| IBM Research

A Holistic Approach towards AUE8
Performance Analysis and Tuning

Advanced Computing Technology
IBM T.J. Watson Research Center
Ihchung@us.ibm.com

© 2009 IBM Corporation

| IBM Research

LU
a8

System Evolution

Device Scaling imposing fundamental constraints on system
— Power dissipation and energy consumption
— Physical size / packaging
= Pressure to re-think system architecture
— Blue Gene: low power devices, embedded (small)
— Cell: Attached (embedded) co-processing engine
= Systems become inherently more complex
— Connectivity / hierarchical topology (torus, intra-cell)
— Multi-core processors (and less memory per processor)
— Multi-thread (SMT, hyperthreading)
= This poses new challenge to application programming
— New programming paradigm? (but ~$1T in legacy codes, ISV apps, etc.)

= Conclusion: New software tools essential to mitigate evolving system complexity and
improve productivity.

© 2009 IBM Corporation

| IBM Research

LU
a8

Enablement Productivity Gap = Hardware — Software

| © 2009 IBM Corporation

| IBM Research

LU
a8

PERCS Impact on Productivity Gap

= State-of-Art Application Enablement circa 2002+
— Source code modification (e.g., timing routines)
— Non-selective, non-source code correlated tools (e.g., PAPI)
— Dynamic instrumentation via external agents (e.g., Dynlnst)
— GUI frameworks to look at data (e.g., Vampir, Vtune, Tau)
— No unified analysis framework (CPU, MPI, OpenMP, and 1/O)
— No management of large scale performance data

= |[BM DARPA HPCS Toolkit

— Next generation unified framework for automated (not automatic) intelligent-
assist of application performance tuning including...

* No source code modifications...but with source code correlation of the data
» Selective and dynamic instrumentation without external agents
* Large scale data management

* |In a Nutshell:
— Previous tools only show you the data...does not resolve the Productivity Gap.
— The HPCS Toolkit makes sense of the data...closes the Productivity Gap.

© 2009 IBM Corporation

| IBM Research

High Level Design Flow for HPCS Toolkit

) Original
=| Program

Performance
Execution Data (Memory
- F|Ie MPI /0, .

Program
Information

/4

Bottleneck Discovery Engine

Performance Bottlenecks

= HPCS Toolkit provides Automated Framework for Performance Analysis

Modified Program and/or log files

— Intelligent automation of performance evaluation and decision system
— Interactive capability with graphical/visual interface always available

Bottleneck: elapsed time exceeds threshold for completing work
|

© 2009 IBM Corporation

&)

| IBM Research

LU
a8

HPCS Toolkit Scalability

Self-Contained Performance Data Collection Framework

— Part of the instrumented application executable

* No background processes or external agents
« Extensible to MRNet (University of Wisconsin)

= Use of Parallel File System (GPFS)

— Data managed in parallel via distributed files

« Up to five files per process (e.g., for each MPI task):
HPM data

MPI data

OpenMP data

Memory reference data

5. 1/O data

= Pre-runtime and Post-runtime Filtering Capability

B wnh e

— User-defined logic to reduce data to be captured and/or analyzed

= |IBM Research Blue Gene test-bed
— Up to 0.5 million processor systems

© 2009 IBM Corporation

| IBM Research

Closing the Enablement Productivity Gap

© 2009 IBM Corporation

LU
a8

| IBM Research

Automated Performance Tuning — Timetable

2007 Deliverables:

= Performance Data Collection
— Scalable, dynamic, programmable
— Completely binary: no source code modification to instrument application...
— But retains ability to correlate all performance data with source code

= Bottleneck Discovery
— Make sense of the performance data
— Mines the performance data to extract bottlenecks

FUTURE MILESTONE DELIVERABLES:

= Solution Determination - 2008 - 2009
— Make sense of the bottlenecks
— Mines bottlenecks and suggests system solutions (hardware and/or software)
— Assist compiler optimization (including custom code transformations)

= Performance “Visualization” - 2008 - 2010

— Performance Data / Bottleneck / Solution Information feedback to User

* Logging (textual information)
* Compiler feedback
— Output to other tools (e.g., Kojak analysis, Paraver visualization, Tau, etc.)

