

Innovative Computing Laboratory UNIVERSITY OF TENNESSEE COMPUTER SCIENCE DEPARTMENT

ADVANCED MPI

Dr. David Cronk Innovative Computing Lab University of Tennessee

Course Outline

Day 1 Morning - Lecture Communicators/Groups Extended Collective Communication One-sided Communication Afternoon - Lab

Hands on exercises demonstrating the use of groups, extended collectives, and one-sided communication

Course Outline (cont)

Day 2 Morning – Lecture MPI-I/O Afternoon – Lab Hands on exercises using MPI-I/O

bCourse Outline (cont)

Day 3 Morning – Lecture Performance Analysis of MPI programs TAU Vampir/VampirTrace Afternoon – Lab

Hands on exercises using Vampir and VampirTrace

Communicators and Groups

Introduction Group Management Communicator Management Intercommunicators

Communicators and Groups

Many MPI users are only familiar with the communicator MPI_COMM_WORLD

A communicator can be thought of a handle to a group

A group is an ordered set of processes

Each process is associated with a rank

Ranks are contiguous and start from zero

- For many applications (dual level parallelism) maintaining different groups is appropriate
- Groups allow collective operations to work on a subset of processes

Information can be added onto communicators to be passed into routines

Communicators and Groups(cont)

While we think of a communicator as spanning processes, it is actually unique to a process

- A communicator can be thought of as a handle to an object (group attribute) that describes a group of processes
- An intracommunicator is used for communication within a single group
- An intercommunicator is used for communication between 2 disjoint groups

Communicators and Groups(cont)

Communicators and Groups(cont)

Refer to previous slide

There are 4 distinct groups

- These are associated with intracommunicators MPI_COMM_WORLD, comm1, and comm2, and comm3
- P₃ is a member of 2 groups and may have different ranks in each group(say 3 & 4)
- If P₂ wants to send a message to P₁ it must use MPI_COMM_WORLD (intracommunicator) or comm5 (intercommunicator)
- If P₂ wants to send a message to P₃ it can use MPI_COMM_WORLD (send to rank 3) or comm1 (send to rank 4)
- P₀ can broadcast a message to all processes associated with comm2 by using intercommunicator comm5

Group Management

All group operations are local

- As will be clear, groups are initially not associated with communicators
- Groups can only be used for message passing within a communicator
- We can access groups, construct groups, and destroy groups

Group Accessors

MPI_GROUP_SIZE(group, size, ierr)

MPI_Group group int size (C)

INTEGER group, size, ierr (Fortran)

This routine returns the number of processes in the group

MPI_GROUP_RANK(group, rank, ierr) MPI_Group group int rank (C) INTEGER group, rank, ierr (Fortran) This routine returns the rank of the calling process

Group Accessors (cont)

- MPI_GROUP_TRANSLATE_RANKS (group1, n, ranks1, group2, ranks2, ierr)
 - MPI_Group group1, group2 int n, *ranks1, *ranks2 INTEGER group1, n, ranks(), group2, ranks(), ierr
 - This routine takes an array of n ranks (ranks1) which are ranks of processes in group1. It returns in ranks2 the corresponding ranks of the processes as they are in group2
 - MPI_UNDEFINED is returned for processes not in group2

Groups Accessors (cont)

MPI_GROUP_COMPARE (group1, group2 result, ierr)

MPI_Group group1, group2 int result

- INTEGER group1, group2, result, ierr (Fortran)
- This routine returns the relationship between group1 and group2
- If group1 and group2 contain the same processes, ranked the same way, this routine returns MPI_IDENT
- If group1 and group2 contain the same processes, but ranked differently, this routine returns MPI_SIMILAR

Otherwise this routine returns MPI_UNEQUAL

Group Constructors

Group constructors are used to create new groups from existing groups

Base group is the group associated with MPI_COMM_WORLD (use mpi_comm_group to get this)

Group creation is a local operation

No communication needed

Following group creation, no communicator is associated with the group

No communication possible with new group

Each process in a new group MUST create the group so it is identical!

