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System Evolution

Device Scaling imposing fundamental constraints on system
— Power dissipation and energy consumption
— Physical size / packaging
= Pressure to re-think system architecture
— Blue Gene: low power devices, embedded (small)
— Cell: Attached (embedded) co-processing engine
= Systems become inherently more complex
— Connectivity / hierarchical topology (torus, intra-cell)
— Multi-core processors (and less memory per processor)
— Multi-thread (SMT, hyperthreading)
= This poses new challenge to application programming
— New programming paradigm? (but ~$1T in legacy codes, ISV apps, etc.)

= Conclusion: New software tools essential to mitigate evolving system complexity and
improve productivity.
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Enablement Productivity Gap = Hardware — Software
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PERCS Impact on Productivity Gap

= State-of-Art Application Enablement circa 2002+
— Source code modification (e.g., timing routines)
— Non-selective, non-source code correlated tools (e.g., PAPI)
— Dynamic instrumentation via external agents (e.g., Dynlnst)
— GUI frameworks to look at data (e.g., Vampir, Vtune, Tau)
— No unified analysis framework (CPU, MPI, OpenMP, and 1/O)
— No management of large scale performance data

= |[BM DARPA HPCS Toolkit

— Next generation unified framework for automated (not automatic) intelligent-
assist of application performance tuning including...

* No source code modifications...but with source code correlation of the data
» Selective and dynamic instrumentation without external agents
* Large scale data management

* |In a Nutshell:
— Previous tools only show you the data...does not resolve the Productivity Gap.
— The HPCS Toolkit makes sense of the data...closes the Productivity Gap.
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High Level Design Flow for HPCS Toolkit

) Original
=| Program

Performance
Execution Data (Memory
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Program
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Bottleneck Discovery Engine

Performance Bottlenecks

= HPCS Toolkit provides Automated Framework for Performance Analysis

Modified Program and/or log files

— Intelligent automation of performance evaluation and decision system
— Interactive capability with graphical/visual interface always available

Bottleneck: elapsed time exceeds threshold for completing work
|
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HPCS Toolkit Scalability

Self-Contained Performance Data Collection Framework

— Part of the instrumented application executable

*  No background processes or external agents
«  Extensible to MRNet (University of Wisconsin)

= Use of Parallel File System (GPFS)

— Data managed in parallel via distributed files

« Up to five files per process (e.g., for each MPI task):
HPM data

MPI data

OpenMP data

Memory reference data

5. 1/O data

=  Pre-runtime and Post-runtime Filtering Capability

B wnh e

— User-defined logic to reduce data to be captured and/or analyzed

= |IBM Research Blue Gene test-bed
— Up to 0.5 million processor systems
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Closing the Enablement Productivity Gap
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Automated Performance Tuning — Timetable

2007 Deliverables:

= Performance Data Collection
— Scalable, dynamic, programmable
— Completely binary: no source code modification to instrument application...
— But retains ability to correlate all performance data with source code

= Bottleneck Discovery
— Make sense of the performance data
— Mines the performance data to extract bottlenecks

FUTURE MILESTONE DELIVERABLES:

= Solution Determination - 2008 - 2009
— Make sense of the bottlenecks
— Mines bottlenecks and suggests system solutions (hardware and/or software)
— Assist compiler optimization (including custom code transformations)

= Performance “Visualization” - 2008 - 2010

— Performance Data / Bottleneck / Solution Information feedback to User

* Logging (textual information)
* Compiler feedback
— Output to other tools (e.g., Kojak analysis, Paraver visualization, Tau, etc.)
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Typical Tuning Life Cycle

= Observing behavior, formulating hypothesis,
conducting validation tests

— Application instrumentation for performance data
collection

— Correlate performance data with the program
characteristics

— Trace back to the source program

= Optimization to improve performance
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Performance Diagnosis

* Requirement

— In depth knowledge of Algorithm, Architecture,
Compiler, Run time behavior

= Performance data
— Collecting, Filtering, Searching, Interpreting

= Coordinating multiple components of a complex
system

= Challenging and time consuming even for experienced
users
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Performance Optimization Strategy

= A framework provides

— Performance data collection

— Bottleneck identification

— Solution discovery

— Implementation

— lteration of the tuning process
= Key components

— Performance tools

— Compiler

— Expert knowledge
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Performance data