© 2009 IBM Corporation

| L ||
]
]
a

| IBM Research

Typical Tuning Life Cycle

= Observing behavior, formulating hypothesis,
conducting validation tests

— Application instrumentation for performance data
collection

— Correlate performance data with the program
characteristics

— Trace back to the source program

= Optimization to improve performance

© 2009 IBM Corporation

| L ||
]
]
a

| IBM Research

Performance Diagnosis

* Requirement

— In depth knowledge of Algorithm, Architecture,
Compiler, Run time behavior

= Performance data
— Collecting, Filtering, Searching, Interpreting

= Coordinating multiple components of a complex
system

= Challenging and time consuming even for experienced
users

© 2009 IBM Corporation

LU
a8

| IBM Research

Performance Optimization Strategy

= A framework provides

— Performance data collection

— Bottleneck identification

— Solution discovery

— Implementation

— lteration of the tuning process
= Key components

— Performance tools

— Compiler

— Expert knowledge

© 2009 IBM Corporation

| IBM Research

LU
a8

Performance data

= Wide array of information
— Static analysis
— Runtime behavior
— Algorithm property
— Architecture feature
— Expert knowledge

= Correlate performance metrics from different aspects
— Computation
— Memory
— Communication
— 1/0

© 2009 IBM Corporation

| IBM Research

LU
a8

Bottleneck Discovery

= Bottleneck is part of the system that limits the performance

= A mechanism to mining the expert knowledge is necessary to
automate the tuning process

— Wisdom is often expressed in fuzzy terms

= Example
— MPI derived data type for data packing

— Detect packing behavior

« ldentify the buffer being sent (MPI tracing)
* Runtime memory access analysis (intercepting loads/stores)
» Flow analysis (via static analysis)

© 2009 IBM Corporation

| IBM Research

LU
a8

Bottleneck Discovery (continue)

= A bottleneck
— A rule (pattern) defined on a set of metrics
— Currently is a logic expression

— Provides a way to compare and correlate metrics from multiple
sources and dimensions

= A performance metric is any quantifiable aspect about or related to
application performance. For example,

— Number of pipeline stalls for a given loop
— Number prefetchable streams
— Number of packets sent from a certain processor

— Size of physical memory

© 2009 IBM Corporation

| IBM Research

Metrics from existing performance tools

Metric name Description Collected by
PM_INST CMPL Instruction completed HPM
L1 miss_rate L1 miss rate HPM
Avg_msg_size Average message size MPI profiler

Thread_imbalance

Thread work load

Open MP profiler

IS waiting for a message

imbalance

#prefetches Number of prefetched SIGMA
cache lines

Mpi_latesender Time a receiving process | Scalasca

© 2009 IBM Corporation

&)

LU
a8

| IBM Research

Bottleneck rule example

= a potential pipeline stalling problem caused by costly
divide operations in a loop

#divides>0 && PM_STALL FPU/PM_RUN_CYC>t && vectorized=0

— #divides : number of divide operations
— PM_STALL_FPU and PM_RUN_CYC: hardware counter events
— t: threshold

© 2009 IBM Corporation

| IBM Research

[
a8

Metrics from the compiler

= Static analysis
— Estimate of number of prefetchable streams
— Estimate of pipeline stalls
— Basic block information

= Optimization report

<Message>
<Sourceld>1</Sourceld><FileNumber>1</FileNumber>
<LineNumber>114</LineNumber><Loopld>6</Loopld>
<Messageld>131587</Messageld><SubKey>0</SubKey>
</Message>

© 2009 IBM Corporation

| L ||
]
]
[}

| IBM Research

Solution Composition and Implementation

= Candidate solutions mined from expert knowledge
= Stored in the solution database

= Solutions are in generic forms and need to be
Instantiated. For example

— Excessive time is spent on blocking MPI calls
— To overlap computation with communication

— Whether and how to overlap are application dependent

© 2009 IBM Corporation

| IBM Research

LU
a8

Solution Composition and Implementation (continued)

= Solution determination/instantiation
— Legality check
— Parameter values computed
— Performance improvement estimation
— Code modification and environment setting determination

