
                  __                __                

                 / /   ____  ____  / /_  ____  _____        

                / /   / __ `/ __ `/ __ \/ __ \/ ___/       High-Order Lagrangian 

               / /___/ /_/ / /_/ / / / / /_/ (__  )        Hydrodynamics Miniapp 

              /_____/\__,_/\__, /_/ /_/\____/____/         https://github.com/CEED/Laghos 

                          /____/  

 

 1 

Summary Version 
 

Results and benchmark tarball are for the cts2 version from the CEED/Laghos repository. 
 

Purpose of Benchmark 
 

Laghos (LAGrangian High-Order Solver) is a miniapp that solves the time-dependent Euler 
equations of compressible gas dynamics in a moving Lagrangian frame using unstructured high-
order finite element spatial discretization and explicit high-order time-stepping. 
 
Laghos is based on the discretization method described in the following article: 
 

V. Dobrev, Tz. Kolev and R. Rieben 
High-order curvilinear finite element methods for Lagrangian hydrodynamics 
SIAM Journal on Scientific Computing, (34) 2012, pp. B606-B641 

 
Laghos captures the basic structure of many other compressible shock hydrocodes, including the 
BLAST code at Lawrence Livermore National Laboratory. The miniapp is built on top of a general 
discretization library, MFEM, thus separating the pointwise physics from finite element and 
meshing concerns. 
 
Laghos is a LLNL ASC co-design mini-app that was developed as part of the CEED software suite, 
a collection of software benchmarks, miniapps, libraries and APIs for efficient exascale 
discretizations based on high-order finite element and spectral element methods. See 
http://github.com/ceed for more information and source code availability. 
 
The CEED research is supported by the Exascale Computing Project (17-SC-20-SC), a collaborative 
effort of two U.S. Department of Energy organizations (Office of Science and the National Nuclear 
Security Administration) responsible for the planning and preparation of a capable exascale 
ecosystem, including software, applications, hardware, advanced system engineering and early 
testbed platforms, in support of the nation’s exascale computing imperative. 
 

Characteristics of Benchmark 
 

In each time step, the problem is ultimately formulated as solving a big system of ordinary 
differential equations (ODE) for the unknown (high-order) velocity, internal energy and mesh 
nodes (position). The left-hand side of this ODE is controlled by mass matrices (one for velocity 
and one for energy), while the right-hand side is constructed from a force matrix. 

https://github.com/CEED/Laghos
https://github.com/CEED/Laghos
https://doi.org/10.1137/120864672
http://llnl.gov/casc/blast
http://llnl.gov/
http://mfem.org/
https://codesign.llnl.gov/laghos.php
http://ceed.exascaleproject.org/software
http://github.com/ceed
https://exascaleproject.org/exascale-computing-project
https://exascaleproject.org/what-is-exascale
https://exascaleproject.org/what-is-exascale


                  __                __                

                 / /   ____  ____  / /_  ____  _____        

                / /   / __ `/ __ `/ __ \/ __ \/ ___/       High-Order Lagrangian 

               / /___/ /_/ / /_/ / / / / /_/ (__  )        Hydrodynamics Miniapp 

              /_____/\__,_/\__, /_/ /_/\____/____/         https://github.com/CEED/Laghos 

                          /____/  

 

 2 

Laghos supports two options for deriving and solving the ODE system, namely the full assembly 
and the partial assembly methods. Partial assembly is the main algorithm of interest for this 
benchmark. 
 
Other computational motives in Laghos include the following: 
 

• Support for unstructured meshes, in 2D and 3D, with quadrilateral and hexahedral 
elements (triangular and tetrahedral elements can also be used, but with the less efficient 
full assembly option). Serial and parallel mesh refinement options can be set via a 
command-line flag. 

 

• Explicit time-stepping loop with a variety of time integrator options. Laghos supports 
Runge-Kutta ODE solvers of orders 1, 2, 3, 4 and 6, as well as a specialized Runge-Kutta 
method of order 2 that ensures exact energy conservation on fully discrete level (RK2Avg). 

 

• Continuous and discontinuous high-order finite element discretization spaces of runtime-
specified order. 

 

• Moving (high-order) meshes. 
 

• Separation between the assembly and the quadrature point-based computations. 
 

• Point-wise definition of mesh size, time-step estimate and artificial viscosity coefficient. 
 

• Constant-in-time velocity mass operator that is inverted iteratively on each time step. This 
is an example of an operator that is prepared once (fully or partially assembled) but is 
applied many times. The application cost is dominant for this operator. 

 

• Time-dependent force matrix that is prepared every time step (fully or partially 
assembled) and is applied just twice per “assembly”. Both the preparation and the 
application costs are important for this operator. 

 

• Domain-decomposed MPI parallelism. 
 

• Optional in-situ visualization with GLVis and data output for visualization / data analysis 
with VisIt. 

