L

| mmnnrnwn

0V WMWW

EL CHPITANN

El Capitan Systems
Getting Started Workshop

August 4-5, 2025 ,
Ramesh Pankajakshan, Ryan Day, Scott Futral, John Gyllenhaal

Prepared by LLNL under Contract DE-AC52-07NA27344. LIVG rmore CO m p Utln g (LC)

B Lawrence Livermore

National Laboratory =~ LLNL-PRES-2007699

L
Agenda

20 min | El Capitan Systems Architecture | Ramesh Pankajakshan
20 min | Flux for El Capitan Systems | Ryan Day

10 min | ATCC20 and User Support | Scott Futral
60 min | Building and Running Successfully | John Gyllenhaal

30 min | Extra time for questions

| B Lawrence Livermore

National Laboratory =~ LLNL-PRES-2007699

El Capitan Architecture

Ramesh Pankajakshan
Deputy Lead, El Capitan COE

August 4-5, 2025

LLNL-PRES-2007699 Lawrence Livermore

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE- - Natiﬂnal Laboratnry
AC52-07NA27 344. Lawrence Livermore National Security, LLC

HPE has delivered a highly capable Q
AMD GPU-accelerated system EL CAPITAN

apmlppey fllie-divsels & foeldEA T

= El Capitan will meet its stockpile
stewardship simulation mission

L || Ll | ey |/liE® = System will feature:

DEERGY

— Peak 2.8 DP exaflops

— Peak power 34.8MW
 HPL 29.6MW

— AMD MI300A APU - 3D chiplet design
w/AMD CDNA 3 GPU, “Zen 4” CPU,
cache memory and HBM chiplets

— Slingshot interconnect

= HPE provides several critical innovations
— HPE and LLNL have worked with ORNL jointly on non-recurring engineering (NRE) activities
— MI300A, world’s first data center APU directly addresses multiple challenges
— Uses TOSS software stack, enhanced with HPE software
— El Capitan includes an innovative near node local storage solution (Rabbit)

Late binding of the processor solution has ensured El Capitan provides the best possible value
‘ Lawrence Livermore National Laboratory : AMDH MIHS“_% 4

LLNL-PRES-2007699

El Capitan Architecture

87 Olympus Cabinets, 29 CDUs

Near-Node Compute Nodes (11,104)
Local Storage 4x MI-300A APU
(696) 4x Slingshot-11 200GB HCA
21 PB, 31 I 512GB HBM3

(24) TB/s

LN — Login/Cl/CD (32)

El Capitan

Slingshot
Dragonfly Fabric

46 River Racks (4 Svc, 42 E1000)
Edge Routers (4)

Gateway Nodes (10/50)

Management Nodes (44)

Lustre Storage
401 PB, 2.6+ TB/s

Lawrence Livermore National Laboratory

LLNL-PRES-2007699

NVSE

gl Nuringr Larueey ddenisraes

AMD INSTINCT™ MI300A: The world’s first data center APU EL CAPITAN

= 4th Gen AMD Infinity Architecture:
AMD CDNA™ 3 and EPYC™ CPU “Zen 4” together

— CPU and GPU cores share a unified on-package pool of memory

= Groundbreaking 3D packaging
— CPU | GPU | Cache | HBM
— 24 Zen4 cores, 146B transistors, 128GB HBM?3

= Designed for leadership memory bandwidth and
application latency

= APU architecture designed for power savings
— compared to discrete implementation

> 8X Expected Al Training
Performance vs. MI250X

Preliminary data and projections, subject to change

‘ Lawrence Livermore National Laboratory AMDAN NUYSE
LLNL-PRES-2007699 —

S- Bl Noriesr Loy

AMD Instinct™ MI300 Modular Chiplet Package EL CRPITAN

= 1/0O Die (IOD) = Accelerator Complex Die (XCD)
— 128 Channel HBM3 Interface — 6 x38 AMD CDNA™ 3 Compute Units

— 256MB AMD Infinity Cache™

— Infinity Fabric Network-on-Chip .
— 4 x16 PCle® 5 + 4th Gen Infinity Fabric™ Llnks
— 4 x16 4th Gen Infinity Fabric™ Links

= CPU Complex Die (CCD)
— 3 x8 “Zen 4” Cores

— Replaced by additional
XCDs on MI300X

= AMD Infinity Fabric™ AP -
Interconnect Py - g

1
*
g B
s
*
s
%
3*
4

£

.
S
=3t

= 3.5D Package
— 3D hybrid bonding
— 2.5D silicon interposer

= HBM3
— 8 physical stacks
— AMD Instinct™ MI300A: 128 GB (8H)
— AMD Instinct™ MI300X: 192 GB (12H)

‘ Lawrence Livermore National Laboratory AMD n INVSE

LLNL-PRES-2007699 Bl Korie Brciawy ddmasrasan

3D CPU+GPU integration for next-level efficiency Emelm"

AMD CDNA™ 2 Coherent Memory Architecture JJ8BAMD CDNA™ 3 Unified Memory APU Architecture

AMD Instinct™ MI250 Accelerator AMD Instinct™ MI300 Accelerator

CPU GPU * Eliminates redundant Next-Gen AMD Instinct™ APU

memory copies

= Simplifies programming

= Low overhead 3™ Gen
Infinity interconnect = High bandwidth, low
latency communication

= |ndustry standard
modular design = Low TCO with unified
memory APU package ‘ ‘

Unified Memory
(HBM)

‘ Lawrence Livermore National Laboratory

LLNL-PRES-2007699

Near Node

NOde ArChitECtu re Local Storage

8 GB/s/direction

MI300A MI300A
s PCle-G4 (x4)

e PCle-G4 ESM (x16)
xGMI3

s 200G Slingshot

50 GB/s/direction

CASSINI CASSINI

25 GB/s/direction N m 9

gl Nuringr Larueey ddenisraes

Lawrence Livermore National Laboratory
LLNL-PRES-2007699

MI300A at HPE: The HPE compute blade

EL LRPITAI

Lawrence Livermore National Laboratory
LLNL-PRES-2007699

Rabbit modules are a 4U near node local storage solution EL CAPITAN

Compute Blades

= All in one solution: Rabbit- 4U

— Houses 16 SSDs that attach to [P R =
Rabbit-S board /%1\ EEE:__ . ——
— Locates Storage Processor (AMD ||| ooy, iE%T e f—‘L—
Epyc CPU) on Rabbit-P board e ol TR | T
____________________ EEm R g i |
. AN N\ =
u CO m p Ute bl a d es d I reCt | ‘ i~ %% El: “““““ }S‘% 36P PCI %—:—__% ‘u[
attached to Rabbit-S through |||« == . EEEEE A= |
bulkhead cables \‘Q_‘Hé S[si= _
. . G I; U GPU = . |: apbi
= Rabbit-S to Rabbit-P board : 0| 7
connections are internal - = DEEEE T
[1 EW = - To Switch Card
(no external cables) = =< L. {ﬁ/
[iy L+ x16 TR

