
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-2004738

Building the Tri-Lab Computing Environment

Nicholas Sly (LLNL)

The Tri-Lab Computing Environment (TCE2) is a matrix of
compilers, MPI implementations, scientific libraries, visualization
applications, debuggers, profiling tools, and other commonly
used applications, totaling over 800 packages and dependencies.
These are built on top of the software provided with TOSS and the
vendor-provided programming environment. TCE2 strives to
provide a common programming environment across the three
NNSA labs.

What Does TCE2 Provide?

Old Processes Were Disjointed and Fragile

Users Benefit from Faster, More Portable Builds

Because ATS machines (HPE/Cray) come with a rich programming
environment, fewer packages need to be built with TCE. Our CTS machines
require more packages be provided.

TCE provides the vast majority of software for the CTS programming environment but only a subset on ATS
machines, due mostly to vendor-provided software.

Before TCE:
• Team of individuals responsible

for package installations
• One person per package
• Complex dependencies could

require a serial person-by-person
process
• Scripts for installs
• Manual module writing
• Installations placed in a

moderately organized, shared
network space
• Modules mostly handwritten and

copied with slight revisions for
new versions

• Spack buildcache
• Reduce duplicate builds
• Greater commonality across code dependencies
• Faster build times for users

• Containerized Spack stacks
• Build system-compatible applications
• Provide portable builds with a familiar programming environment
• Integrate into user build processes to streamline development and

deployment
• Programming environment testing
• Elements can be tested as part of the CI pipeline for producing the

environment
• Catch regressions in vendor software or our software
• Verify resolution of user issues

Conclusions
The newly designed TCE build system allows for improved programming
environment creation and upkeep
• Much less facility-specific knowledge required for contributing
• Leveraging Tri-Lab and wider community open-source software

A modernized TCE build strategy reduces maintainer time investment and enables bonus user benefits

• Further reduce post-install script by integrating changes into Spack
• New methods of providing tools to users:
• Containerized environments
• Spack binary cache

• User-defined programming environments
• Portable environments for consistent user experiences across machines,

networks, and HPC centers

MPI-specific

HDF5 NetCDFBoost

Compiler-specific

OpenMPIMvapich

HDF5

NetCDF

MKL
Compiler-specific

cray-libsci

cray-hdf5
cray-mpichcray-mpichcray-mpichcray-mpichcray-mpich

MPI-specific

cray-mpixlate

cray-netcdf cray-hdf5

Vendor Provided TOSS ProvidedTCE Provided

Commodity Technology
Systems (CTS)

Advanced Technology
Systems (ATS)

Common Tools

Git

CMakeHtop

libyogrt TotalviewSTAT

Common Tools

Git

CMakeHtop

libyogrt TotalviewSTAT
Since TCE (at LLNL):
• Spack builds the packages and

modules
• LLNL-specific changes made after

Spack builds packages
• Environments compressed and

distributed to each machine
• Machine-specific changes made on

target machine

1

2

3

GitLab

Containers

Intel Unify

Programming
Environment
SquashFS

Programming environment contributors push their environment changes to GitLab, which kicks off a series of
containerized CI jobs to build individual elements of the environment. The environment is then collected into a single
build and compressed into a SquashFS file, which can then be distributed to the relevant machines and installed.

• Source version-controlled via GitLab for easy multi-user collaboration
• Continuous Integration (CI) builds are performed automatically
• Containerized and distributed, it allows faster, system-independent builds
• Installation changes made specific to the package affected by the change

Improved Process Enables Better Delivery
Containers

A fast, robust, and collaborative build process

Next Steps

Compilers

GCCGCC0GCC OneAPIOneAPIOneAPIOneAPIROCm OneAPIOneAPIOneAPIOneAPICCE

CompilersClang IntelIntelIntel

OneAPIOneAPIOneAPIGCCGCC0GCC

Pain points of existing method:
• MUST run on a specific machine
• MUST change to a specific user
• MUST run a specific set of scripts
• Modifications to build process

extend script (4000+ lines)

