions …
 (DID, GUID) (Junction) (Socket) (Mem, Compute, ID)

===
0 4 0x74a0, 6167 47.0°C 129.0W NPS1, TPX, 0 …
1 5 0x74a0, 40982 47.0°C 129.0W NPS1, TPX, 1 …
…
10 14 0x74a0, 24562 46.0°C 76.0W NPS1, TPX, 1 …
11 15 0x74a0, 55282 46.0°C 76.0W NPS1, TPX, 2 …
===
== End of ROCm SMI Log ==================================

27LLNL-PRES-2007699

Questions?

• https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems

• https://hpc-tutorials.llnl.gov/flux/

• https://hpc.llnl.gov/banks-jobs/running-jobs

• https://flux-framework.readthedocs.io/en/latest/

• `flux help`

• `flux command help` / `man flux command`

• lc-hotline@llnl.gov / 925-422-4531

Learn more

https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc.llnl.gov/banks-jobs/running-jobs
https://hpc.llnl.gov/banks-jobs/running-jobs
https://hpc.llnl.gov/banks-jobs/running-jobs
https://hpc.llnl.gov/banks-jobs/running-jobs
https://hpc.llnl.gov/banks-jobs/running-jobs
https://hpc.llnl.gov/banks-jobs/running-jobs
https://flux-framework.readthedocs.io/en/latest/
https://flux-framework.readthedocs.io/en/latest/
https://flux-framework.readthedocs.io/en/latest/
https://flux-framework.readthedocs.io/en/latest/
mailto:lc-hotline@llnl.gov
mailto:lc-hotline@llnl.gov
mailto:lc-hotline@llnl.gov
mailto:lc-hotline@llnl.gov

28

New ATS Governance Model: Split between persistent projects and
standard ATCC process, not necessarily split evenly between labs

• 40% of the machine will be used for persistent projects​
• This 40% is divided evenly between the tri-labs, and reassessed on a six-month cadence ​
• This means each lab has 24.333 El Capitan days for persistent projects​
• LLNL intends on using this to provide free energy to highest priority projects and enable staging for

future “60% projects”​

• 60% of the machine will follow “standard” ATCC proposal driven process​
• Proposals will be collected by each lab​
• Ideally labs will have a streamlined way of adjudicating proposals​

• For each six month chunk of time, LC will need​
• Banks for each project​
• POC for each project​
• El Capitan days for each project in the six month time frame​
• Tracking information about how each project is aligned within NA-10 programs​

29

A few details about the “60% projects”
• Early in the life of the machine, these projects will include ML studies​
• Important to help us really track cost of ML studies relative to standard mod/sim

workloads​
• LLNL will ask LSCI projects to develop proposals. LSCI has a bi-annual report

writing requirement so, these proposals are consistent with HQ needs.​
• Proposals will result from staging calculations from persistent projects
• WPD and WSC management are aligned on encouraging applications
• We should take the opportunity to review our proposal process to determine if

we can make it easier for the users​
• We need to make sure we understand what LC needs to start proposal projects

efficiently​

30

ATCC-20 Request for Proposals Distributed

July 21, 2025

ATCC-20 Proposals Due to Lab POCs

August 8, 2025

Selected ATCC-20 proposals and allocations are distributed for each resource; a tri-lab list is generated for
ATPAC and HQ to review and approve.

August 29, 2025

ATCC-20 Projects Notified of Allocation

September 5, 2025

ATCC-20 Start on El Capitan & Crossroads

September 22, 2025

ATCC-20 Key Dates

31

Resources and Support for El Cap Systems

• Elcap and Tuolumne are officially considered ‘Limited Availability’ mode
• Request access for Tuolumne through LC-IDM and specify the ‘bank’
• Elcap requests for access are gated by IC activities
• The use of ‘standby’ is appreciated.
• LC Hotline is ready to support user issues
• Vendor support from HPE and AMD from Application Analysts:
 Rob Noska, Jared Hansome, Austin Ellis
• Center of Excellence support continues and has been vital to problem

resolution and performance improvements

32

Documentation for El Cap systems is here:

Using El Capitan Systems | HPC @ LLNL

(https://hpc.llnl.gov/documentation/user-
guides/using-el-capitan-systems)

https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems
https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems
https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems

33

Questions?