‘ Lawrence Livermore National Laboratory : N 1‘% 11
LLNL-PRES-2007699

Rabbit 4U design provides easy access to SSDs EL CAPITAN

‘ Lawrence Livermore National Laboratory : NUYSE
LLNL-PRES-2007699 Mt Kordeer Lasrry A nrass

El Capitan will be the first ATS to use Q
TOSS and TCE in production EL CAPITAN

Applications

Tri-Lab Comute Environment

Compiler & . User
Development Tools Lustre File Systems Environment
(TCE)

Resource Manager (Flux or SLURM)

Tri-Lab Operating System Stack
(TOSS)

(RHEL)
= The Tri-Lab Compute Environment (TCE) is an
appIicati.?n devellopment environment (DE)
= TOSS major components — Compilers (Intel, PGI, GNU, ...)

s T — MPI (MVAPICH, OpenMP], ...)
— The OS — LLNLU’s Linux distribution based on RHEL — Debuggers (TotalView, Allinea)

— Resource Manager (SLURM or Flux) — Performance Tools
— Lustre

Kernel, High Speed Interconnect

Supported Linux Commodity Hardware Platform

Lawrence Livermore National Laboratory Nf% 13

LLNL-PRES-2007699 Bl Korie Brciawy ddmasrasan

)

Using Flux on ElCap and Tuo

CORAL2 roadshow
8/4-5/2025

Ryan Day, LC Resource Management
Prepared by LLNL under Contract DE-AC52-07NA27344. Livermore Computing

M Lawrence Livermore G
b National Laboratory ~ LLNL-PRES-2007699 N L' g 14

Mational Nuclear Security Adminisiration

.

Overview

* Using Flux like Slurm.

* Flux differences from Slurm.

* Priority, limits, queues, etc on CORAL2 systems.
* CORAL2 specific features.

* Where to find out more.

| B Lawrence Livermore .
National Laboratory =~ LLNL-PRES-2007699

T

You can use Flux like Slurm

* Most Slurm commands and flags have an equivalent Flux

command
srun flux run | flux submit
sbatch flux batch -n -n
salloc flux alloc -t -t
squeue flux jobs -A -A --bank
scancel flux cancel -p -g

https://hpc.llnl.gov/banks-jobs/running-jobs/batch-system-cross-reference-guides

| B Lawrence Livermore .
National Laboratory =~ LLNL-PRES-2007699

.

We have wrappers for many Slurm commands

[day36@tuolumne2151:~1% which srun
/usr/global/tools/flux_wrappers/bin/srun

[day36@tuolumne2151:~1% 1ls /usr/global/tools/flux_wrappers/bin/

bankinfo mshare sbatch showgq squeue sxterm
checkjob quickreport sbcast sinfo srun utilizationreport
jobinfo salloc scancel slurm2flux suflux

[day36@tuolumne2151:~1]% salloc -N1 -p pdebug -t 15 -v

running: flux --parent alloc --nodes=1 --queue=pdebug --time-1limit=900s --verbose
jobid: f22WbqgzS3gJlj
flux-job: f22WbgzS3glj started 00:00:03

[day36@tuolumnel015:~]%

| B Lawrence Livermore ;
National Laboratory =~ LLNL-PRES-2007699

.

Flux differences:
--parent and dependent jobs

[day36@tuolumne2151:~]% flux alloc -N 1 -gq pdebug
flux-job: f22WggCeuuf5 started 00:00:04

[day36@tuolumnelfl2:~]% flux jobs -A
JOBID USER NAME ST NTASKS NNODES TIME INFO

[day36@tuolumnel®l2:~]% flux --parent jobs -A

JOBID QUEUE USER NAME ST NTASKS NNODES TIME INFO
£22SL6VpUBXT pbatch jones289 ./train s+ S 4 4 12h eta:2.044h
£22SL79RN5tT pbatch jones289 ./train_ s+ S 4 4 12h

[day36@tuolumnelfl2:~]$% flux --parent batch --dependency=afterany:$(flux getattr jobid) ...

| B Lawrence Livermore .
National Laboratory =~ LLNL-PRES-2007699

.

Flux differences:
--exclusive and mpibind

[day36@dane7:~]$% salloc -N1 -p pdebug --exclusive srun -n2 numactl -s | grep physcpu

physcpubind: 168 169 170 171 172 173 174 175 176 177 178 ..
physcpubind: 112 113 114 115 116 117 118 119 120 121 122 ..
[day36@dane7:~]$% salloc -N1 -p pdebug --exclusive srun -n2 --exclusive numactl -s | grep physcpu

physcpubind: 56 168
physcpubind: @ 112

[day36@tuolumne2151:~]$% flux alloc -N1 -g pdebug --exclusive flux run -n2 numactl -s | grep physcpu
physcpubind: 95
physcpubind: 94

Mpibind assigns both of these tasks to the same GPU

[day36@tuolumne2151:~]$% flux alloc -N1 -g pdebug --exclusive flux run -N1 -n2 --exclusive numactl -s | \
grep physcpu

physcpubind: 1 234567 910 .. +<— Mpibind assigns these tasks to different GPUs
physcpubind: 49 50 51 52 53 54 55 57 58 ..

| B Lawrence Livermore .
National Laboratory =~ LLNL-PRES-2007699

.

Mpibind and system cores

CURRENTLY:
[day36@tuolumne2151:~]$% flux alloc -N1 -qg pdebug
flux-job: f22WyYbNQe9M started 00:00:04

[day36@tuolumnel®12:~]1% echo $MPIBIND RESTRICT
1-7,9-15,17-23,25-31,33-39,41-47,49-55,57-63,65-71,73-79,81-87,89-95, ..

[day36@tuolumnel012:~]% flux run -N1 -n2 --exclusive numactl -s | grep physcpu
physcpubind: 1 2 345 6 7 9 10 11 12 13 14 15 17 18 19 20 21 22 23 ..
physcpubind: 49 50 51 52 53 54 55 57 58 59 60 61 62 63 65 66 67 68 69 70 71 ..

[day36@tuolumnel012:~]% MPIBIND RESTRICT= flux run -N1 -n2 --exclusive numactl -s | \
grep physcpu

physcpubind: 6 1 2 34567 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ..
physcpubind: 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 ..

SOON: Flux will understand user cores natively

| B Lawrence Livermore .
National Laboratory =~ LLNL-PRES-2007699

.