Groups are created through some communicator creation routines covered later

MPI_COMM_GROUP (comm, group, ierr) MPI_Comm comm MPI_Group group (c) INTEGER comm, group, ierr (Fortran) This routine returns in *group* the group associated with the communicator comm

MPI_GROUP_UNION(group1, group2, newgroup, ierr)

- MPI_GROUP_INTERSECTION(group1, group2, newgroup, ierr)
- MPI_GROUP_DIFFERENCE(group1, group2, newgroup, ierr)

MPI_Group group1, group2, *newgroup (C)
INTEGER group1, group2, newgroup, ierr
(Fortran)

Union: Returns in newgroup a group consisting of all processes in group1 followed by all processes in group2, with no duplication Intersection: Returns in newgroup all processes that are in both groups, ordered as in group1 Difference: Returns in newgroup all processes in group1 that are not in group2, ordered as in group1

Let group1 = {a,b,c,d,e,f,g} and group2 = {d,g,a,c,h,I}

- MPI_Group_union(group1,group2,newgroup)
 Newgroup = {a,b,c,d,e,f,g,h,l}
- MPI_Group_intersection(group1,group2,newgro up)

```
Newgroup = {a,c,d,g}
```

```
MPI_Group_difference(group1,group2,newgrou
p)
    Newgroup = {b,e,f}
```


Let group1 = {a,b,c,d,e,f,g} and group2 = {d,g,a,c,h,I}

- MPI_Group_union(group2,group1,newgroup)
 Newgroup = {d,g,a,c,h,l,b,e,f}
- MPI_Group_intersection(group2,group1,newgro up)

```
Newgroup = {d,g,a,c}
```

```
MPI_Group_difference(group2,group1,newgrou
p)
    Newgroup = {h,i}
```

MPI_GROUP_INCL(group, n, ranks, newgroup, ierr)

- MPI_Group group, *newgroup int n, *ranks INTEGER group, n, ranks(), newgroup, ierr
- This routine creates a new group that consists of all the n processes with ranks ranks[0]..ranks[n-1]
- The process with rank i in newgroup has rank ranks[i] in group

MPI_GROUP_EXCL(group, n, ranks, newgroup, ierr)

MPI_Group group, *newgroup int n, *ranks

INTEGER group, n, ranks(), newgroup, ierr

- This routine creates a new group that consists of all the processes in group after deleting processes with ranks ranks[0]..ranks[n-1]
- The relative ordering in newgroup is identical to the ordering in group

- MPI_GROUP_RANGE_INCL(group, n, ranges, newgroup, ierr)
 - MPI_Group group, *newgroup int n, ranges[][3]
 - INTEGER group, n, ranges(*,3), newgroup, ierr)
 - Ranges is an array of triplets consisting of start rank, end rank, and stride
 - Each triplet in ranges specifies a sequence of ranks to be included in newgroup
 - The ordering in newgroup is as specified by ranges

- MPI_GROUP_RANGE_EXCL(group, n, ranges, newgroup, ierr)
 - MPI_Group group, *newgroup int n, ranges[][3]
 - INTEGER group, n, ranges(*,3), newgroup, ierr)
 - Ranges is an array of triplets consisting of start rank, end rank, and stride
 - Each triplet in ranges specifies a sequence of ranks to be excluded from newgroup
 - The ordering in newgroup is identical to that in group


```
Let group = \{a,b,c,d,e,f,g,h,i,j\}
```

```
n=5, ranks = {0,3,8,6,2}
```

```
ranges= \{(4,9,2), (1,3,1), (0,9,5)\}
```

- MPI_Group_incl(group,n,ranks,newgroup)
 newgroup = {a,d,I,g,c}
- MPI_Group_excl(group,n,ranks,newgroup)

newgroup = {b,e,f,h,j}

- MPI_Group_range_incl(group,n,ranges,newgroup)
 newgroup = {e,g,I,b,c,d,a,f}
- MPI_Group_range_excl(group,n,ranges,newgroup)
 newgroup = {h}