 

Mechanics of Building the Benchmark 
 

For this run, Laghos has the following external dependencies: 
 

• hypre, used for parallel linear algebra, we recommend version 2.10.0b 
https://computation.llnl.gov/casc/hypre/software.html 
 

• MFEM, used for (high-order) finite element discretization, GitHub tag laghos-cts2 
https://github.com/mfem/mfem 
 

https://github.com/CEED/Laghos
http://glvis.org/
http://visit.llnl.gov/
https://computation.llnl.gov/casc/hypre/software.html
https://github.com/mfem/mfem


                  __                __                

                 / /   ____  ____  / /_  ____  _____        

                / /   / __ `/ __ `/ __ \/ __ \/ ___/       High-Order Lagrangian 

               / /___/ /_/ / /_/ / / / / /_/ (__  )        Hydrodynamics Miniapp 

              /_____/\__,_/\__, /_/ /_/\____/____/         https://github.com/CEED/Laghos 

                          /____/  

 

 3 

• METIS, used for parallel domain decomposition, we recommend version 4.0.3 
http://glaros.dtc.umn.edu/gkhome/metis/metis/download 
 

• RAJA, used for handling the kernel’s for-loop bodies 
https://github.com/LLNL/RAJA 

 
Build hypre from https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-
methods/download/hypre-2.10.0b.tar.gz: 

~> tar xzvf hypre-2.10.0b.tar.gz  

~> cd hypre-2.10.0b/src/ 

~/hypre-2.10.0b/src> ./configure --disable-fortran 

~/hypre-2.10.0b/src> make -j  

~/hypre-2.10.0b/src> cd ../.. 

 

Build metis from http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/OLD/metis-4.0.3.tar.gz: 
~> tar xzvf metis-4.0.3.tar.gz  
~> cd metis-4.0.3 

~/metis-4.0.3> make 

~/metis-4.0.3> cd .. 

~/metis-4.0.3> mv metis-4.0.3 metis-4.0 

 

Build RAJA from https://github.com/LLNL/RAJA/releases/download/v0.7.0/RAJA-0.7.0.tar.gz: 
~> tar xzvf RAJA-0.7.0.tar.gz 
~> cd RAJA-0.7.0 

~/RAJA-0.7.0> mkdir build && cd build 

~/RAJA-0.7.0/build> cmake -DENABLE_OPENMP=OFF \ 

-DCMAKE_INSTALL_PREFIX=../../raja .. 

~/RAJA-0.7.0/build> make && make install 

~/RAJA-0.7.0/build> cd ../.. 

 

Build MFEM from: https://github.com/mfem/mfem/archive/laghos-cts2.tar.gz: 
~> tar xzvf mfem-laghos-cts2.tar.gz 

~> cd mfem-laghos-cts2/ 

~/mfem-laghos-cts2> make parallel MFEM_USE_RAJA=YES -j 

~/mfem-laghos-cts2> cd .. 

~/mfem-laghos-cts2> mv mfem-laghos-cts2 mfem 

 

Build Laghos from: https://github.com/CEED/Laghos/archive/cts2.tar.gz 
~> tar xzvf Laghos-cts2.tar.gz 

~> cd Laghos-cts2/ 

~> make -j 

 

This can be followed by make test to check the build respectively.  
See make help for additional options. 
  

https://github.com/CEED/Laghos
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/OLD/metis-4.0.3.tar.gz
http://glaros.dtc.umn.edu/gkhome/metis/metis/download
https://github.com/LLNL/RAJA
https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/download/hypre-2.10.0b.tar.gz
https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/download/hypre-2.10.0b.tar.gz
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/OLD/metis-4.0.3.tar.gz
https://github.com/LLNL/RAJA/releases/download/v0.7.0/RAJA-0.7.0.tar.gz
https://github.com/mfem/mfem/archive/laghos-cts2.tar.gz
https://github.com/CEED/Laghos/archive/cts2.tar.gz


                  __                __                

                 / /   ____  ____  / /_  ____  _____        

                / /   / __ `/ __ `/ __ \/ __ \/ ___/       High-Order Lagrangian 

               / /___/ /_/ / /_/ / / / / /_/ (__  )        Hydrodynamics Miniapp 

              /_____/\__,_/\__, /_/ /_/\____/____/         https://github.com/CEED/Laghos 

                          /____/  

 

 4 

Mechanics of Running the 2D Benchmark 

Sedov Blast 
 

The main problem of interest for Laghos is the Sedov blast wave (-p 1) with partial assembly 
option (-pa) and the RAJA backend, accessible through the okina options (-o -q -ra).  
 