34

Prepared by LLNL under Contract DE-AC52-07NA27344. Livermore Computing (LC)
John Gyllenhaal

Wednesday June 25th, 2025

El Capitan Systems Getting Started Workshop

Building and Running Successfully on
El Capitan Systems

LLNL-PRES-2007699

35

▪ Present concise and actionable rules of thumb for using El Capitan
− Present key concepts and commands for compiling applications and running on El Cap systems
− Make you aware of the existence of several complex technical details that may impact your application

• If your application is impacted, will indicate how to reach out to get focused help

▪ Aiming for biggest impact with a “short” presentation
− Presenting the key points of dozens of hours of NDA presentations over the last few years
− Will not dive into all the juicy technical details or be able provide full answers to questions

• The “real” answers to “why” are often quite complex, confusing, time consuming, and requiring NDAs

▪ No NDA required for this talk’s info
− Often limits discussion of the technical details that drive the rules of thumb presented

▪ Snapshot in time
− Systems still evolving as new and improved functionality comes online

Goals and Scope

36

▪ Point of contact for getting help or asking questions
− LC Hotline: lc-hotline@llnl.gov or 925-422-4531

▪ El Capitan user guides (mi300a’s: elcap, tuolumne or tuo, rzadams mi250x’s/EAS: rzvernal, tioga, tenaya)
− https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems

▪ Run and scheduling jobs with Flux
− https://hpc-tutorials.llnl.gov/flux/
− https://hpc.llnl.gov/banks-jobs/running-jobs/batch-system-cross-reference-guides

▪ Accessing LC systems smoothly with ssh
− https://hpc.llnl.gov/documentation/user-guides/accessing-lc-systems

▪ Accelerating PyTorch, TensorFlow, or any ML code using RCCL (internal modules, files, websites)
− Use either module ‘rccl/working-env’ or ‘rccl/fast-env-slows-mpi’ to be compatible with system’s current MPI
− Sample build script /collab/usr/global/tools/rccl/toss_4_x86_64_ib_cray/rocm-6.2.1/buildme
− https://lc.llnl.gov/confluence/display/LC/2023/06/02/RCCL+performance+on+Tioga#RCCLperformanceonTioga-

InstalltheAWS-OFI-RCCLplugin
− https://lc.llnl.gov/confluence/display/LC/Distributed+PyTorch+on+CORAL+2+systems#DistributedPyTorchonCORAL2sys

tems-Extra:InstallAWS-OFI-RCCLplugin

Where to get help and key documentation for today’s talks

37

▪ Elcap is on the Secure (SCF) classified network and Tri-labs users should use cross-realm authentication

▪ RZadams is in the Restricted Zone (RZ) and Tri-lab users should use IHPC cross-realm authentication

▪ Tuolumne is in the Collaboration Zone (CZ) and you can ssh tuo.llnl.gov or ssh tuolumne.llnl.gov without VPN

▪ You cannot use ssh keys to connect to LC supercomputers from outside LC (in any zone)
− Must use a two-factor authentication or tri-lab cross-realm authentication to get into an LC supercomputer
− https://dev.llnl.gov/security-access/ssh/ has ssh config files and info that may help with ssh proxy setups

• Can proxy through initial connection (often oslic for CZ, rzslic for RZ, and cslic for SCF) for additional connections
• Ian Lee’s .ssh/config files are FOR PLACEMENT ON YOUR WORKSTATION ONLY (!) NOT ON LC SUPERCOMPUTERS
• Placing in your LC .ssh/config file very common mistake that breaks CORAL1 and causes unnecessary authentications

▪ We require you to use 4k bits (or larger) rsa ssh keys (without passphrase) on LC
− ssh-keygen -t rsa -b 4096 -N “”

• LC has common home directories, so empty passphrase does not reduce security and is approved for use at LC
− Will enable you to ssh between LC machines without password or passphrase

▪ Do not put LC private keys on different zones (don’t share CZ, RZ, or SCF private keys)
− Do not copy your CZ LC .ssh/id_rsa file outside the CZ or RZ key outside of the RZ!

