
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-2003863

Improving LLVM – Applied Compiler R&D

Johannes Doerfert (LLNL), K. Sala (LLNL), E. Wright (LLNL), B. Shan (Stony Brook University), E. McDonough (LLNL/Penn State), S. Tian (AMD), S. Olivier (SNL), R. Gayatri (LBNL)

Opening the “Compiler Black Box” for users and developers

Compiler technology is a foundation of computing and offers vast 
areas for research and development, including:
 - improved execution performance (optimization, new features, etc.)
 - lower development time (compile time, debugging, etc.)
 - tooling for insight generation and ML-applications

Beyond Performance:
Reducing (GPU) Compile Times 

LLVM/Instrumentor:
Code Instrumentation for You

LLVM/Objsan:
A Heterogenous Address Sanitizer for HPC

Compile and link times are less flashy than performance but crucial to ensure 
productivity and decrease costs, especially since there is little user influence.

The AMD GPU link time of the LAMMPS Kokkos version with different Link-Time-Optimization (LTO) approaches. ”full-lto” is 
the AMD GPU default, “thin-lto” is our solution developed with AMD, “partitioned-lto” is the AMD-developed solution based 
on our initial proposal. 11.7x speedup means developers can test changes without a coffee break. 

Generic, customizable, and easily extendable 
instrumentation for any code, any HPC compiler, 
and without prior compiler knowledge. Users 
only provide configuration as JSON and runtime, 
the LLVM/Instrumentor does the heavy lifting.

Conclusions
Working directly in the (LLVM) compiler layer and collaborating with developers of 
abstraction layers (Kokkos/RAJA) allows us to bring tangible benefits to scientific 
HPC applications. Improved performance is only one pathway, and we consider 
the entire application lifecycle, including code development, compilation (time), 
testing, debugging, performance tuning, and eventually modernization.

Compiler technology offers a direct path to make scientists more efficient and effective 

Fuzzlang:
Properly Teaching LLMs about Compiler Errors 270

23

297

258

232
219 221

246

0s

50s

100s

150s

200s

250s

300s

350s
Link time for LAMMPS (Kokkos) 

full-lto thin-lto partitions=2 partitions=4 partitions=8 partitions=16 partitions=32 partitions=64

Comparison of the number of distinct error kinds contained in state-of-the-art “error datasets” and Fuzzlang-LLVM.
By quantifying the error types, we can measure completeness and identify errors that are not covered sufficiently.

(Compiler) Machine learning (ML) work needs principled approaches with 
quantified success metrics and scalable datasets. 
Step 1: Generate and curate compiler error examples with known solutions 
Step 2: Fine-tune LLMs (Llama 3.8B: 37% -> 93%, GPT-4o-mini: 72% -> 97%)

LLVM/OpenMP Offload Extended:
Native GPU Performance via a Portable Model
OpenMP’s GPU capabilities are portable, but performance is lacking. We 
extended OpenMP offload, and Kokkos “OMPX” can match HIP/CUDA.

Performance of the Kokkos SPMV benchmark on an AMD MI250x for different input sizes (in GB). Kokkos using extended 
OpenMP offload (available via LLVM) outperforms the native HIP backend and matches CUDA on NVIDIA GPUs.

Execution trace captured by a profiler written in 56 lines of C++ and 26 
lines of JSON configuration. Visualized with Chrome tracing. 

Eliminate duplicate instrumentation 
efforts and provide sophisticated tooling 
to end-users w/o compiler knowledge.

LLVM/InputGen:
Executing Code for Testing, Tuning, and Training

Number of functions from the ComPile 
dataset made executable via InputGen.

Code datasets are available and used to 
train ML models, however, we lack ways to 
provide execution data at scale. InputGen 
makes static code executable by generating 
stateful inputs.
Inputs can also be recorded for parts of a 
program to create standalone proxy 
applications with ease. 

Sanitizer for CPU and GPU code that 
encodes user object's information into the 
pointer for faster out-of-bounds checking.
Reduction of extra memory accesses by 
reusing (cached) bounds information across 
code. Preliminary results show large 
performance improvements on GPUs and 
for sparse/dense HPC codes on CPUs 
compared to “classic” ASAN.
Future work can utilize the ideas for 
performance tooling and other sanitizers, 
including race checkers.

Preliminary performance results comparing the AMD 
address sanitizer (left) and our new LLVM/Objsan 
(right) for the XSBench proxy application on an MI-250X 
AMD GPU. Note: AMD’s ASAN only sanitized heap and 
global memory and Objsan also checked and shared 
stack memory.

C-Pack-IPAs

DeepFix

Fuzzlang-LLVM

0 200100 300 400 500

75

97

488

<init>

main
mysleep(int)

_sleep
foo()

mysleep(int)
mysleep(int)_sleep

_sleep

bar()

4 s2 s0 s

Language

Total

C
C++
Julia
Rust
Swift

Ran (all)

21,472,918 (90%)

598,600 (90%)
6,302,387 (90%)
3,423,596 (92%)
5,427,870 (85%)
5,720,465 (94%)

0.
24

s 2.
53

s

0.
24

s 0.
44

s

am
dc

la
ng

sa
n*

cl
an

g
sa

n*