= Wide array of information
— Static analysis
— Runtime behavior
— Algorithm property
— Architecture feature
— Expert knowledge

= Correlate performance metrics from different aspects
— Computation
— Memory
— Communication
— 1/0
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Bottleneck Discovery

= Bottleneck is part of the system that limits the performance

= A mechanism to mining the expert knowledge is necessary to
automate the tuning process

— Wisdom is often expressed in fuzzy terms

= Example
— MPI derived data type for data packing

— Detect packing behavior

« ldentify the buffer being sent (MPI tracing)
* Runtime memory access analysis (intercepting loads/stores)
» Flow analysis (via static analysis)
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Bottleneck Discovery (continue)

= A bottleneck
— A rule (pattern) defined on a set of metrics
— Currently is a logic expression

— Provides a way to compare and correlate metrics from multiple
sources and dimensions

= A performance metric is any quantifiable aspect about or related to
application performance. For example,

— Number of pipeline stalls for a given loop
— Number prefetchable streams
— Number of packets sent from a certain processor

— Size of physical memory
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Metrics from existing performance tools

Metric name Description Collected by
PM_INST CMPL Instruction completed HPM
L1 miss_rate L1 miss rate HPM
Avg_msg_size Average message size MPI profiler

Thread_imbalance

Thread work load

Open MP profiler

IS waiting for a message

imbalance

#prefetches Number of prefetched SIGMA
cache lines

Mpi_latesender Time a receiving process | Scalasca
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Bottleneck rule example

= a potential pipeline stalling problem caused by costly
divide operations in a loop

#divides>0 && PM_STALL FPU/PM_RUN_CYC>t && vectorized=0

— #divides : number of divide operations
— PM_STALL_FPU and PM_RUN_CYC: hardware counter events
— t: threshold
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Metrics from the compiler

= Static analysis
— Estimate of number of prefetchable streams
— Estimate of pipeline stalls
— Basic block information

= Optimization report

<Message>
<Sourceld>1</Sourceld><FileNumber>1</FileNumber>
<LineNumber>114</LineNumber><Loopld>6</Loopld>
<Messageld>131587</Messageld><SubKey>0</SubKey>
</Message>
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Solution Composition and Implementation

= Candidate solutions mined from expert knowledge
= Stored in the solution database

= Solutions are in generic forms and need to be
Instantiated. For example

— Excessive time is spent on blocking MPI calls
— To overlap computation with communication

— Whether and how to overlap are application dependent
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Solution Composition and Implementation (continued)

= Solution determination/instantiation
— Legality check
— Parameter values computed
— Performance improvement estimation
— Code modification and environment setting determination

= Current solutions

— Standard transformation through compiler

« Compiler directives

 Polyhedral framework
— Customized optimization from standard transformation

— Modifications to the source code
— Suggestions

© 2009 IBM Corporation



| IBM Research

Architecture of the Framework
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Case Study - LBMHD

= Lattice Boltzmann Magneto-Hydrodynamics code
(LBMHD)

— A mesoscopic description of the transport properties of
physical systems using linearized Boltzmann equations.

— Offers an efficient way to model turbulence and
collisions in a fluid to model magneto-hydrodynamics

— Performs a 2D simulation of high-temperature
conduction
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Case Study — LBMHD (continue)

= Excessive stalls

« PM_CMPLU STALL LSU/PM_CYC > aand
SA_STRIDE_ONE_ACCESS_ RATE < b and
SA_REGULAR _ACCESS RATE(n) >
SA_STRIDE_ONE_ACCESS RATE +d

= if there Is a significant number of cycles spent on LSU
unit, and there are more n-stride accesses than stride-
1 access, there Is potentially a bottleneck

© 2009 IBM Corporation



| IBM Research

LU
a8

Case Study — LBMHD (continue)

do j =jsta, jend
doi=ista, iend

dok=1,4
vtl = vtl + c(k,1)*f(i,j,K) + c(k+4,21)*f(i,j,k+4)
vt2 = vt2 + c(k,2)*1(i,j,K) + c(k+4,2)*f(i,j,k+4)
Btl = Bt1 + g(i,j,k,1) + g(i,j,k+4,1)
Bt2 = Bt2 + g(i,j,k,2) + g(i,j,k+4,2)

enddo

dok=1,8
feq(i,j,k)=vfac*f(i,j,k)+vtauinv*(templ+trho*.25*vdotc+ &
.5*(trho*vdotc**2- Bdotc**2))
geq(i,j,k,1)= Bfac*g(i,j,k,1)+ Btauinv*.125*(theta*Bt1+ &
2.0*Btl1*vdotc- 2.0*vt1*Bdotc)

enddo

enddo
enddo
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Case Study — LBMHD (continue)