Accessing El Capitan Systems:
Ssh Key Hints and Gotchas

38

▪ Four sockets per node
− Each socket contains one powerful GPU, 21 user cores (+ 3 system) (2 HW threads/core), and 128 GB HBM3 memory

• Roughly 120GB memory per socket available to users (OS and system processes use the rest)
− Each node has 4 GPUs, 84 user cores and 12 system cores and 512GB HBM3 memory
− GPUs, CPUs, OS, ram disks (i.e., /tmp) all share same HBM3 ”GPU” memory (no DRAM) and unified address space
− Four NUMA domains per node

• Best practice: 4 MPI ranks per node, each using 1 GPU with memory and cores from same socket via binding
− Each GPU can now be split into 3 (TPX mode) or 6 (CPX mode) virtual GPUs per socket at node allocation time but support is still evolving

▪ Binding is critical, everything must be on same socket for good performance
− Microbenchmarks run up to 30X slower if GPU accessing memory from different socket

• Although you can actually access all 480GB avail memory from one GPU, it will be slow!
• Using hipMalloc for most or all memory allocations gives great binding and page size settings automatically

− Running 3X+ slower than expected is usually due to bad binding, often due to missing flux run option --exclusive (-x)
• More binding, page size, and running with flux guidance in later slides

▪ May be able to share a single GPU (or virtual GPU) with up to 4 MPI tasks with caveats (and luck)
− 2X hardware-based GPU sharing usually works by default, env variables can often allow efficient 4X GPU sharing

• If you need to share GPUs (i.e., UQ of tiny runs), reach out for more details on what to try (not covered more in this overvi ew)
− Performance falls off cliff if GPU falls back to software-based context switching of GPU

• May fall off performance cliff for other reasons. 10% or less overhead expected for working-well cases.

High-level El Cap MI300A APU-based Node Overview

39

▪ SPX mode (1 big GPU per socket), 4 GPUs/node is the default mode
− Combines 6 GPU chiplets and uses one chiplet’s scheduling hardware to drive GPU
− Maximizes memory available per GPU (~120 GBs) and very powerful GPUs
− Only mode is MPI currently certified by HPE to work (some hangs in other modes)

▪ CPX mode (6 virtual GPUs per socket, 1 per chiplet) yields 24 GPUs/node
− flux alloc ... --setattr=gpumode=CPX --conf=resource.rediscover=true
− Every virtual GPU uses own chiplet’s scheduling hardware
− Reports for 15-20% performance gains for small inputs that fit in tiny memory/GPU

▪ TPX mode (3 virtual GPUs per socket) yields 12 GPUs/node
− flux alloc ... --setattr=gpumode=TPX --conf=resource.rediscover=true
− Original focus but CPX mode appears to yield most performance benefit

SPX mode and the new TPX / CPX GPU Modes

40

▪ Pro tip: Always use --exclusive (or -x) with flux run and don’t specify other constraints
− Only specify --nodes=# (or -N #) and --ntasks=# (or -n #) or --tasks-per-node=#
− Do NOT explicitly specify --cores-per-task=# (or -c #) or --gpus-per-task=# (or --g #) for HPC runs

• Those -c and -g options are for packing nodes for UQ or regression testing, may yield poor performing bindings
− --exclusive (or -x) tells flux to optimally divide node resources between tasks using mpibind

• In general, need 4 (or multiple of 4) tasks per node for optimal performance due to 4 sockets
• -o mpibind=verbose tells mpibind to print bindings (.e.g.: mpibind: task 3 nths 21 gpus 3 cpus 73-79,81-87,89-95)
• mpibind sets env variable ROCR_VISIBLE_DEVICES=3 in order to map GPU 0 request by app to GPU 3

▪ 84 (of 96) cores dedicated to user processes, 12 cores reserved for system and lustre
− Those 84 cores to bind to currently specified by MPIBIND_RESTRICT (must be set to scale well):

• MPIBIND_RESTRICT=1-7,9-15,17-23,25-31,33-39,41-47,49-55,57-63,65-71,73-79,81-87,89-95,97-103,105-111,113-
119,121-127,129-135,137-143,145-151,153-159,161-167,169-175,177-183,185-191

• To actually be able to use all 96 cores, unset MPIBIND_RESTRICT (but will have a lot of noise at scale)
− New flux allocation-based mechanism to totally hide system cores by default coming soon!

• Having flux hide the system cores at allocation time restores expected flux behavior to some flux options

▪ The ‘srun’ wrapper for flux automatically adds --exclusive for you
− srun -N 4 --ntasks-per-node=4 …

Maximizing Application Performance
 under the Flux Scheduler

41

▪ Always allocate a pdebug (or pbatch or pdev) compute node for compiling and testing your code
− Please do not run big compiles or application runs on the login nodes!