Other useful Flux commands:
queued and completed jobs

[day36@tuolumne2151:~1]% flux jobs -A

JOBID QUEUE USER NAME ST NTASKS NNODES TIME INFO
£22SL7ZdLMml1 pbatch jones289 ./train_s+ S 4 4 12h eta:1.664h
£228wkgYA4vT pbatch shin9 submit/es+ D 8 8 1d depends:after-finish=228wkW1MApP
f22X2AZS4poq pdebug mast2 flux R 1 1 2.265m tuolumnel026

[day36@tuolumne2151:~1]% flux jobs -A -o deps
JOBID QUEUE NAME URG PRI STATE DEPENDENCIES
£22SL7ZdLMm1l pbatch ./train_s+ 16 99724 SCHED

[day36@tuolumne2151:~1]% flux jobs -a -0 endreason

JOBID QUEUE USER NAME ST T _INACTIVE INACTIVE-REASON
f22WyYbNQeSM pdebug day36 flux CD 3Junl8 11:11 Exit ©
f22WtalY2ka3 pdebug day36 flux F Junl8 10:53 Exit 1
f22WpvMnMktw pdebug day36 flux CA Junl8 10:45 Canceled: interrupted by ctrl-C
E hggg?,g?i;‘ggg&?;e LLNL-PRES-2007699 21

.

Job priority and standby

Flux uses FairTree (https://slurm.schedmd.com/fair_tree.html) for fairshare priority. View banks and users with
“flux account’ or “bankinfo:

[day36@tuolumne2151:~1$% bankinfo -T root -v

Name Shares Norm Shares Usage Norm Usage Level FS Priority Type

ROOT 1 0.000000 1076809737.3 0.000000 -- -- Bank

parent 331000 0.114221 277095302.8 0.257330 -- -- Bank

childA 373 0.000129 0.0 0.000000 -- -- Bank

childB 1000 0.000345 36436.5 0.000034 -- -- Bank

overhead 1 0.000000 661799186.3 0.614592 -- -- Bank

guests 1 0.000000 626133217.7 0.581471 -- -- Bank

1c 1 0.000000 25017080.6 0.023233 -- -- Bank

sta ndby 1 0.000000 10648888 .0 0.009889 -- -- Bank

l Lawrence Livermore
b National Laboratory ~ LLNL-PRES-2007699 22

https://slurm.schedmd.com/fair_tree.html

.

Queues, limits, and DATs

Please observe any social limits in " news job.lim.CLUSTER'. You can list queues and nodes with
"flux queue list’ and flux resource 1list .You cansubmitjobstoany enabled queue, but

they will only run if the queue is also " started .

The normal queues are:
pbatch: 24 hour time limit, maxjob is 4096 nodes (elcap) or 256 nodes (tuo).
pdebug: 1 hour time limit, intended for interactive debugging. Please don’t use more than half of the

nodes during working hours.

Other queues you may encounter:
plarge: intended for larger scale debug runs on elcap. Generally started Thursdays by request.

pdat_MMDD: created for specific users for Dedicated Application Times (DATSs).
pall: Mostly used for system admin testing, but may be used by full system DATs.
pci: very small queue for Gitlab Cl jobs.

| B Lawrence Livermore)
National Laboratory =~ LLNL-PRES-2007699

CORAL2 Specific Capabilities: Spindle

Spindle improves application start-up scalability by staging libraries and python.

{__
|
f__
L _
|
|
|
| [
|
|
L=
|
Without Spindle application processes With Spindle application processes coordinate
overwhelm the shared file system loading library loading for faster start-up.

libraries at start-up.

Lawrence Livermore o4
National Laboratory ~ LLNL-PRES-2007699

ﬁ
CORAL2 Specific Capabilities: Spindle

Spindle is on by default. Turn it off with:
export SPINDLE FLUXOPT=off
Or
flux run -o spindle.level=off ..
or
flux run -o fastload ..

Make spindle more efficient for many jobs in an allocation with:
export SPINDLE_PATH=/collab/usr/global/tools/spindle/toss_4_x86_64_ib_live
$SPINDLE PATH/bin/spindle --start-session
flux run
flux run
flux submit ...
#wait for job completion
$SPINDLE _PATH/bin/spindle --end-session

| B Lawrence Livermore)
National Laboratory =~ LLNL-PRES-2007699

.

CORAL2 specific options:
--setattr=gpu-mode=TPX|CPX|SPX

The MI300A GPUs on ElCap and Tuo can be made to appear as multiple logical GPUs with TPX and CPX mode:

[day36@tuolumne2151:~]% flux alloc -N1 -q pdebug --setattr=gpumode=TPX --conf=resource.rediscover=true

flux-job: f22XDH7AQwa7 start 00:00:04
[day36@tuolumnelov6:~1% /opt/rocm-6.2.4/bin/rocm-smi
e Rocm System Management Inter‘face]
Device Node 1IDs Temp Power Partitions .
(DID, GUID) (Junction) (Socket) (Mem, Compute, ID)
0 4 Ox74a0, 6167 47.0°C 129.0W NPS1, TPX, ©
1 5 Ox74a0, 40982 47.0°C 129.0W NPS1, TPX, 1
10 14 Ox74a0, 24562 46.0°C 76.0NW NPS1, TPX, 1
11 15 0x74a0, 55282 46.0°C 76.0NW NPS1, TPX, 2
B Lawrence Livermore
bNational Laboratory ~ LLNL-PRES-2007699 26

T

Learn more

https://hpc.linl.gov/documentation/user-guides/using-el-capitan-systems

https://hpc-tutorials.llnl.gov/flux/

https://hpc.linl.gov/banks-jobs/running-jobs

https://flux-framework.readthedocs.io/en/latest/

“flux help’

“flux command help / man flux command

lc-hotline@llnl.gov / 925-422-4531

Questions?

| B Lawrence Livermore _
National Laboratory =~ LLNL-PRES-2007699

https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc-tutorials.llnl.gov/flux/
https://hpc.llnl.gov/banks-jobs/running-jobs
https://hpc.llnl.gov/banks-jobs/running-jobs
https://hpc.llnl.gov/banks-jobs/running-jobs
https://hpc.llnl.gov/banks-jobs/running-jobs
https://hpc.llnl.gov/banks-jobs/running-jobs
https://hpc.llnl.gov/banks-jobs/running-jobs
https://flux-framework.readthedocs.io/en/latest/
https://flux-framework.readthedocs.io/en/latest/
https://flux-framework.readthedocs.io/en/latest/
https://flux-framework.readthedocs.io/en/latest/
mailto:lc-hotline@llnl.gov
mailto:lc-hotline@llnl.gov
mailto:lc-hotline@llnl.gov
mailto:lc-hotline@llnl.gov

L

ATCC20 and User Support

El Capitan Systems Getting Started Workshop
August 4-5, 2025

W. Scott Futral
Prepared by LLNL under Contract DE-AC52-07NA27344. Livermore Computing (LC)

| B Lawrence Livermore

National Laboratory =~ LLNL-PRES-2007699

L

New ATS Governance Model: Split between persistent projects and
standard ATCC process, not necessarily split evenly between labs

e 40% of the machine will be used for ‘persistent’ projects
* This 40% is divided evenly between the tri-labs, and reassessed on a six-month cadence
* This means each lab has 24 El Capitan days for persistent projects
* LLNL intends on using this to provide free energy to highest priority projects and enable staging for
future “60% projects”
* 60% of the machine will follow “standard” ATCC proposal driven process (108 days)
* Proposals collected by each lab and allocations determined by tri-Lab ATPAC and HQ
* For each six-month campaign, LC will need
* POC for each project and user names
* El Capitan days for each project in the six-month time frame
* Tracking information about how each project is aligned within NA-10 programs

| M Lawrence Livermore }
National Laboratory =~ LLNL-PRES-2007699

L
ATCC-20 Key Dates

July 21, 2025

ATCC-20 Request for Proposals Distributed

August 8, 2025

ATCC-20 Proposals Due to Lab POCs

August 29, 2025

Selected ATCC-20 proposals and allocations are distributed for each resource; a tri-lab list is generated for
ATPAC and HQ to review and approve.