= For multi-dimensional arrays f, g, feq, and geq

— The access order incurred by the j, i, k iteration order does not
match with their storage order

— Creates massive cache misses

= Two ways to match the array access order and the storage order

— Change the access order by loop-interchange

* Loops are not perfected nested

* Impossible to implement loop interchange without violating the
dependency constraints

— Change the storage order to match the access order by re-laying out
the array

« Use compiler directives to implement the new storage order
- 1IBM SUBSCRIPTORDER(f(3, 1, 2), feq(3, 1, 2), 9(4, 3, 1, 2), geq(4, 3, 1, 2))
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Case Study — LBMHD (continue)
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20% improvement in execution time with a grid size 2048x2048 and 50 iterations
on a P575+ (1.9 GHz Power5+, 16 CPUs. Memory: 64GB, DDR2) on one
processor
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Case Study — Distributed Poisson Solver

= Interleaved computation and communication phases

= All the communications in a phase are independent of each other, and can occur
simultaneously
FlapsedTtme— E’PE@:%EE

Elapscdlime = o and mpi_hotspot = 1 and #blockingonmpicalls = 0

= if the CPU spends a significant portion of its time idling in an MPI hotspot and
there are blocking MPI calls, there is a potential bottleneck caused by the
communication pattern.

=

Comp

Time Reduced

utation  Communication
Comp
! utaticn
5
i ; : | ki

Owverlap Independent Phases
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Case Study - Distributed Poisson Solver (continued)

= Solution

— To initiate the communication as early as possible, and walit for its result as
late as possible.

— While the communication is taking place, more computation can be done

= Locations to place MPI calls

— For each MPI call in the hotspot loop, generate lists of input (in) and output
(out) variables.

— ldentify the first location, where the MPI call can be moved without breaking
the original data dependency.

* The earliest that a communication can be initiated.

— ldentify the last location where the MPI call can be moved to without breaking
the original data dependency

* The latest that a communication should complete.

© 2009 IBM Corporation



]
]
@

| IBM Research

Case Study - Distributed Poisson Solver (continued)

= Rewrite MPI functions

= For example

= Original
— call MPI_SEND(x, n, MPI_REAL, dst, 0, MPI_COMM_WORLD, istat, ierr)
= Modified
— integer NEWO 1 I Declaration
— call MPI_ISEND(X, ..., NEWO_1, ierr) ! Initiation
— call MPI_WAIT(NEWO _1, ..., ierr) I Wait

© 2009 IBM Corporation
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Case Study - Distributed Poisson Solver (continued)

= For a mesh size of 1G (1024 x 1024 x 1024), the optimization
achieved about 50% improvement in communication time on

Blue Gene/P
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Conclusion and Future Work

= High productivity performance tuning
— Unifying performance tools, compiler, and expert knowledge

— Metrics from performance data collected by existing performance
tools

— The analysis of multiple tools can be correlated and combined
through bottleneck rules.

= Future work

— Populate the databases with more rules and solutions

© 2009 IBM Corporation
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HD Results (Loop Level)

.Ilpcs_gn-i
File Action Database “Window
| BDE |BDE and SDE
HD | BDE |
SELECTION| FILE FUNCTICN | START lements at a time
| _[Floop  [mhdr [colison | 512
2 | Function |mhdF |colision |
3 I Function |mhdF |strean
4 W~ loop  [liCHENE ,
5 I Loop \mhdF |stream |
B J© Loop ‘mhdF |stream i
7 _I¥ Function |mhd.F |neighbours | 619|_
5 Loop 'mhd.F  |neighbours | 750!
5 loop  mhdF lequl | 291
10 J~ Function |mhd.F | equil | 292
Tf Loop  |mhdf [check |  927]
12 |~ Function |mhd.F |check | 924
18) Loop | mhdF |neighbours | 69|
14 | Loop |mhd.F  neighbours | 618
15 I Function mhdF |init | 287
16 | Loop  mhd.F \neighbours | 644
17 I Loop (mhckF o init I 27‘8|_
18 | Loop ‘mhd.F  |neighbours | 631
19| Function |mhdf |my_range |  224|
20 | Loop  |mhd.F |init | 264
21 Loop  mhdF Jinit | 28|
22 |~ Function |mhdF |mhd i 31
28 f Loop  |mhdF |neighbours | 656
24 | Loop  |mhdF |mhd [ 117
25 I” Function |mhdF Idecomp 1 B -
26 I Loop 'mhdF _neichbours | 839 _>|_I
- 4
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Source Code with Clock Ticks