• Crashing or OOMing login nodes can kill all running jobs and app runs can get login node GPUs into bad states
− Other Tri-lab supercomputer centers have the opposite policy, but this is how our center was designed

• We understand that this may be the different than other supercomputer sites policies

▪ The ‘pdebug’ pool is only for compiling/testing/debugging, not production work
− Use as few nodes as feasible (no more than half total) and do not block queue with large requests

• Use ‘pbatch’ allocations if need to debug or test large node count jobs or long running jobs

▪ Please do not game the system
− We rely on social contracts and good neighbor polices not strong technical controls

• Continuing to abuse login nodes, file systems, batch queues, etc., after being warned not to has gotten users banned
− Hogging pdebug nodes with obvious production work most common form of abuse, do not abuse pdebug!

• We know those idle nodes look tempting, but you are preventing others from getting their work done

▪ Need help or system seems hung, contact LC Hotline lc-hotline@llnl.gov or 925-422-4531
− Please feel free to ask how you get can something done “the right way”

Always Allocate Interactive Compute Nodes for
Compiling, Testing, and Debugging

mailto:lc-hotline@llnl.gov
mailto:lc-hotline@llnl.gov
mailto:lc-hotline@llnl.gov

42

▪ What to do if some nodes appear problematic for your application?
− Please(!) report it to the LC Hotline and tell us the symptoms so we can see if it needs to be replaced
− Tell flux to NOT schedule your allocations on those node(s) with --requires=-host:name1,name2,…

• Note the - before the -host. This indicates do not use those hosts.

▪ Batch and interactive examples if tuolumne1005,tuolumne1007 in pdebug appear bad
− flux batch --queue=pdebug --requires=-host:tuolumne1005,tuolumne1007
− flux --parent alloc --nodes=2 --queue=pdebug --time-limit=1h --requires=-host:tuolumne1005,tuolumne1007

▪ You can also request specific nodes (=host, no - before host) but please use sparingly
− Will delay launching of your allocation and can be hard to tell why delay in flux queries
− These constraints puts higher load on flux scheduler, so not want queue flooded with these request
− You must specify exactly all the nodes desired to run on with --requires=host:name1,name2,…

• flux --parent alloc --nodes=2 --queue=pdebug --time-limit=1h --requires=host:tuolumne1006,tuolumne1008

▪ Currently no way to specify nodes to avoid or use with salloc/sbatch “slurm” wrappers

How to avoid “bad” nodes for your code

43

▪ cc/CC/ftn interface provides “CRAY” magic with everything specified by Cray module files
− Automatically add -lxpmem, -lmpi_gtl_hsa, libsci, etc. based on modules loaded
− Useful for those that value and are familiar with the traditional cray interface
− Best practice: Have same Cray and rocm modules loaded when compiling and running executable

▪ New craycc/crayCC/crayftn and mpicc/mpicxx/mpifort provides module-less Cray environment
− Common interface but YOU must link in -lxpmem, -lmpi_gtl_hsa, libsci, etc. explicitly for best performance
− Enables cmake, autotools, spack in cray environment but need to add extra link options for performance
− Best practice: Add RPATHs to your all your libraries for consistent running of executable

▪ The -magic wrappers provide “LC” magic where the environment is totally ignored
− Load compiler with -magic extension (cce/19.0.0-magic or rocmcc/6.4.1-magic) to get LC magic

• mpicc/mpicxx/mpifort automatically switch to magic versions with -magic compiler loaded
− Auto adds RPATHs to compilers and rocm and adds -lxpmem -lmpi_gtl_hsa (but not libsci or Cray libraries)
− Best practice: Use full path to compiler in build system (should have -magic in path)

• CXX= /usr/tce/packages/cray-mpich/cray-mpich-8.1.32-rocmcc-6.4.1-magic/bin/mpicxx

▪ NOTE: Beta compiler/mpi/rocm versions are deleted once release versions become available