September 5, 2025
ATCC-20 Projects Notified of Allocation

September 22, 2025
ATCC-20 Start on El Capitan & Crossroads

| B Lawrence Livermore

National Laboratory =~ LLNL-PRES-2007699

L
Resources and Support for El Cap Systems

e Elcap and Tuolumne are currently considered ‘Limited Availability’ mode
* Request access through SARAPE and specify the ‘bank’
 ATCC-19 Sierra accounts and banks are active on El Capitan
* Priority is code development and testing to prep for ATCC -20
* LC Hotline is ready to support user issues — Ic-hotline@IInl.gov or call
e Vendor support from HPE and AMD from Application Analysts:
Rob Noska, Jared Hansome, Austin Ellis/ Eric Medwedeff (AMD)
* Center of Excellence support continues and is vital to problem resolution
and performance improvements

| B Lawrence Livermore

National Laboratory =~ LLNL-PRES-2007699

mailto:lc-hotline@llnl.gov
mailto:lc-hotline@llnl.gov
mailto:lc-hotline@llnl.gov

L

Documentation for El Cap systems is here:

Using ELl Capitan Systems | HPC @ LLNL

(https://hpc.linl.gov/documentation/user-
guides/using-el-capitan-systems)

https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems
https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems
https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems

L

Questions?

| M Lawrence Livermore)
National Laboratory =~ LLNL-PRES-2007699

L

Building and Running Successfully on
El Capitan Systems

El Capitan Systems Getting Started Workshop
August 4-5, 2025

John Gyllenhaal
Livermore Computing (LC)

L
Goals and Scope

= Present concise and actionable rules of thumb for using El Capitan

— Present key concepts and commands for compiling applications and running on El Cap systems
- Make you aware of the existence of several complex technical details that may impact your application
* Ifyour application is impacted, will indicate how to reach out to get focused help

= Aiming for biggest impact with a “short” presentation
— Presenting the key points of dozens of hours of NDA presentations over the last few years

— Will not dive into all the juicy technical details or be able provide full answers to questions
* The “real” answers to “why” are often quite complex, confusing, time consuming, and requiring NDAs

= No NDA required for this talk’s info

— Often limits discussion of the technical details that drive the rules of thumb presented

= Snapshotintime
- Systems still evolving as new and improved functionality comes online

| M Lawrence Livermore)
National Laboratory =~ LLNL-PRES-2007699

L
Where to get help and key documentation for today’s talks

= Point of contact for getting help or asking questions
— LC Hotline: lc-hotline@llnl.gov or 925-422-4531

= El Capitan user guides (mi300a’s: elcap, tuolumne or tuo, rzadams mi250x’s/EAS: rzvernal, tioga, tenaya)
- https://hpc.linl.gov/documentation/user-guides/using-el-capitan-systems

= Run and scheduling jobs with Flux

— https://hpc-tutorials.llnl.gov/flux/
- https://hpc.linl.gov/banks-jobs/running-jobs/batch-system-cross-reference-guides

= Accessing LC systems smoothly with ssh
- https://hpc.linl.gov/documentation/user-guides/accessing-lc-systems

= Accelerating PyTorch, TensorFlow, or any ML code using RCCL (internal modules, files, websites)
- Use either module ‘rccl/working-env’ or ‘rccl/fast-env-slows-mpi’ to be compatible with system’s current MPI
— Sample build script /collab/usr/global/tools/rccl/toss_4_x86_64_ib_cray/rocm-6.2.1/buildme

- https://lc.llnl.gov/confluence/display/LC/2023/06/02/RCCL+performance+on+Tioga#RCCLperformanceonTioga-
InstalltheAWS-OFI-RCCLplugin

— https://lc.llnl.gov/confluence/display/LC/Distributed+PyTorch+on+CORAL+2+systems#DistributedPyTorchonCORAL2sys
tems-Extra:InstallAWS-OFI-RCCLplugin

| M Lawrence Livermore j
National Laboratory =~ LLNL-PRES-2007699

. . L
Accessing El Capitan Systems:

Ssh Key Hints and Gotchas

= Elcapis onthe Secure (SCF) classified network and Tri-labs users should use cross-realm authentication
= RZadams is in the Restricted Zone (RZ) and Tri-lab users should use IHPC cross-realm authentication
= Tuolumne s in the Collaboration Zone (CZ) and you can ssh tuo.llnl.gov or ssh tuolumne.llnl.gov without VPN

= You cannot use ssh keys to connect to LC supercomputers from outside LC (in any zone)
- Must use a two-factor authentication or tri-lab cross-realm authentication to get into an LC supercomputer

- https://dev.llnl.gov/security-access/ssh/ has ssh config files and info that may help with ssh proxy setups
* Can proxy through initial connection (often oslic for CZ, rzslic for RZ, and cslic for SCF) for additional connections
lan Lee’s .ssh/config files are FOR PLACEMENT ON YOUR WORKSTATION ONLY (!) NOT ON LC SUPERCOMPUTERS
* Placing inyour LC .ssh/config file very common mistake that breaks CORAL1 and causes unnecessary authentications

= We require you to use 4k bits (or larger) rsa ssh keys (without passphrase) on LC
~ ssh-keygen -t rsa -b 4096 -N «”

* LC has common home directories, so empty passphrase does not reduce security and is approved for use at LC
— Will enable you to ssh between LC machines without password or passphrase

Do not put LC private keys on different zones (don’t share CZ, RZ, or SCF private keys)
— Do not copy your CZ LC .ssh/id_rsa file outside the CZ or RZ key outside of the RZ!

| B Lawrence Livermore

National Laboratory =~ LLNL-PRES-2007699

L
High-level El Cap MI300A APU-based Node Overview

= Four sockets per node
- Each socket contains one powerful GPU, 21 user cores (+ 3 system) (2 HW threads/core), and 128 GB HBM3 memory
* Roughly 120GB memory per socket available to users (OS and system processes use the rest)
- Eachnode has4 GPUs, 84 user cores and 12 system cores and 512GB HBM3 memory
- GPUs, CPUs, OS, ram disks (i.e., /tmp) all share same HBM3 "GPU” memory (no DRAM) and unified address space
- Four NUMA domains per node
* Best practice: 4 MPIranks per node, each using 1 GPU with memory and cores from same socket via binding
- Each GPU can now be split into 3 (TPX mode) or 6 (CPX mode) virtual GPUs per socket at node allocation time but support is still evolving