A sample runs in 2D is:  
 

mpirun -n 4 laghos -p 1 -m data/square01_quad.mesh -rs 2 -o -q -ra  

 
To partition an initial 2D mesh in a way that results in a perfectly balanced partitioning, with each 
MPI task having the same number of zones, one needs to specify the correct partitioning (-c ‘X 
Y’) and initial mesh (-m) options. The cartesian partitioning option specifies the relative ratio 
between the number of MPI tasks in each of the (X, Y) directions. 
Furthermore, the number of serial refinements (option -rs) should be sufficiently high to 
produce at least one zone per MPI task, before the parallel refinements (option -rp) are 
performed. The data/square_10x9_quad mesh has initially 90 zones and with 36 MPI tasks, 
one should use at least one serial refinement and the (4,9) cartesian partitioning: 
 
mpirun -n 36 laghos -p 1 -m data/square_10x9_quad.mesh -rs 1 -rp 0 -o 

-q -ra -c ’4 9’ 

 
Other options allow to run on different ranks with a perfectly balanced partitioning: 64 (-rs 3 
-rp 0 -c '8 8'), 90 (-rs 1 -rp 2 -c '10 9'), 96 (-rs 2 -rp 1 -c '8 12'), 
120 (-rs 1 -rp 2 -c '20 6') and 128 (-rs 3 -rp 0 -c '16 8'). 

Verification of Results 
 

To make sure the results are correct, we tabulate reference final iterations (step), time steps 
(dt) and energies (|e|) for the following runs: 
 
mpirun -np 4 laghos -p 1 -m data/square01_quad.mesh -rs 3 -o -q -ra 

 

mpirun -np 4 laghos -p 1 -m data/square_10x9_quad.mesh -rs 0 -ok 3 -ot 
2 -s 7 -o -q -ra 

 

run step dt e 

1 1064 0.001578 50.3862948290 

2 952 0.000240 45.6800237914 

 

An implementation is considered valid if the final energy values are all within round-off distance 

from the above reference values. 

https://github.com/CEED/Laghos


                  __                __                

                 / /   ____  ____  / /_  ____  _____        

                / /   / __ `/ __ `/ __ \/ __ \/ ___/       High-Order Lagrangian 

               / /___/ /_/ / /_/ / / / / /_/ (__  )        Hydrodynamics Miniapp 

              /_____/\__,_/\__, /_/ /_/\____/____/         https://github.com/CEED/Laghos 

                          /____/  

 

 5 

Performance Timing and FOM 
 

Each time step in Laghos contains 3 major distinct computations: 

 

1. The inversion of the global kinematic mass matrix (CG H1). 

2. The force operator evaluation from degrees of freedom to quadrature points (Forces). 

3. The physics kernel in quadrature points (UpdateQuadData). 

 

By default, Laghos is instrumented to report the total execution times and rates, in terms of 

millions of degrees of freedom per second (megadofs), for each of these computational phases. 

These rates are reported as three separate figures of merits in the table below, together with a 

total combined execution rate which is the reportable Figure of Merit (FOM) for the benchmark: 

 

nodes cores order 
Total 

dofs/node 
FOM_1 FOM_2 FOM_3 FOM 

1 36 Q3-Q2 119,468,548 184.054 341.243 170.887 190.272 

 
These results were obtained with the following setup on the Quartz machine at LLNL with the 
gcc/8.1.0 and openmpi/4.0.0 modules. The vendor should provide a performance 
comparison to this run: 
 
srun -N1 -n36 ./laghos -p 1 -m data/square_10x9_quad.mesh -rs 2 \ 

-rp 5 -pa -ok 3 -ot 2 -s 7 -o -q -ra -ms 4 -c '4 9' 

 

Contact 
 

You can reach the Laghos team by emailing laghos@llnl.gov or by leaving a comment in the 
GitHub issue tracker. 
  

https://github.com/CEED/Laghos
mailto:laghos@llnl.gov


                  __                __                

                 / /   ____  ____  / /_  ____  _____        

                / /   / __ `/ __ `/ __ \/ __ \/ ___/       High-Order Lagrangian 

               / /___/ /_/ / /_/ / / / / /_/ (__  )        Hydrodynamics Miniapp 

              /_____/\__,_/\__, /_/ /_/\____/____/         https://github.com/CEED/Laghos 

                          /____/  

 

 6 

Copyright 
 

The following copyright applies to each file in the CEED software suite, unless otherwise stated 
in the file: 
 

Copyright © 2017, Lawrence Livermore National Security, LLC. Produced at the 
Lawrence Livermore National Laboratory. LLNL-CODE-734707. All Rights reserved. 

 
See files LICENSE and NOTICE for details. 
 
Disclaimer 
This document was prepared as an account of work sponsored by an agency of the United 
States government. Neither the United States government nor Lawrence Livermore National 
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, process, 
or service by trade name, trademark, manufacturer, or otherwise does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
government or Lawrence Livermore National Security, LLC. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 
This work performed under the auspices of the U.S. Department of Energy by Lawrence 
Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-TR-770220. 

 

https://github.com/CEED/Laghos

	Summary Version
	Purpose of Benchmark
	Characteristics of Benchmark
	Mechanics of Building the Benchmark
	Mechanics of Running the 2D Benchmark
	Sedov Blast

	Verification of Results
	Performance Timing and FOM
	Contact
	Copyright