How to choose between CC, crayCC, and
“LC” -magic compiler wrappers

44

▪ AMD HIP compilation (with LC -magic)
− ml rocmcc/6.4.1-magic cray-mpich/8.1.32
− mpiamdclang++ -D__HIP_PLATFORM_AMD__ -I/opt/rocm-6.4.1/include -O3 -g --offload-

arch=gfx942 -std=c++11 --rocm-path=/opt/rocm-6.4.1 -x hip -mllvm -amdgpu-early-inline-
all=true -mllvm -amdgpu-function-calls=false -fhip-new-launch-api --driver-mode=g++
rush_larsen_gpu_hip_mpi.cc -o rush_larsen_gpu_hip_mpi

− /usr/tce/packages/cray-mpich/cray-mpich-8.1.32-rocmcc-6.4.1-magic/bin/mpiamdclang++

▪ CCE HIP compilation (with LC -magic)
− ml cce/19.0.0-magic cray-mpich/8.1.32
− mpicrayCC -D__HIP_PLATFORM_AMD__ -I/opt/rocm-6.4.1/include -O3 -g --cuda-gpu-

arch=gfx942 -std=c++11 --rocm-path=/opt/rocm-6.4.1 -x hip rush_larsen_gpu_hip_mpi.cc -o
rush_larsen_gpu_hip_mpi

− /usr/tce/packages/cray-mpich/cray-mpich-8.1.32-cce-19.0.0-magic/bin/mpicrayCC

C++ HIP compiler examples, no Fortran HIP support
(mi300a’s architecture name is gfx942)

45

▪ AMD C++ OpenMP Offloading
− ml rocmcc/6.4.1-magic cray-mpich/8.1.32
− mpiamdclang++ -O3 -g -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa

-Xopenmp-target=amdgcn-amd-amdhsa -march=gfx942 rush_larsen_gpu_omp_mpi.cc -o
rush_larsen_gpu_omp_mpi

− /usr/tce/packages/cray-mpich/cray-mpich-8.1.32-rocmcc-6.4.1-magic/bin/mpiamdclang++

▪ CCE Fortran OpenMP Offloading
− ml cce/19.0.0-magic cray-mpich/8.1.32
− mpicrayftn -O3 -g -fopenmp -haccel=amd_gfx942 rush_larsen_gpu_omp_mpi_fort.F90

 -o rush_larsen_gpu_omp_mpi_fort
− /usr/tce/packages/cray-mpich/cray-mpich-8.1.32-cce-19.0.0-magic/bin/mpicrayftn

▪ Mixed AMD C++ and Cray Fortran magic module
− ml rocmcc/6.4.1-cce-18.0.1m-magic

OpenMP GPU compiler examples, C++ and Fortran
(mi300a’s architecture name is gfx942)

46

▪ Starting with cray-mpich/8.1.30 (July 2024), -magic compilers automatically add libraries
− -lxpmem -L/opt/cray/pe/mpich/8.1.32/gtl/lib -lmpi_gtl_hsa -Wl,-rpath,/opt/cray/pe/mpich/8.1.32/gtl/lib
− -lxpmem doubles bandwidth on node using cpu-level MPI
− Can turn off with --no-xpmem and/or --no-gtl if suspect libraries causing issues

▪ If not using -magic compilers, recommend add to link line (here for cray-mpich/8.1.32)
− -lxpmem -L/opt/cray/pe/mpich/8.1.32/gtl/lib -lmpi_gtl_hsa -Wl,-rpath,/opt/cray/pe/mpich/8.1.32/gtl/lib

▪ Turn on GPU-aware MPI by setting env variable MPICH_GPU_SUPPORT_ENABLED=1
− Must have GTL library linked in for this to work (punts otherwise)
− Yields another 2X+ on-node memory bandwidth increase over xpmem
− However freeing GPU MPI buffers can cause memory growth (see later slide for mitigations)

▪ ABI used by GTL changed with rocm/6.0
− rocm/5.7.1 requires use of older cray-mpich/8.1.27
− ABI stable after rocm/6.0 for rocm/6.* but enhanced for cray-mpich/8.1.33 in rocm/6.4.*

Turning on GPU-aware MPI and using xpmem can
significantly increase MPI performance

47

▪ Having a ROCM_PATH set to a different rocm than your application uses can cause errors!
− AMD designed ROCM_PATH to allow plugging in debug rocm .so files at runtime

• So setting ROCM_PATH to a different rocm can cause your application to mix two different rocm library sets
− Everyone else (cce, cmake, etc) uses ROCM_PATH to find which rocm you are using
− Having a conflicting ROCM_PATH can break you both at compile time and run time!