= Bindingis critical, everything must be on same socket for good performance

- Microbenchmarks run up to 30X slower if GPU accessing memory from different socket
* Although you can actually access all 480GB avail memory from one GPU, it will be slow!
* Using hipMalloc for most or all memory allocations gives great binding and page size settings automatically

- Running 3X+ slower than expected is usually due to bad binding, often due to missing flux run option --exclusive (-x)
* Morebinding, page size, and running with flux guidance in later slides

= May be able to share a single GPU (or virtual GPU) with up to 4 MPI tasks with caveats (and luck)
- 2Xhardware-based GPU sharing usually works by default, env variables can often allow efficient 4X GPU sharing
* Ifyou need to share GPUs (i.e., UQ of tiny runs), reach out for more details on what to try (not covered more in this overview)
- Performance falls off cliff if GPU falls back to software-based context switching of GPU
* May fall off performance cliff for other reasons. 10% or less overhead expected for working-well cases.

| M Lawrence Livermore }
National Laboratory =~ LLNL-PRES-2007699

L
SPX mode and the new TPX/ CPX GPU Modes

= SPX mode (1 big GPU per socket), 4 GPUs/node is the default mode

— Combines 6 GPU chiplets and uses one chiplet’s scheduling hardware to drive GPU
— Maximizes memory available per GPU (~120 GBs) and very powerful GPUs
— Only mode is MPI currently certified by HPE to work (some hangs in other modes)

= CPX mode (6 virtual GPUs per socket, 1 per chiplet) yields 24 GPUs/node

- flux alloc ... --setattr=gpumode=CPX --conf=resource.rediscover=true
— Every virtual GPU uses own chiplet’s scheduling hardware
— Reports for 15-20% performance gains for small inputs that fitin tiny memory/GPU

" TPX mode (3 virtual GPUs per socket) yields 12 GPUs/node

- flux alloc ... --setattr=gpumode=TPX --conf=resource.rediscover=true
— Original focus but CPX mode appears to yield most performance benefit

| M Lawrence Livermore }
National Laboratory =~ LLNL-PRES-2007699

.. L. L
Maximizing Application Performance

under the Flux Scheduler

" Pro tip: Always use --exclusive (or -x) with flux run and don’t specify other constraints

— Only specify --nodes=# (or -N #) and --ntasks=# (or -n #) or --tasks-per-node=#

— Do NOT explicitly specify --cores-per-task=# (or -c #) or --gpus-per-task=# (or --g #) for HPC runs
 Those -c and -g options are for packing nodes for UQ or regression testing, may yield poor performing bindings

- --exclusive (or -x) tells flux to optimally divide node resources between tasks using mpibind
* Ingeneral, need 4 (or multiple of 4) tasks per node for optimal performance due to 4 sockets
* -0 mpibind=verbose tells mpibind to print bindings (.e.g.: mpibind: task 3 nths 21 gpus 3 cpus 73-79,81-87,89-95)
* mpibind sets envvariable ROCR_VISIBLE_DEVICES=3 in order to map GPU 0 request by app to GPU 3

= 84 (of 96) cores dedicated to user processes, 12 cores reserved for system and lustre

— Those 84 cores to bind to currently specified by MPIBIND_RESTRICT (must be set to scale well):

e MPIBIND_RESTRICT=1-7,9-15,17-23,25-31,33-39,41-47,49-55,57-63,65-71,73-79,81-87,89-95,97-103,105-111,113-
119,121-127,129-135,137-143,145-151,153-159,161-167,169-175,177-183,185-191

* To actually be able to use all 96 cores, unset MPIBIND_RESTRICT (but will have a lot of noise at scale)
- New flux allocation-based mechanism to totally hide system cores by default coming soon!
* Having flux hide the system cores at allocation time restores expected flux behavior to some flux options

= The ‘srun’ wrapper for flux automatically adds --exclusive for you
— srun -N 4 --ntasks-per-node=4 ...

| M Lawrence Livermore j
National Laboratory =~ LLNL-PRES-2007699

([
Always Allocate Interactive Compute Nodes for

Compiling, Testing, and Debugging

= Always allocate a pdebug (or pbatch or pdev) compute node for compiling and testing your code

— Please do not run big compiles or application runs on the login nodes!
* Crashing or OOMing login nodes can kill all running jobs and app runs can get login node GPUs into bad states

— Other Tri-lab supercomputer centers have the opposite policy, but this is how our center was designed
* We understand that this may be the different than other supercomputer sites policies

" The ‘pdebug’ poolis only for compiling/testing/debugging, not production work

- Use as few nodes as feasible (no more than half total) and do not block queue with large requests
* Use ‘pbatch’allocations if need to debug or test large node count jobs or long running jobs

= Please do not game the system

— We rely on social contracts and good neighbor polices not strong technical controls
* Continuing to abuse login nodes, file systems, batch queues, etc., after being warned not to has gotten users banned

- Hogging pdebug nodes with obvious production work most common form of abuse, do not abuse pdebug!
* We know those idle nodes look tempting, but you are preventing others from getting their work done

= Need help or system seems hung, contact LC Hotline lc-hotline@llnl.gov or 925-422-453"
- Please feel free to ask how you get can something done “the right way”

| B Lawrence Livermore

National Laboratory =~ LLNL-PRES-2007699

mailto:lc-hotline@llnl.gov
mailto:lc-hotline@llnl.gov
mailto:lc-hotline@llnl.gov

L
How to avoid “bad” nodes for your code

= What to do if some nodes appear problematic for your application?

— Please(!) report it to the LC Hotline and tell us the symptoms so we can see if it needs to be replaced
— Tell flux to NOT schedule your allocations on those node(s) with --requires=-host:name1,name2,...
* Note the - before the -host. This indicates do not use those hosts.