Communicator Management

Communicator access operations are local, thus requiring no interprocess communication Communicator constructors are collective and may require interprocess communication All the routines in this section are for intracommunicators, intercommunicators will be covered separately

Communicator Accessors

MPI_COMM_SIZE (MPI_Comm comm, int size, ierr)

Returns the number of processes in the group associated with comm

MPI_COMM_RANK (MPI_Comm comm, int rank, ierr)

Returns the rank of the calling process within the group associated with comm

MPI_COMM_COMPARE (MPI_Comm comm1, MPI_Comm comm2, int result, ierr) returns:

- MPI_IDENT if comm1 and comm2 are handles for the same object
- MPI_CONGRUENT if comm1 and comm2 have the same group attribute
- MPI_SIMILAR if the groups associated with comm1 and comm2have the same members but in different rank order MPI_UNEQUAL otherwise

Communicator Constructors

- MPI_COMM_DUP (MPI_Comm comm, MPI_Comm newcomm, ierr)
- This routine creates a duplicate of comm newcomm has the same fixed attributes as comm
- Defines a <u>new</u> communication domain
 - A call to MPI_Comm_compare (comm, newcomm, result) would return MPI_IDENT
- Useful to library writers and library users

Communicator Constructors

- MPI_COMM_CREATE (MPI_Comm comm, MPI_Group group, MPI_Comm newcomm, ierr)
 - This is a collective routine, meaning it must be called by all processes in the group associated with comm
 - This routine creates a new communicator which is associated with group
 - MPI_COMM_NULL is returned to processes not in group
 - All group arguments must be the same on all calling processes
 - group must be a subset of the group associated with comm

newgroup is set to MPI_COMM_NULL in processes 0 through 9 of MPI_COMM_WORLD

```
ranges (1,1) = 10
ranges(1,2) = size-1
ranges(1,3) = 1
CALL MPI_GROUP_RANGE_INCL (wgroup, 1, ranges, newgroup, ierr)
CALL MPI_COMM_CREATE (MPI_COMM_WORLD, newgroup, newcom, ierr)
```

CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr) CALL MPI_COMM_SIZE (MPI_COMM_WORLD, size, ierr) CALL MPI_COMM_GROUP (MPI_COMM_WORLD, wgroup, ierr)

Communicator Constructors

Communicator Constructors

CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr) CALL MPI_COMM_SIZE (MPI_COMM_WORLD, size, ierr) CALL MPI_COMM_GROUP (MPI_COMM_WORLD, wgroup, ierr)

```
ranges (1,1) = 10
ranges(1,2) = size-1
ranges(1,3) = 1
CALL MPI_GROUP_RANGE_INCL (wgroup, 1, ranges, newgroup, ierr)
CALL MPI_COMM_CREATE (MPI_COMM_WORLD, newgroup, newcom, ierr)
CALL MPI_GROUP_RANGE_EXCL (wgroup, 1, ranges, newgroup, ierr)
CALL MPI_COMM_CREATE (MPI_COMM_WORLD, newgroup, newcom, ierr)
```


Communicator Constructors MPI_COMM_SPLIT(MPI_Comm comm, int color, int key, MPI_Comm newcomm, ierr) MPI_Comm comm, newcomm int color, key INTEGER comm, color, key, newcomm, err This routine creates as many new groups and communicators as there are distinct values of

color

The rankings in the new groups are determined by the value of key, ties are broken according to the ranking in the group associated with comm MPI_UNDEFINED is used as the color for processes to not be included in any of the new groups

Communication Constructors

Rank	0	1	2	3	4	5	6	7	8	9	10
Proc ess	а	b	С	d	е	f	g	h	i	j	k
Color	U	3	1	1	3	7	3	3	1	U	3
Key	0	1	2	3	1	9	3	8	1	0	0

Both process a and j are returned MPI_COMM_NULL 3 new groups are created

Communication Constructors

CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)

IF (myrank .ge. 10) THEN color = 0 ELSE color = MPI_UNDEFINED ENDIF

CALL MPI_COMM_SPLIT (MPI_COMM_WORLD, color, 1, newcomm, ierr)