▪ The -magic compilers add link line options to make executable ignore ROCM_PATH
− -L/opt/rocm-6.4.1/lib -Wl,-rpath,/opt/rocm-6.4.1/lib -lamdhip64 -lhsakmt -lhsa-runtime64 -lamd_comgr
− We recommend you add something like the above to your link line (for the correct rocm, of course)
− This is key for published executables where users may have a different rocm loaded

▪ Major ABI change expected with rocm/7.0.0 that MPI & CCE will not support until early 2026

Why don’t we load the rocm module by default?

48

▪ RCCL (ML-optimized comm) using TCP sockets is very slow on CORAL2’s network
− AWS’s open-source RCCL Plugin (librccl-net.so) uses libfabric to greatly accelerates RCCL on slingshot
− Currently you need to build it for your application if using RCCL/PyTorch/TensorFlow (see below)

• LD_LIBRARY_PATH needs to point to the directory that contains the plugin library
− You MUST also currently either load a rccl module or set env variables to make compatible with slingshot

• ’ml rccl/working-env’ currently sets one env variable to prevent libfabric conflict between rccl and MPI that causes hangs
• ‘ml rccl/fast-env-slows-mpi`currently sets 8 tuning parameters that accelerates rccl at the expense of MPI performance
• Planned future upgrade of using ‘kdreg2’ with libfabric is expected to eliminate the need for loading rccl/working-env

▪ Instructions for building and using AWS RCCL plugin available
− A very useful sample build script: /collab/usr/global/tools/rccl/toss_4_x86_64_ib_cray/rocm-6.2.1/buildme
− Example of build, testing, and verifying RCCL on Tioga (remember to use --exclusive or -x on Tuolumne)

• https://lc.llnl.gov/confluence/display/LC/2023/06/02/RCCL+performance+on+Tioga#RCCLperformanceonTioga-
InstalltheAWS-OFI-RCCLplugin

− PyTorch specific instructions:
• https://lc.llnl.gov/confluence/display/LC/Distributed+PyTorch+on+CORAL+2+systems#DistributedPyTorchonCORAL2syste

ms-Extra:InstallAWS-OFI-RCCLplugin

PyTorch, TensorFlow, or using RCCL,
need to use AWS Plugin and RCCL module to set env vars

49

▪ Linux and python .so search algorithm at scale causes denial-of-service attack on file systems
− Without mitigation, can take hours to start executable and makes LC filesystems unresponsive for everyone
− Rapid small-scale runs of many python launches can cause same file systems issues

• 4 nodes running 10 executable invocations per core per second used 99.9% of file system resources until mitigated
− Please do not initialized CONDA, python, or spack in your .bashrc file. Can cause huge file system load!
− Please build for just the one GPU. Building for both mi300a and mi250x can double file sizes.

▪ Main symptom is slow launch times (or sysadmins killing your job and contacting you)
− With Spindle, full El Cap scale launches typically take less than 2 minutes
− If it is taking more than 2 minutes to launch your application, please reach out to us!

▪ Spindle uses advanced algorithms at launch time to mitigate file system load (caches directory contents)
− Spindle in ‘medium’ mode is invoked flux run by default on Elcap and Tuolumne but not any other machines
− Tuning is sometimes needed to make compatible with new applications (breaks POSIX standard to reduce load)

• If small scale testing with SPINDLE_FLUXOPT=disable reveals functionality change (i.e., fixes issue) contact us for help!
• This is the first thing to try if get unexpected segfaults or get errors that files or libraries cannot be found

− But you must use another method to mitigate file system load if you turn spindle off at scale! Contact us for help!
• Options include ‘fastload’ (previous automatic mitigation technique) and ‘build_libcache’ and other Spindle modes.

▪ NOTE: Putting large executables in lustre may also be helpful even with Spindle at scale

Applications must reduce file system load to something
manageable! Tools like Spindle can help!

50

▪ Don’t write data to workspace (/usr/WS*) or home (/g/g*) directories!
− Write your data to /p/lustre# (/p/lustre4 on elcap and /p/lustre5 on tuolumne)
− Very easy to crush NFS servers with parallel reads and writes and they have limited quotas

• Hammering the small quotas on those systems is also very hard on the systems

▪ Lustre supports large default quotas and more can be requested
− Elcap 100TB (space) /10M (inodes) Tier 1 quota (default, form for requesting more)
− Tuolumne 50TB (space) /5M (inodes) Tier 1 quota (default, form for requesting more)
- Not backed up, so don’t put only copy of key files on lustre

- Rabbits provide node-local temporary ssd storage (deleted when job completes)
- /l/ssd (200GB current size). Other rabbit options supported and being tested.