= Current solutions

— Standard transformation through compiler

« Compiler directives

 Polyhedral framework
— Customized optimization from standard transformation

— Modifications to the source code
— Suggestions

© 2009 IBM Corporation

| IBM Research

Architecture of the Framework

Maaning

Esstlansck Dshection Enaine

Batleneck Detecticn Engine Catabase

Huotepot Ciatacior

Mainz Medule

Metnic Scheduler

Perlormancs Eslimation Modula

Lolulion Pedormance Estimabon Module

Salulion Peformance Estimaton Scheduler

Saltion Detarmination Endging

Salution Datarmination Engine Databaze

Saolution Implementation Engine

Ealntion Implementation Engine Catabase

Eanlutizn Implemeniaticn Scheduler

FEMOD
£ HD Ld SPEMCD
—— . - — .
e _ SPESCHED
’_“' | [' SDE
DB ¥ EDE DE
- F MSCHED | SE
F |+ | j
; v
'_,-.__‘i’. 7 G
Mmoo | HH mmoD || PEMOCD
|

Eaolution Implemeniaticn Moduls

© 2009 IBM Corporation

]
]
@

| IBM Research

Case Study - LBMHD

= Lattice Boltzmann Magneto-Hydrodynamics code
(LBMHD)

— A mesoscopic description of the transport properties of
physical systems using linearized Boltzmann equations.

— Offers an efficient way to model turbulence and
collisions in a fluid to model magneto-hydrodynamics

— Performs a 2D simulation of high-temperature
conduction

© 2009 IBM Corporation

| IBM Research

Case Study — LBMHD (continue)

= Excessive stalls

« PM_CMPLU STALL LSU/PM_CYC > aand
SA_STRIDE_ONE_ACCESS_ RATE < b and
SA_REGULAR _ACCESS RATE(n) >
SA_STRIDE_ONE_ACCESS RATE +d

= if there Is a significant number of cycles spent on LSU
unit, and there are more n-stride accesses than stride-
1 access, there Is potentially a bottleneck

© 2009 IBM Corporation

| IBM Research

LU
a8

Case Study — LBMHD (continue)

do j =jsta, jend
doi=ista, iend

dok=1,4
vtl = vtl + c(k,1)*f(i,j,K) + c(k+4,21)*f(i,j,k+4)
vt2 = vt2 + c(k,2)*1(i,j,K) + c(k+4,2)*f(i,j,k+4)
Btl = Bt1 + g(i,j,k,1) + g(i,j,k+4,1)
Bt2 = Bt2 + g(i,j,k,2) + g(i,j,k+4,2)

enddo

dok=1,8
feq(i,j,k)=vfac*f(i,j,k)+vtauinv*(templ+trho*.25*vdotc+ &
.5*(trho*vdotc**2- Bdotc**2))
geq(i,j,k,1)= Bfac*g(i,j,k,1)+ Btauinv*.125*(theta*Bt1+ &
2.0*Btl1*vdotc- 2.0*vt1*Bdotc)

enddo

enddo
enddo

© 2009 IBM Corporation

[
a8

| IBM Research

Case Study — LBMHD (continue)

= For multi-dimensional arrays f, g, feq, and geq

— The access order incurred by the j, i, k iteration order does not
match with their storage order

— Creates massive cache misses

= Two ways to match the array access order and the storage order

— Change the access order by loop-interchange

* Loops are not perfected nested

* Impossible to implement loop interchange without violating the
dependency constraints

— Change the storage order to match the access order by re-laying out
the array

« Use compiler directives to implement the new storage order
- 1IBM SUBSCRIPTORDER(f(3, 1, 2), feq(3, 1, 2), 9(4, 3, 1, 2), geq(4, 3, 1, 2))

© 2009 IBM Corporation

| IBM Research

LU
a8

Case Study — LBMHD (continue)

80.00

7000

60.00

H stream
@ collision

Execution time (sec)

3000

20,00

1000

0.00

Criginal Array re—laid out Cptimized

20% improvement in execution time with a grid size 2048x2048 and 50 iterations
on a P575+ (1.9 GHz Power5+, 16 CPUs. Memory: 64GB, DDR2) on one
processor

| © 2009 IBM Corporation

| IBM Research

LU
a8

Case Study — Distributed Poisson Solver

= Interleaved computation and communication phases

= All the communications in a phase are independent of each other, and can occur
simultaneously
FlapsedTtme— E’PE@:%EE

Elapscdlime = o and mpi_hotspot = 1 and #blockingonmpicalls = 0

= if the CPU spends a significant portion of its time idling in an MPI hotspot and
there are blocking MPI calls, there is a potential bottleneck caused by the
communication pattern.