Communication Constructors

CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)

IF (myrank .ge. 10) THEN color = 0 ELSE color = 1 ENDIF

CALL MPI_COMM_SPLIT (MPI_COMM_WORLD, color, 1, newcomm, ierr)

• Group 1

• Group 2

9/2/2004

Destructors

The communicators and groups from a process' viewpoint are merely handles

- Like all handles in MPI, there is a limited number available – YOU CAN RUN OUT
- MPI_GROUP_FREE (MPI_Group group, ierr)

MPI_COMM_FREE (MPI_Comm comm, ierr)

Intercommunicators

- Intercommunicators are associated with 2 groups of disjoint processes
- Intercommunicators are associated with a remote group and a local group
- The target process (destination for send, source for receive) is its rank in the remote group
- A communicator is either intra or inter, never both

9/2/2004

Intercommunicator Accessors

MPI_COMM_TEST_INTER (MPI_Comm comm, int flag, ierr)

This routine returns true if comm is an intercommunicator, otherwise, false

MPI_COMM_REMOTE_SIZE(MPI_Comm comm, int size, ierr)

This routine returns the size of the remote group associated with intercommunicator comm

MPI_COMM_REMOTE_GROUP(MPI_Comm comm, MPI_Groupgroup, ierr)

This routine returns the remote group associated with intercommunicator comm

Intercommunicator Constructors

- The communicator constructors described previously will return an intercommunicator if the are passed intercommunicators as input MPI COMM DUP: returns an intercommunicator with the same groups as the one passed in MPI COMM CREATE: each process in group A must pass in group the same subset of group A (A1). Same for group B (B1). The new communicator has groups A1 and B1 and is only valid on processes in A1 and B1
 - MPI_COMM_SPLIT: As many new communicators as there are distinct pairs of colors are created

MPI_COMM_CREATE

- Intercomm1 is an intercommunicator that relates to groups A = {a,b,c,d,e,f,g,h,I,j} and groups B = {k,I,m,n,o,p,q,r,s,t}
- All processes in group A create a new group A' = {f, g, h, I, j}
- All processes in group B create a new group B' = {p, q, r, s, t}
- All processes in group A call MPI_Comm_create with comm=intercomm1 and group = A'
- All processes in group B call MPI_Comm_create with comm=intercomm1 and group = B'
- Processes {a,b,c,d,e, and k,l,m,n,o} are each returned newcomm = MPI_COMM_NULL
- All processes in A' are returned an intercommunicator with A' as the local group and B' as the remote group
- All processes in B' are returned an intercommunicator with B' as the local group and A' as the remote group

MPI_COMM_SPLIT

Rank	0	1	2	3	4	5	6	7	8	9	10
Proc ess	а	b	С	d	е	f	g	h	i	j	k
Color	U	3	3	1	1	7	3	3	1	U	3
Key	0	1	2	3	1	9	3	8	1	0	0

Group A

Rank	0	1	2	3	4	5	6	7	8	9	10
Proc ess	I	m	n	0	р	q	r	S	t	u	V
Color	5	3	1	U	3	3	3	7	1	U	3
Key	0	1	2	3	1	9	3	8	1	0	0

Group B

MPI_COMM_SPLIT

Processes a, j, l, o, and u would all have MPI_COMM_NULL returned in newcomm

newcomm1 would be associated with 2 groups: {e, i, d} and {t, n}

newcomm2 would be associated with 2
groups: {k, b, c, g, h} and {v, m, p, r, q}
newcomm3 would be associated with 2
groups: {f} and {s}

Intercommunicator Constructors

- MPI_INTERCOMM_CREATE (local_comm, local_leader, bridge_comm, remote_leader, tag, newintercomm, ierr)
- This routine is called collectively by all processes in 2 disjoint groups
- All processes in a particular group must provide matching local_comm and local_leader arguments
- The local leaders provide a matching bridge_comm (a communicator through which they can communicate), in remote_leader the rank of the other leader within bridge_comm, and the same tag
- The bridge_comm, remote_leader, and tag are significant only at the leaders
- There must be no pending communication across bridge_comm that may interfere with this call