▪ Tape archive (htar, ftp storage) can provide long storage for key data
− 300TB default quota for tape storage currently

Where (and where not) to write and save data

51

▪ OOM killer priorities dialed in by flux since mid May 2025
− Running out of memory now kills user tasks first and no longer breaking the nodes

• GPU memory usage is not currently visible to kernel, so flux now paints user tasks as first to kill
− No longer need to sysadmins to reboot and bring back up 1000s of nodes a day
− Longer term work on making GPU memory visible to OS and cgroups continues

▪ Unrecoverable Memory Faults now successfully causes retirement of ‘suspect’ memory
− Until mid May 2025, complex interactions prevented ‘suspect’ memory from actually being retired

• This continued reuse of ‘suspect’ memory dramatically negatively impacted mean time to failure
− Each memory block can now only get one unrecoverable error before being taken out of use
− Too much retired memory triggers node memory replacement to prevent noticeable shrinkage

▪ GPU-aware MPI unexpected memory growths tracked down
− Software fixes expected July and August 2025 (next slide)

▪ These are examples of why early access shakeout periods key for stable production usage

Early access testing allowed us to identify and fix key issues
before production use

52

▪ rocm/6.4.2 allows execution of applications without read-bit set
− One non-readable application currently also requires ROCM_PATH=/opt/rocm-6.4.2

▪ cray-mpich/8.1.33 supports new IPC signal cache management algorithm
− Freeing GPU MPI buffers can cause memory growth with current IPC cache algorithm

• OS cannot reuse freed memory because other GPUs nave mapped it into their address space
• Workarounds: Don’t free GPU mpi buffers or reuse freed memory via memory pools not the OS

− New algorithm ‘signals’ other GPUs on same node to unmap memory so can be freed
• Disabled by default since new. Must set GTL_DISABLE_HSA_IPC_SIGNAL_CACHE=0 to enable
• Requires rocm/6.4.* since relies on new rocm signal ABI implemented starting in rocm/6.4.0

▪ cce/20.0.0 supports rocm/6.4.* natively
− Most cce/19.0.0 + rocm/6.4 issues tied to setting DEBUG_HIP_7_PREVIEW=1

Solutions expected to be delivered in July/August 2025
(based on testing of beta versions of software)

53

▪ GPU performs best with 2mb pages and requires pages touched by GPU to be mapped into GPU
− Use hipMalloc when possible to allocate memory, get 2mb pages mapped in GPU that can also be used on CPU

• Doing this will greatly simplify your life and maximize GPU performance
• Do not need any of the more complicated options below if use hipMalloc for all GPU memory allocations

▪ CPUs and GPUs share memory but cpu-based allocators not auto mapped to GPU
− setting env variable HSA_XNACK=1 will page-fault in CPU pages into GPU (with slight overhead)
− CPU default 4k page size will cause 15% or more performance overhead on GPU due to GPU TLB size

▪ Enabling transparent huge pages makes most > 2mb CPU allocations have 2mb pages
− Must be enabled at compute node allocation time

• flux alloc --setattr=thp=always -N1
• salloc -N1 --thp=always

− Recommended starting point if allocating memory on CPU to be used on GPU (need HSA_XNACK=1 also)

▪ Linking in -lhugetlbfs and enabling in allocation can put < 2mb CPU allocations in 2mb pages
− Must be enabled at compute node allocation time and can coexist with thp

flux --parent alloc --setattr=hugepages=512G --setattr=thp=always -N 1
• salloc --hugepages=512G --thp=always -N 1
• Must also set env variable HUGETLB_MORECORE=yes (and need HSA_XNACK=1 also)

hipMalloc, HSA_XNACK=1, and 2mb pages options

54

Rocprofv3/rocprof-sys/rocprof-compute – Best for GPU deep dives, not scaling

HPCToolkit – Whole application profiling with good GPU support

HPE Perftools (was CrayPAT) – HPC-focused profiling and tracing

Caliper – Application integrated profiling

Performance Tools

Print GPU metrics on command line Visualize small GPU traces on with perfetto
https://lc.llnl.gov/perfetto or https://rzlc.llnl.gov/perfetto

Show CPU+GPU metrics on code regions Visualize CPU+GPU traces across nodes

55

TotalView – Visual HPC and GPU debugger

rocgdb – Serial GPU debugger from AMD based on GDB

gdb4hpc – Parallel GPU debugger from HPE based on GDB

ASAN – Compiler-based memory correctness tools

STAT – Core dump and stack trace analysis

Debugging Tools

56

Questions?