.F|Ie Action Database Window =18 x|
| BDE |BDE and SDE

mhdF - |

347 ptr =3 feg(inmp, |-1, 3} 4

348 CALL Mambo_Prefetch{ptr, 128, 1, NMP_FREF_LINES)

3449 pitr == feqlinmp+1, j, 5)

350 CALL Mambo_Prefetchiptr, 128, 1, NMP_FREF_LINES)

351 ptr == feqlinmp, j+1,7)

352 CALL Mambo_Prefetch(ptr, 128, 1, NMP_PREF_LINES)

353 do i = inmp, MIMN{inmp+(16*NMP_PREF_LINES]-1, lend)

354 #else

355 do i = ista, iend

356 #endif

357 Dwritel ™ L L50 L inmp Jlul

358 21 flij. 1= feq(-1j.1)

359 28 f{ij.3)= feq(lj-1.3)

360 9 fiij.5)= feq(i+1,,5)

361 B flij. 7= feq(ij+1.7)

362 enddo

363 #ifdef NMP

364 enddo

365 #endif

366 enddo

367

368 do | = jsta, jend

368 #ifdef NMP

370 do inmp = ista, iend-16*"MNMP_PREF_LINES+1, 168*MNMP_PREF_LINES

371 Ifetch one line strides = 16 elements at a time

372 ptr == feq(inmp, j, 2)

373 CALL Mambo_Prefetchiptr, 128, 1, NMP_FPREF_LINES) &
- A
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BDE Results

~ T ——SSSSS————m————_—_———_—__—_—p§——_——. 7 M
File Action Database Window — |8 x|
S0E
HD | BDE |
BOTTLENEY DIMEN] DESCRIPTION RULE FUNCTION ERD LIME
1 |Dcachemiss |[CPU cycles wasted due to stalls) (PM_RUN_CYC - (PM_GCT_EMPTY_CYC + PM_GRP_CMPL)) |stream 493
2 |DcacheMiss |CPU cycles wasted due to stalls) (PM_RUN_CYC - (PM_GCT_EMPTY_CYC + PM_GRP_CMPL)) |equil 314
3 |DcacheMiss |[CPU | cycles wasted due to stalls) (PM_RUN_CYC - (PM_GCT_EMPTY_CYC + PM_GRP_CMPL)) |neighbours 204
4 |DcacheMiss |[CPU | cycles wasted due to stalls (PM_RUN_CYC - (PM_ GCT_EMPTY_CYC + PM_GRP_CMPL)) | collision 592
5 |DcacheMiss |[CPU | cycles wasted due to stalls {PM_RUN_CYC - (PM_GCT_EMPTY_CYC + PM_GRP_CMPL)) [neighbours 307
6 |MPIBarrier! |COMML imbalanced walt time MAX [ mpi_wait_hot_sum_time)-"MIN{ mpi_wait_hot_sum_time) = 1.neighbours 807
7 |Stalls [CPU cycles spent in stalls (PM_CMPLLSTALL LSU + PM_CMPLU_STALL FXU + PM_Chneighbours 07
8 |Stalls |CPU cycles spent in stalls (PM_CMPLU_STALL LSU + PM_CMPLU_STALL_FXU + FPM_CHNstream 493
9 |Stals [CPU | cycles spent in stalls | (PM_CMPLU_STALL LSU 4+ PM_CMPLU_STALL FXU + PM_CK collision 542
10 |Stalls |CPU | cycles spent in stalls | (PM_CMPLU_STALL_LSU + PM_CMPLU_STALL_FXU + PM_Chneighbours g04
11 | Stalls [CFU | cycles spentin stalls | (FM_CMPLU_STALL_LSU + PM_CMPLU_STALL_FXU + PM_CNequil 314
| 2]
g A
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Query Execution

|»