= Batch and interactive examples if tuolumne1005,tuolumne1007 in pdebug appear bad
— flux batch --queue=pdebug --requires=-host:tuolumne1005,tuolumne1007
- flux --parent alloc --nodes=2 --queue=pdebug --time-limit=1h --requires=-host:tuolumne1005,tuolumne1007

= You can also request specific nodes (=host, no - before host) but please use sparingly
— Will delay launching of your allocation and can be hard to tell why delay in flux queries
— These constraints puts higher load on flux scheduler, so not want queue flooded with these request

- You must specify exactly all the nodes desired to run on with --requires=host:name1,name2,...
* flux --parent alloc --nodes=2 --queue=pdebug --time-limit=1h --requires=host:tuolumne1006,tuolumne1008

= Currently no way to specify nodes to avoid or use with salloc/sbatch “slurm” wrappers

| M Lawrence Livermore)
National Laboratory =~ LLNL-PRES-2007699

L
How to choose between CC, crayCC, and

“LC” -magic compiler wrappers

= cc/CC/ftninterface provides “CRAY” magic with everything specified by Cray module files
- Automatically add -Ixpmem, -lmpi_gtl_hsa, libsci, etc. based on modules loaded
- Useful for those that value and are familiar with the traditional cray interface
— Best practice: Have same Cray and rocm modules loaded when compiling and running executable

= New craycc/crayCC/crayftn and mpicc/mpicxx/mpifort provides module-less Cray environment
— Common interface but YOU must link in -Ixpmem, -lmpi_gtl_hsa, libsci, etc. explicitly for best performance
- Enables cmake, autotools, spack in cray environment but need to add extra link options for performance
— Best practice: Add RPATHSs to your all your libraries for consistent running of executable

* The -magic wrappers provide “LC” magic where the environment is totally ignored

- Load compiler with -magic extension (cce/19.0.0-magic or rocmcc/6.4.1-magic) to get LC magic
* mpicc/mpicxx/mpifort automatically switch to magic versions with -magic compiler loaded
— Auto adds RPATHs to compilers and rocm and adds -Ixpmem -lmpi_gtl_hsa (but not libsci or Cray libraries)

— Best practice: Use full path to compilerin build system (should have -magic in path)
 CXX=/usr/tce/packages/cray-mpich/cray-mpich-8.1.32-rocmcc-6.4.1-magic/bin/mpicxx

= NOTE: Beta compiler/mpi/rocm versions are deleted once release versions become available

| M Lawrence Livermore)
National Laboratory =~ LLNL-PRES-2007699

L .
C++ HIP compiler examples, no Fortran HIP support

(mi300a’s architecture name is gfx942)
= AMD HIP compilation (with LC -magic)

- mlrocmcc/6.4.1-magic cray-mpich/8.1.32

- mpiamdclang++ -D__HIP_PLATFORM_AMD__ -l/opt/rocm-6.4.1/include -O3 -g --offload-
arch=gfx942 -std=c++11 --rocm-path=/opt/rocm-6.4.1 -x hip -mllvm -amdgpu-early-inline-
all=true -mllvm -amdgpu-function-calls=false -fhip-new-launch-api --driver-mode=g++
rush_larsen_gpu_hip_mpi.cc -o rush_larsen_gpu_hip_mpi

— /usr/tce/packages/cray-mpich/cray-mpich-8.1.32-rocmcc-6.4.1-magic/bin/mpiamdclang++

= CCE HIP compilation (with LC -magic)
- mlcce/19.0.0-magic cray-mpich/8.1.32

— mpicrayCC -D__HIP_PLATFORM_AMD__ -l/opt/rocm-6.4.1/include -O3 -g --cuda-gpu-
arch=gfx942 -std=c++11 --rocm-path=/opt/rocm-6.4.1 -x hip rush_larsen_gpu_hip_mpi.cc -0
rush_larsen_gpu_hip_mpi

— /usr/tce/packages/cray-mpich/cray-mpich-8.1.32-cce-19.0.0-magic/bin/mpicrayCC

M Lawrence Livermore j
National Laboratory =~ LLNL-PRES-2007699

L .
OpenMP GPU compiler examples, C++ and Fortran

(mi300a’s architecture name is gfx942)
= AMD C++ OpenMP Offloading

- mlrocmcc/6.4.1-magic cray-mpich/8.1.32

- mpiamdclang++ -0O3 -g -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa
-Xopenmp-target=amdgcn-amd-amdhsa -march=gfx942 rush_larsen_gpu_omp_mpi.cc -0
rush_larsen_gpu_omp_mpi

— /usr/tce/packages/cray-mpich/cray-mpich-8.1.32-rocmcc-6.4.1-magic/bin/mpiamdclang++

= CCE Fortran OpenMP Offloading

- ml cce/19.0.0f-magic cray-mpich/8.1.32

- mpicrayftn -O3 -g -fopenmp -haccel=amd_gfx942 rush_larsen_gpu_omp_mpi_fort.F90
-0 rush_larsen_gpu_omp_mpi_fort

- /usr/tce/packages/cray-mpich/cray-mpich-8.1.32-cce-19.0.0f-magic/bin/mpicrayftn

= Mixed AMD C++ and Cray Fortran magic module
- mlrocmcc/6.4.1-cce-19.0.0f-magic

| M Lawrence Livermore .
National Laboratory =~ LLNL-PRES-2007699

L
Turning on GPU-aware MPI| and using xpmem can

significantly increase MPI performance

= Starting with cray-mpich/8.1.30 (July 2024), -magic compilers automatically add libraries
- -Ixpmem -L/opt/cray/pe/mpich/8.1.32/gtl/lib -lmpi_gtl_hsa -W\,-rpath,/opt/cray/pe/mpich/8.1.32/gtl/lib
- -Ixpmem doubles bandwidth on node using cpu-level MPI
— Can turn off with --no-xpmem and/or --no-gtl if suspect libraries causing issues

" |If not using -magic compilers, recommend add to link line (here for cray-mpich/8.1.32)
- -Ixpmem -L/opt/cray/pe/mpich/8.1.32/gtl/lib -lmpi_gtl_hsa -WL,-rpath,/opt/cray/pe/mpich/8.1.32/gtl/lib

* Turn on GPU-aware MPI by setting env variable MPICH_GPU_SUPPORT_ENABLED=1
— Must have GTL library linked in for this to work (punts otherwise)
- Yields another 2X+ on-node memory bandwidth increase over xpmem
- However freeing GPU MPI buffers can cause memory growth (see later slide for mitigations)

= ABl used by GTL changed with rocm/6.0
- rocm/5.7.1 requires use of older cray-mpich/8.1.27
— ABI stable after rocm/6.0 for rocm/6.* but enhanced for cray-mpich/8.1.33 in rocm/6.4.*

| M Lawrence Livermore .
National Laboratory =~ LLNL-PRES-2007699

L
Why don’t we load the rocm module by default?

= Having a ROCM_PATH set to a different rocm than your application uses can cause errors!
- AMD desighed ROCM_PATH to allow plugging in debug rocm .so files at runtime

 Sosetting ROCM_PATH to a different rocm can cause your application to mix two different rocm library sets
- Everyone else (cce, cmake, etc) uses ROCM_PATH to find which rocm you are using
- Having a conflicting ROCM_PATH can break you both at compile time and run time!