57

Questions?

58

	Default Section
	Slide 1
	Slide 2: Agenda

	AdamBertsch
	Slide 3: El Capitan Architecture
	Slide 4: El Capitan, the next ASC ATS to be sited at LLNL will be the first NNSA exascale system
	Slide 5: HPE has delivered a highly capable AMD GPU-accelerated system
	Slide 6: El Capitan Architecture
	Slide 7: AMD INSTINCT™ MI300A: The world’s first data center APU
	Slide 8: AMD Instinct™ MI300 Modular Chiplet Package
	Slide 9: 3D CPU+GPU integration for next-level efficiency
	Slide 10: MI300A at HPE: The HPE compute blade
	Slide 11: Rabbit modules are a 4U near node local storage solution
	Slide 12: Rabbit 4U design provides easy access to SSDs
	Slide 13: El Capitan will be the first ATS to use TOSS and TCE in production

	Ryan Day
	Slide 14: Using Flux on ElCap and Tuo
	Slide 15: Overview
	Slide 16: You can use Flux like Slurm
	Slide 17: We have wrappers for many Slurm commands
	Slide 18: Flux differences: --parent and dependent jobs
	Slide 19: Flux differences: --exclusive and mpibind
	Slide 20: Mpibind and system cores
	Slide 21: Other useful Flux commands: queued and completed jobs
	Slide 22: Job priority and standby
	Slide 23: Queues, limits, and DATs
	Slide 24: CORAL2 Specific Capabilities: Spindle
	Slide 25: CORAL2 Specific Capabilities: Spindle
	Slide 26: CORAL2 specific options: --setattr=gpu-mode=TPX|CPX|SPX
	Slide 27: Learn more
	Slide 28: New ATS Governance Model: Split between persistent projects and standard ATCC process, not necessarily split evenly between labs
	Slide 29: A few details about the “60% projects”
	Slide 30: ATCC-20 Key Dates
	Slide 31: Resources and Support for El Cap Systems
	Slide 32: Documentation for El Cap systems is here: Using El Capitan Systems | HPC @ LLNL (https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems)
	Slide 33
	Slide 34: Building and Running Successfully on El Capitan Systems
	Slide 35: Goals and Scope
	Slide 36: Where to get help and key documentation for today’s talks
	Slide 37: Accessing El Capitan Systems: Ssh Key Hints and Gotchas
	Slide 38: High-level El Cap MI300A APU-based Node Overview
	Slide 39: SPX mode and the new TPX / CPX GPU Modes
	Slide 40: Maximizing Application Performance under the Flux Scheduler
	Slide 41: Always Allocate Interactive Compute Nodes for Compiling, Testing, and Debugging
	Slide 42: How to avoid “bad” nodes for your code
	Slide 43: How to choose between CC, crayCC, and “LC” -magic compiler wrappers
	Slide 44: C++ HIP compiler examples, no Fortran HIP support (mi300a’s architecture name is gfx942)
	Slide 45: OpenMP GPU compiler examples, C++ and Fortran (mi300a’s architecture name is gfx942)
	Slide 46: Turning on GPU-aware MPI and using xpmem can significantly increase MPI performance
	Slide 47: Why don’t we load the rocm module by default?
	Slide 48: PyTorch, TensorFlow, or using RCCL, need to use AWS Plugin and RCCL module to set env vars
	Slide 49: Applications must reduce file system load to something manageable! Tools like Spindle can help!
	Slide 50: Where (and where not) to write and save data
	Slide 51: Early access testing allowed us to identify and fix key issues before production use
	Slide 52: Solutions expected to be delivered in July/August 2025 (based on testing of beta versions of software)
	Slide 53: hipMalloc, HSA_XNACK=1, and 2mb pages options
	Slide 54: Performance Tools
	Slide 55: Debugging Tools
	Slide 56
	Slide 57: Questions?
	Slide 58