== mhd Fneighbours 7 50:504
=- mhd Fistream:4 16:493
#-pomprof

mpi_walt_prog_var_time 0000110

0.0001100.000134

_V h pcs.@ ul
Label % metric Walue for PO LT Ml A ANG
=-Fri Apr 11 15:36:43 2008
2 fgsalyktgsa-h 1101 hfwenitest DARPAI mhd A mhdi opg
- mpi

- mhd.Ficollision:512:592

- mhd Frequil:291:314

=- mhd Fneighbours:619:807

mpi_all_hot_avg_time 0.000772 0.0007720.000854 0.000438

mpi_all_hot_max_time  0.079773 0.0797730.078625 0.042088
mpi_al_hot_med_time  0.000005 0.0000050.000005 0.000007
mpi_all_hot_min_time 0.000001 0.0000010.000001 0.000001
mpi_al_hot_sum_time  3.089104 3.0891043.816296 1.757381
mpi_all_hot_var_time 0.000055 0.0000550.000068 0.000031
mpi_al_prog_avg_time  0.000955 0.0008550.000846 0.000483
mpi_all_prog_max_time 0.079773 0.0797730.078625 0.042089
mpi_al_prog_med_time 0.000005 0.0000050.000005 0.000007
mpi_all_prog_min_time  0.000001 0.0000010.000001 0.000001
mpi_al_prog_sum_time 3.854623 3.8546253.817104 1949807
mpi_al_prog_var_time  0.000069 0.0000690.000067 0.000034
mpi_wait_hot_avg_time 0.001535 0.0015350.001800 0.000854
mpi_wait_hot_max_time 0.079773 0.0797730.078625 0.042088
mpi_wait_hot_med_time 0.000002 0.0000020.000003 0.000003
mpi_wait_hot_min_time  0.000001 0.0000010.000001 0.000001
mpi_wait_hot_sum_time 3.069639 3.0696383.800613 1727556
mpi_wait_hot_var_time  0.000110 0.0001100.000134 0.000061
mpi_wait_prog_avg_time 0.001535 0.0015350.001900 0.000864
mpi_wait_prog_max_time 0.079773 0.0797730.078625 0.042089
mpi_wait_prog_med_time 0.000002 0.0000020.000003 0.000003
mpi_wait_prog_min_time 0.000001 0.0000010.000001 0.000001
mpi_wait_prog_sum_time 3.069639 2.0696393.8006138 1727596

0.000061

E—-;Mon Apr 7 11:27:04 2008

=
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Managing power dissipation is limiting clock speed increases

2004 Frequency Extrapolation

Clock Speed (MHz)

1990 1995 2000 2005
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Lithography will continue to deliver density scaling

-1 Billion

sKoM 1 Million

Number of Transistors

1980 1985 1990 1995 2000 2005 2010
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Hardware trends that address the power problem

= Observation

— Although frequency scaling is “dead”, Moore’s Law is still
alive: transistor density continues to increase exponentially

=  Trend #1: Multi-core processor chips
— Maintain (or even reduce) frequency while replicating cores

= Trend #2: Accelerators

— Previously, processors would “catch” up with accelerator
function in the next generation

» Accelerator design expense not amortized well
— New accelerator designs will maintain their speed advantage

— And will continue an enormous power advantage for target
workloads
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Blue Gene/P, an example of addressing power in a
massive scale-out system

= 40K compute processors
— 557 Teraflop Peak

= 80 Terabytes memory
= 3D torus interconnect

= Collective and barrier
networks

= Power:
— 0.33 Gigaflop/W

= 40 compute racks

BG/P at ANL, #4 on the Top500 list

© 2009 IBM Corporation



| IBM Research

LU
a8

IBM Roadrunner — a system with accelerators

= Architecture

— 12,960 IBM PowerXCell
8i CPUs

— 6,480 AMD Opteron dual-
core processors

— Infiniband, Linux
= Power2.35 MW

. Space2296 racks, 6,000 sq ft
(560 m")

= Memory103.6 TiB
= Speedl.7 petaflops (peak)

Roadrunner at LANL, #1 on the Top500 list
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