* The -magic compilers add link line options to make executable ighore ROCM_PATH
- -L/opt/rocm-6.4.1/lib -W\,-rpath,/opt/rocm-6.4.1/lib -lamdhip64 -lhsakmt -lhsa-runtime64 -lamd_comgr
- We recommend you add something like the above to your link line (for the correct rocm, of course)
- This is key for published executables where users may have a different rocm loaded

= Major ABI change expected with rocm/7.0.0 that MPIl & CCE will not support until early 2026

| B Lawrence Livermore

National Laboratory =~ LLNL-PRES-2007699

| L
PyTorch, TensorFlow, or using RCCL,

need to use AWS Plugin and RCCL module to set env vars

= RCCL (ML-optimized comm) using TCP sockets is very slow on CORAL2’s network
- AWS’s open-source RCCL Plugin (librccl-net.so) uses libfabric to greatly accelerates RCCL on slingshot
— Currently you need to build it for your application if using RCCL/PyTorch/TensorFlow (see below)
 LD_LIBRARY_PATH needs to point to the directory that contains the plugin library

- You MUST also currently either load a rccl module or set env variables to make compatible with slingshot
* 'mlrccl/working-env’ currently sets one env variable to prevent libfabric conflict between rccl and MPI that causes hangs
* ‘mlrccl/fast-env-slows-mpi” currently sets 8 tuning parameters that accelerates rccl at the expense of MPI performance
* Planned future upgrade of using ‘kdreg2’ with libfabric is expected to eliminate the need for loading rccl/working-env

= |[nstructions for building and using AWS RCCL plugin available
— Avery useful sample build script: /collab/usr/global/tools/rccl/toss_4_x86_64_ib_cray/rocm-6.2.1/buildme

- Example of build, testing, and verifying RCCL on Tioga (remember to use --exclusive or -x on Tuolumne)

* https://lc.lnl.gov/confluence/display/LC/2023/06/02/RCCL+performance+on+Tioga#RCCLperformanceonTioga-
InstalltheAWS-OFI-RCCLplugin

— PyTorch specific instructions:

* https://lc.Unl.gov/confluence/display/LC/Distributed+PyTorch+on+CORAL+2+systems#DistributedPyTorchonCORAL2syste
ms-Extra:InstallAWS-OFI-RCCLplugin

| M Lawrence Livermore j
National Laboratory =~ LLNL-PRES-2007699

L
Applications must reduce file system load to something ¢

manageable! Tools like Spindle can help!

= Linux and python .so search algorithm at scale causes denial-of-service attack on file systems

- Without mitigation, can take hours to start executable and makes LC filesystems unresponsive for everyone
— Rapid small-scale runs of many python launches can cause same file systems issues
* 4 nodesrunning 10 executable invocations per core per second used 99.9% of file system resources until mitigated
- Please do not initialized CONDA, python, or spackin your .bashrc file. Can cause huge file system load!
— Please build for just the one GPU. Building for both mi300a and mi250x can double file sizes.

= Main symptom is slow launch times (or sysadmins killing your job and contacting you)
- With Spindle, full EL Cap scale launches typically take less than 2 minutes
- Ifitis taking more than 2 minutes to launch your application, please reach out to us!

Spindle uses advanced algorithms at launch time to mitigate file system load (caches directory contents)
— Spindle in ‘medium’ mode is invoked flux run by default on Elcap and Tuolumne but not any other machines

- Tuning is sometimes needed to make compatible with new applications (breaks POSIX standard to reduce load)
* Ifsmall scale testing with SPINDLE_FLUXOPT=disable reveals functionality change (i.e., fixes issue) contact us for help!
* Thisis the first thing to try if get unexpected segfaults or get errors that files or libraries cannot be found

— But you must use another method to mitigate file system load if you turn spindle off at scale! Contact us for help!
* Optionsinclude ‘fastload’ (previous automatic mitigation technique) and ‘build_libcache’ and other Spindle modes.

NOTE: Putting large executables in lustre may also be helpful even with Spindle at scale

| M Lawrence Livermore .
National Laboratory =~ LLNL-PRES-2007699

L
Where (and where not) to write and save data

= Don’t write data to workspace (/usr/WS*) or home (/g/g*) directories!

— Write your data to /p/lustre# (/p/lustred on elcap and /p/lustre5 on tuolumne)

— Very easy to crush NFS servers with parallel reads and writes and they have limited quotas
* Hammering the small quotas on those systems is also very hard on the systems

= | ustre supports large default quotas and more can be requested
— Elcap 100TB (space) /10M (inodes) Tier 1 quota (default, form for requesting more)
— Tuolumne 50TB (space) /5M (inodes) Tier 1 quota (default, form for requesting more)
- Not backed up, so don’t put only copy of key files on lustre

- Rabbits provide node-local temporary ssd storage (deleted when job completes)
- /l/ssd (200GB current size). Documentation provides rabbit options and data movement examples

- https://flux-framework.readthedocs.io/projects/flux-coral2/en/latest/guide/rabbit.html
« #FLUX: #DW jobdw type=xfs capacity=1TiB name=xfsproject sets $DW_JOB_xfsproject to 1TiB local space

= Tape archive (htar, ftp storage) can provide long storage for key data
- 300TB default quota for tape storage currently

| B Lawrence Livermore

National Laboratory =~ LLNL-PRES-2007699

([
Early access testing allowed us to identify and fix key issues

before production use
= OOM killer priorities dialed in by flux since mid May 2025

— Running out of memory now kills user tasks first and no longer breaking the nodes
* GPU memory usage is not currently visible to kernel, so flux now paints user tasks as first to kill

— No longer need to sysadmins to reboot and bring back up 1000s of nodes a day
— Longer term work on making GPU memory visible to OS and cgroups continues

= Unrecoverable Memory Faults now successfully causes retirement of ‘suspect’ memory

- Until mid May 2025, complex interactions prevented ‘suspect’ memory from actually being retired
* This continued reuse of ‘suspect’ memory dramatically negatively impacted mean time to failure
— Each memory block can now only get one unrecoverable error before being taken out of use

— Too much retired memory triggers node memory replacement to prevent noticeable shrinkage

= GPU-aware MPIl unexpected memory growths tracked down
— Software fixes expected August and September 2025 (next slide)

=" These are examples of why early access shakeout periods key for stable production usage

| B Lawrence Livermore

National Laboratory =~ LLNL-PRES-2007699

L
Solutions expected to be delivered in August/Sept 2025

(based on testing of beta versions of software)

" rocm/6.4.2 allows execution of applications without read-bit set
— One non-readable application currently also requires ROCM_PATH=/opt/rocm-6.4.2

= cray-mpich/8.1.33 supports new |PC signal cache management algorithm

- Freeing GPU MPI buffers can cause memory growth with current IPC cache algorithm
* OS cannot reuse freed memory because other GPUs nave mapped it into their address space
 Workarounds: Don’t free GPU mpi buffers or reuse freed memory via memory pools not the OS

- New algorithm ‘signals’ other GPUs on same node to unmap memory so can be freed
e Disabled by default since new. Must set GTL_DISABLE_HSA_ |IPC_SIGNAL_CACHE=0 to enable
* Requires rocm/6.4.* since relies on new rocm signal ABl implemented starting in rocm/6.4.0