=

Comp

Time Reduced

utation Communication
Comp
! utaticn
5
i ; : | ki

Owverlap Independent Phases

© 2009 IBM Corporation

| IBM Research

LU
a8

Case Study - Distributed Poisson Solver (continued)

= Solution

— To initiate the communication as early as possible, and walit for its result as
late as possible.

— While the communication is taking place, more computation can be done

= Locations to place MPI calls

— For each MPI call in the hotspot loop, generate lists of input (in) and output
(out) variables.

— ldentify the first location, where the MPI call can be moved without breaking
the original data dependency.

* The earliest that a communication can be initiated.

— ldentify the last location where the MPI call can be moved to without breaking
the original data dependency

* The latest that a communication should complete.

© 2009 IBM Corporation

]
]
@

| IBM Research

Case Study - Distributed Poisson Solver (continued)

= Rewrite MPI functions

= For example

= Original
— call MPI_SEND(x, n, MPI_REAL, dst, 0, MPI_COMM_WORLD, istat, ierr)
= Modified
— integer NEWO 1 I Declaration
— call MPI_ISEND(X, ..., NEWO_1, ierr) ! Initiation
— call MPI_WAIT(NEWO _1, ..., ierr) I Wait

© 2009 IBM Corporation

| IBM Research

Case Study - Distributed Poisson Solver (continued)

= For a mesh size of 1G (1024 x 1024 x 1024), the optimization
achieved about 50% improvement in communication time on

Blue Gene/P

200.0

9.03

Execution Time (sec)
.
[00]
o
o

Original

| © 2009 IBM Corporation

| 455

Optimized

[0 Communication
B Computation

&)

| IBM Research

LU
a8

Conclusion and Future Work

= High productivity performance tuning
— Unifying performance tools, compiler, and expert knowledge

— Metrics from performance data collected by existing performance
tools

— The analysis of multiple tools can be correlated and combined
through bottleneck rules.

= Future work

— Populate the databases with more rules and solutions

© 2009 IBM Corporation

IBM Research

| © 2009 IBM Corporation

| IBM Research

HD Results (Loop Level)

.Ilpcs_gn-i
File Action Database “Window
| BDE |BDE and SDE
HD | BDE |
SELECTION| FILE FUNCTICN | START lements at a time
| _[Floop [mhdr [colison | 512
2 | Function |mhdF |colision |
3 I Function |mhdF |strean
4 W~ loop [liCHENE ,
5 I Loop \mhdF |stream |
B J© Loop ‘mhdF |stream i
7 _I¥ Function |mhd.F |neighbours | 619|_
5 Loop 'mhd.F |neighbours | 750!
5 loop mhdF lequl | 291
10 J~ Function |mhd.F | equil | 292
Tf Loop |mhdf [check | 927]
12 |~ Function |mhd.F |check | 924
18) Loop | mhdF |neighbours | 69|
14 | Loop |mhd.F neighbours | 618
15 I Function mhdF |init | 287
16 | Loop mhd.F \neighbours | 644
17 I Loop (mhckF o init I 27‘8|_
18 | Loop ‘mhd.F |neighbours | 631
19| Function |mhdf |my_range | 224|
20 | Loop |mhd.F |init | 264
21 Loop mhdF Jinit | 28|
22 |~ Function |mhdF |mhd i 31
28 f Loop |mhdF |neighbours | 656
24 | Loop |mhdF |mhd [117
25 I” Function |mhdF Idecomp 1 B -
26 I Loop 'mhdF _neichbours | 839 _>|_I
- 4