Communication Constructors

CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)

```
IF (myrank .ge. 10) THEN
color = 0
ELSE
color = 1
ENDIF
```

CALL MPI_COMM_SPLIT (MPI_COMM_WORLD, color, 1, newcomm, ierr) CALL MPI_INTERCOMM_CREATE (newcom, 0, MPI_COMM_WORLD, 0, 111, newintercomm, ierr)

Now processes in each group can communicate with the intercommunicator. For instance, process 0 of MPI_COMM_WORLD can broadcast a value to all the processes with rank >= 10 in MPI_COMM_WORLD

9/2/2004

Intercommunicators

- MPI_INTERCOMM_MERGE (MPI_Comm intercomm, int high, MPI_Comm newintracomm, ierr)
 - This routine creates an intracommunicator from a union of the two groups associated with intercomm
 - High is used for ordering. All process within a particular group must pass the same value in for high (true or false)
 - The new intracommunicator is ordered with the high processes following the low processes
 - If both groups pass the same value for high, the ordering is arbitrary

TAKE A BREAK

9/2/2004

Extended Collective Communication

- The original MPI standard did not allow for collective communication across intercommunicators
- MPI-2 introduced this capability
- Useful in pipelined algorithms where data needs to be moved from one group of processes to another

Three types of collective

Rooted:

MPI_Gather and MPI_Gatherv

MPI_Reduce

MPI_Scatter and MPI_Scatterv

MPI_Bcast

All-to-all:

MPI_Allgather and MPI_Allgatherv MPI_Alltoall, MPI_Alltoallv, and MPI_Alltoallw MPI_Allreduce, MPI_Reduce_scatter

Other:

MPI_Scan, MPI_Exscan, and MPI_Barrier

Data movement in extended collectives

Rooted:

- One group (root group) contains the root process while the other group (leaf group) has no root
- Data moves from the root to all the processes in the leaf group (one-to-all) or vice-versa (all-to-one)
- The root process uses MPI_ROOT for its root argument while all other processes in the root group pass MPI_PROC_NULL
- All processes in the leaf group pass the rank of the root relative to the root group

Data movement in extended collectives

All-to-all

Data sent by processes in group A are received by processes in group B while data sent by processes in group B are received by processes in group A

MPI_Barrier (comm, ierr)

Syntactically identical to a situation where all processes are in the same group and call a barrier with the intracommunicator associated with said group

That is, all processes in group A may exit the barrier after all processes in group B have entered the call, and vice-versa

MPI_BCAST (buff, count, dtype, root, comm, ierr)

Data is broadcast from the root to all processes in the leaf group

- Root group: Root process passes MPI_ROOT for the *root* argument while others pass MPI_PROC_NULL. B*uff, count, and dtype* are not significant in non-root processes
- Leaf group: All processes pass the same argument in *root*, which is the rank of the root process in the root group. *count* and *type* must be consistent with *count* and *type* on the root

9/2/2004

MPI_Gather (sbuf, scount, stype, rbuf,rcount,rtype,root, comm,ierr)

Data is gathered in rank order from all the processes in the leaf group into rbuf of the root

- Root group: Root process passes MPI_ROOT for the *root* argument while others pass MPI_PROC_NULL.
- Leaf group: All processes pass the same argument in *root*, which is the rank of the root process in the root group. *scount* and *stype* must be consistent with *rcount* and *rtype* on the root
- Send arguments are only meaningful at processes in the leaf group

Receive arguments are only meaningful at the root

MPI_GATHER

9/2/2004

MPI_Scatter (sbuf, scount, stype, rbuf,rcount,rtype,root, comm,ierr)

Data is scattered in rank order from the root to all the processes in the leaf group

- Root group: Root process passes MPI_ROOT for the *root* argument while others pass MPI_PROC_NULL.
- Leaf group: All processes pass the same argument in *root*, which is the rank of the root process in the root group. *rcount* and *rtype* must be consistent with *scount* and *stype* on the root
- Receive arguments are only meaningful at processes in the leaf group