" cce/20.0.0 supports rocm/6.4.* natively
- Most cce/19.0.0 + rocm/6.4 issues tied to setting DEBUG_HIP_7_PREVIEW=1

| M Lawrence Livermore j
National Laboratory =~ LLNL-PRES-2007699

L
hipMalloc, HSA_XNACK=1, and 2mb pages options

= GPU performs best with 2mb pages and requires pages touched by GPU to be mapped into GPU

- Use hipMalloc when possible to allocate memory, get 2mb pages mapped in GPU that can also be used on CPU
* Doingthis will greatly simplify your life and maximize GPU performance
* Do not need any of the more complicated options below if use hipMalloc for all GPU memory allocations

= CPUs and GPUs share memory but cpu-based allocators not auto mapped to GPU

- setting env variable HSA_XNACK=1 will page-faultin CPU pages into GPU (with slight overhead)
- CPU default 4k page size will cause 15% or more performance overhead on GPU due to GPU TLB size

= Enabling transparent huge pages makes most>2mb CPU allocations have 2mb pages
- Must be enabled at compute node allocation time
* flux alloc --setattr=thp=always -N1
* salloc -N1--thp=always
- Recommended starting point if allocating memory on CPU to be used on GPU (need HSA_XNACK=1 also)

= Linking in -lhugetlbfs and enabling in allocation can put <2mb CPU allocations in 2mb pages

- Must be enabled at compute node allocation time and can coexist with thp
* flux --parent alloc --setattr=hugepages=460G --setattr=thp=always -N 1
* salloc --hugepages=460G --thp=always -N 1
* Must also setenv variable HUGETLB_MORECORE=yes (and need HSA_XNACK=1 also)
* Some users have reported a limit of 430G yields less error messages and we may have a new version coming soon to make things better

| M Lawrence Livermore j
National Laboratory =~ LLNL-PRES-2007699

Performance Tools 4

Rocprofv3/rocprof-sys/rocprof-compute — Best for GPU deep dives, not scaling

CALLS

ssssss

PU metrics on command line Visualize small GPU traces on with perfetto

https://Ic.lnl.gov/perfetto or https://rzlc.linl.gov/perfetto

HPCToolkit —Whole application profiling with good GPU support

Show CPU+G k etrics on code regions Visualize CPU+GPU traces across nodes

HPE Perftools (was CrayPAT) - HPC-focused profiling and tracing

Caliper — Application integrated profiling

M Lawrence Livermore
National Laboratory =~ LLNL-PRES-2007699

54

. L
Debugging Tools

TotalView - Visual HPC and GPU debugger

—

[r— - S

nnnnnnnnn

o v)| Tt 13- it

rocgdb — Serial GPU debugger from AMD based on GDB
gdb4hpc — Parallel GPU debugger from HPE based on GDB
ASAN - Compiler-based memory correctness tools

STAT — Core dump and stack trace analysis

| M Lawrence Livermore
National Laboratory =~ LLNL-PRES-2007699

L
Questions?

Wre e Liv2rmo
ational Laboratory 7

M Lawrence Livermore
National Laboratory =~ LLNL-PRES-2007699
56

| B Lawrence Livermore

National Laboratory =~ LLNL-PRES-2007699

	Default Section
	Slide 1
	Slide 2: Agenda

	Ramesh Pankajakshan
	Slide 3: El Capitan Architecture
	Slide 4: HPE has delivered a highly capable AMD GPU-accelerated system
	Slide 5: El Capitan Architecture
	Slide 6: AMD INSTINCT™ MI300A: The world’s first data center APU
	Slide 7: AMD Instinct™ MI300 Modular Chiplet Package
	Slide 8: 3D CPU+GPU integration for next-level efficiency
	Slide 9: Node Architecture
	Slide 10: MI300A at HPE: The HPE compute blade
	Slide 11: Rabbit modules are a 4U near node local storage solution
	Slide 12: Rabbit 4U design provides easy access to SSDs
	Slide 13: El Capitan will be the first ATS to use TOSS and TCE in production

	Ryan Day
	Slide 14: Using Flux on ElCap and Tuo
	Slide 15: Overview
	Slide 16: You can use Flux like Slurm
	Slide 17: We have wrappers for many Slurm commands
	Slide 18: Flux differences: --parent and dependent jobs
	Slide 19: Flux differences: --exclusive and mpibind
	Slide 20: Mpibind and system cores
	Slide 21: Other useful Flux commands: queued and completed jobs
	Slide 22: Job priority and standby
	Slide 23: Queues, limits, and DATs
	Slide 24: CORAL2 Specific Capabilities: Spindle
	Slide 25: CORAL2 Specific Capabilities: Spindle
	Slide 26: CORAL2 specific options: --setattr=gpu-mode=TPX|CPX|SPX
	Slide 27: Learn more
	Slide 28: ATCC20 and User Support
	Slide 29: New ATS Governance Model: Split between persistent projects and standard ATCC process, not necessarily split evenly between labs
	Slide 30: ATCC-20 Key Dates
	Slide 31: Resources and Support for El Cap Systems
	Slide 32: Documentation for El Cap systems is here: Using El Capitan Systems | HPC @ LLNL (https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems)
	Slide 33
	Slide 34: Building and Running Successfully on El Capitan Systems
	Slide 35: Goals and Scope
	Slide 36: Where to get help and key documentation for today’s talks
	Slide 37: Accessing El Capitan Systems: Ssh Key Hints and Gotchas
	Slide 38: High-level El Cap MI300A APU-based Node Overview
	Slide 39: SPX mode and the new TPX / CPX GPU Modes
	Slide 40: Maximizing Application Performance under the Flux Scheduler
	Slide 41: Always Allocate Interactive Compute Nodes for Compiling, Testing, and Debugging
	Slide 42: How to avoid “bad” nodes for your code
	Slide 43: How to choose between CC, crayCC, and “LC” -magic compiler wrappers
	Slide 44: C++ HIP compiler examples, no Fortran HIP support (mi300a’s architecture name is gfx942)
	Slide 45: OpenMP GPU compiler examples, C++ and Fortran (mi300a’s architecture name is gfx942)
	Slide 46: Turning on GPU-aware MPI and using xpmem can significantly increase MPI performance
	Slide 47: Why don’t we load the rocm module by default?
	Slide 48: PyTorch, TensorFlow, or using RCCL, need to use AWS Plugin and RCCL module to set env vars
	Slide 49: Applications must reduce file system load to something manageable! Tools like Spindle can help!
	Slide 50: Where (and where not) to write and save data
	Slide 51: Early access testing allowed us to identify and fix key issues before production use
	Slide 52: Solutions expected to be delivered in August/Sept 2025 (based on testing of beta versions of software)
	Slide 53: hipMalloc, HSA_XNACK=1, and 2mb pages options
	Slide 54: Performance Tools
	Slide 55: Debugging Tools
	Slide 56: Questions?
	Slide 57