© 2009 IBM Corporation

| IBM Research

Source Code with Clock Ticks

.F|Ie Action Database Window =18 x|
| BDE |BDE and SDE

mhdF - |

347 ptr =3 feg(inmp, |-1, 3} 4

348 CALL Mambo_Prefetch{ptr, 128, 1, NMP_FREF_LINES)

3449 pitr == feqlinmp+1, j, 5)

350 CALL Mambo_Prefetchiptr, 128, 1, NMP_FREF_LINES)

351 ptr == feqlinmp, j+1,7)

352 CALL Mambo_Prefetch(ptr, 128, 1, NMP_PREF_LINES)

353 do i = inmp, MIMN{inmp+(16*NMP_PREF_LINES]-1, lend)

354 #else

355 do i = ista, iend

356 #endif

357 Dwritel ™ L L50 L inmp Jlul

358 21 flij. 1= feq(-1j.1)

359 28 f{ij.3)= feq(lj-1.3)

360 9 fiij.5)= feq(i+1,,5)

361 B flij. 7= feq(ij+1.7)

362 enddo

363 #ifdef NMP

364 enddo

365 #endif

366 enddo

367

368 do | = jsta, jend

368 #ifdef NMP

370 do inmp = ista, iend-16*"MNMP_PREF_LINES+1, 168*MNMP_PREF_LINES

371 Ifetch one line strides = 16 elements at a time

372 ptr == feq(inmp, j, 2)

373 CALL Mambo_Prefetchiptr, 128, 1, NMP_FPREF_LINES) &
- A

© 2009 IBM Corporation

| IBM Research

BDE Results

~ T ——SSSSS————m————_—_———_—__—_—p§——_——. 7 M
File Action Database Window — |8 x|
S0E
HD | BDE |
BOTTLENEY DIMEN] DESCRIPTION RULE FUNCTION ERD LIME
1 |Dcachemiss |[CPU cycles wasted due to stalls) (PM_RUN_CYC - (PM_GCT_EMPTY_CYC + PM_GRP_CMPL)) |stream 493
2 |DcacheMiss |CPU cycles wasted due to stalls) (PM_RUN_CYC - (PM_GCT_EMPTY_CYC + PM_GRP_CMPL)) |equil 314
3 |DcacheMiss |[CPU | cycles wasted due to stalls) (PM_RUN_CYC - (PM_GCT_EMPTY_CYC + PM_GRP_CMPL)) |neighbours 204
4 |DcacheMiss |[CPU | cycles wasted due to stalls (PM_RUN_CYC - (PM_ GCT_EMPTY_CYC + PM_GRP_CMPL)) | collision 592
5 |DcacheMiss |[CPU | cycles wasted due to stalls {PM_RUN_CYC - (PM_GCT_EMPTY_CYC + PM_GRP_CMPL)) [neighbours 307
6 |MPIBarrier! |COMML imbalanced walt time MAX [mpi_wait_hot_sum_time)-"MIN{ mpi_wait_hot_sum_time) = 1.neighbours 807
7 |Stalls [CPU cycles spent in stalls (PM_CMPLLSTALL LSU + PM_CMPLU_STALL FXU + PM_Chneighbours 07
8 |Stalls |CPU cycles spent in stalls (PM_CMPLU_STALL LSU + PM_CMPLU_STALL_FXU + FPM_CHNstream 493
9 |Stals [CPU | cycles spent in stalls | (PM_CMPLU_STALL LSU 4+ PM_CMPLU_STALL FXU + PM_CK collision 542
10 |Stalls |CPU | cycles spent in stalls | (PM_CMPLU_STALL_LSU + PM_CMPLU_STALL_FXU + PM_Chneighbours g04
11 | Stalls [CFU | cycles spentin stalls | (FM_CMPLU_STALL_LSU + PM_CMPLU_STALL_FXU + PM_CNequil 314
| 2]
g A

© 2009 IBM Corporation

| IBM Research

Query Execution

|»

== mhd Fneighbours 7 50:504
=- mhd Fistream:4 16:493
#-pomprof

mpi_walt_prog_var_time 0000110

0.0001100.000134

_V h pcs.@ ul
Label % metric Walue for PO LT Ml A ANG
=-Fri Apr 11 15:36:43 2008
2 fgsalyktgsa-h 1101 hfwenitest DARPAI mhd A mhdi opg
- mpi

- mhd.Ficollision:512:592

- mhd Frequil:291:314

=- mhd Fneighbours:619:807

mpi_all_hot_avg_time 0.000772 0.0007720.000854 0.000438

mpi_all_hot_max_time 0.079773 0.0797730.078625 0.042088
mpi_al_hot_med_time 0.000005 0.0000050.000005 0.000007
mpi_all_hot_min_time 0.000001 0.0000010.000001 0.000001
mpi_al_hot_sum_time 3.089104 3.0891043.816296 1.757381
mpi_all_hot_var_time 0.000055 0.0000550.000068 0.000031
mpi_al_prog_avg_time 0.000955 0.0008550.000846 0.000483
mpi_all_prog_max_time 0.079773 0.0797730.078625 0.042089
mpi_al_prog_med_time 0.000005 0.0000050.000005 0.000007
mpi_all_prog_min_time 0.000001 0.0000010.000001 0.000001
mpi_al_prog_sum_time 3.854623 3.8546253.817104 1949807
mpi_al_prog_var_time 0.000069 0.0000690.000067 0.000034
mpi_wait_hot_avg_time 0.001535 0.0015350.001800 0.000854
mpi_wait_hot_max_time 0.079773 0.0797730.078625 0.042088
mpi_wait_hot_med_time 0.000002 0.0000020.000003 0.000003
mpi_wait_hot_min_time 0.000001 0.0000010.000001 0.000001
mpi_wait_hot_sum_time 3.069639 3.0696383.800613 1727556
mpi_wait_hot_var_time 0.000110 0.0001100.000134 0.000061
mpi_wait_prog_avg_time 0.001535 0.0015350.001900 0.000864
mpi_wait_prog_max_time 0.079773 0.0797730.078625 0.042089
mpi_wait_prog_med_time 0.000002 0.0000020.000003 0.000003
mpi_wait_prog_min_time 0.000001 0.0000010.000001 0.000001
mpi_wait_prog_sum_time 3.069639 2.0696393.8006138 1727596

0.000061

E—-;Mon Apr 7 11:27:04 2008

=

© 2009 IBM Corporation

IBM Research

Managing power dissipation is limiting clock speed increases

2004 Frequency Extrapolation

Clock Speed (MHz)

1990 1995 2000 2005

© 2009 IBM Corporation

IBM Research

Lithography will continue to deliver density scaling

-1 Billion

sKoM 1 Million

Number of Transistors

1980 1985 1990 1995 2000 2005 2010

© 2009 IBM Corporation

| IBM Research

LU
a8

Hardware trends that address the power problem

= Observation

— Although frequency scaling is “dead”, Moore’s Law is still
alive: transistor density continues to increase exponentially

= Trend #1: Multi-core processor chips
— Maintain (or even reduce) frequency while replicating cores

= Trend #2: Accelerators

— Previously, processors would “catch” up with accelerator
function in the next generation

» Accelerator design expense not amortized well
— New accelerator designs will maintain their speed advantage

— And will continue an enormous power advantage for target
workloads

© 2009 IBM Corporation

LU
a8

| IBM Research

Blue Gene/P, an example of addressing power in a
massive scale-out system

= 40K compute processors
— 557 Teraflop Peak

= 80 Terabytes memory
= 3D torus interconnect

= Collective and barrier
networks

= Power:
— 0.33 Gigaflop/W

= 40 compute racks

BG/P at ANL, #4 on the Top500 list

© 2009 IBM Corporation

| IBM Research

LU
a8

IBM Roadrunner — a system with accelerators

= Architecture

— 12,960 IBM PowerXCell
8i CPUs

— 6,480 AMD Opteron dual-
core processors

— Infiniband, Linux
= Power2.35 MW

. Space2296 racks, 6,000 sq ft
(560 m")

= Memory103.6 TiB
= Speedl.7 petaflops (peak)

Roadrunner at LANL, #1 on the Top500 list

© 2009 IBM Corporation