Send arguments are only meaningful at the root

MPI_SCATTER

9/2/2004

MPI_Allgather (sbuf,scount,stype, rbuf,rcount,rtype, comm,ierr)

- All arguments are meaningful at every process
- Data from *sbuf* at all processes in group A is concatenated in rank order and the result is stored at *rbuf* of every process in group B and vice-versa
- Send arguments in A must be consistent with receive arguments in B, and viceversa

MPI_ALLGATHER

Α

9/2/2004

MPI_Alltoall (sbuff, scount, stype, rbuf, rcount, rtype, comm, ierr)

Result is as if each process in group A scatters its *sbuff* to each process in group B and each process in group B scatters its *sbuff* to each process in group A

Data is gathered in *rbuff* in rank order according to the rank in the group providing the data

Each process in group A sends the same amount of data to group B and vice-versa

MPI_ALLTOALL

MPI_ALLTOALL

9/2/2004

MPI_Reduce (sbuf, rbuf, count, datatype, op, root, comm, ierr)

- Root group: Root process passes MPI_ROOT for the root argument while others pass MPI_PROC_NULL
- Leaf group: All processes pass the same argument in *root*, which is the rank of the root process in the root group
- s*buf* is only meaningful at processes in the leaf group rbuf is only meaningful at the root
- The result is as if the leaf group did a regular reduce except the results are stored at root
- *count, datatype*, and *op* should be meaningless at non-root processes in root group

MPI_Allreduce (sbuf, rbuf, count, datatype, op, comm, ierr)

The result is as if group A did a regular reduce except the results are stored at all the process in group B and vice versa

Count should be the same at all processes

MPI_Reduce_scatter (sbuf, rbuf, rcounts, datatype, op, comm, ierr)

The result is as if group A did a regular reduce with count equal to the sum of *rcounts* followed by a scatter to group B, and viceversa

rcount should be the same at all processes in each group and the sum of all the *rcounts* in group A should equal the sum of all rcounts in group B

MPI_REDUCE_SCATTER

9/2/2004

ICLU

MPI_Scan and MPI_Exscan

There are no extended collective operations for these 2 routines

One Sided Communication

One sided communication allows shmem style gets and puts

- Only one process need actively participate in one sided operations
- With sufficient hardware support, remote memory operations can offer greater performance and functionality over the message passing model
- MPI remote memory operations do not make use of a shared address space

One Sided Communication

By requiring only one process to participate, significant performance improvements are possible

- > No implicit ordering of data delivery
- > No implicit synchronization

Some programs are more easily written with the remote memory access (RMA) model

> Global counter

One Sided Communication

RMA operations require 3 steps

- 1. Define an area of memory that can be used for RMA operations (window)
- 2. Specify the data to be moved and where to move it
- 3. Specify a way to know the data is available

Memory Windows

- A memory window defines an area of memory that can be used for RMA operations
- A memory window must be a contiguous block of memory
- Described by a base address and number of bytes
- Window creation is collective across a communicator
- A window object is returned. This window object is used for all subsequent RMA calls

- MPI_WIN_CREATE (void *base, MPI_Aint size, int disp_unit, MPI_Info info, MPI_Comm comm, MPI_Win *win, ierr)
 - base is the base address of the window
 - size is the size in bytes of the window
 - disp_unit is the displacement unit for data access (1 for bytes)
 - info is used for performance tuning
 - comm is the communicator over which the call is collective

win is the window object returned

Data movement MPI PUT MPI GET MPI ACCUMULATE All data movement routines are nonblocking Synchronization call is required to ensure operation completion

- MPI_PUT (void *origin_addr, int origin_count, MPI_Datatype origin_datatype, int target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype, MPI_Win window, ierr)
 - origin_addr is the address in the calling process of the data to be transferred. It need not be within a memory window
 - origin_count is the number of elements of type origin_datatype to be transferred
 - target_rank is the rank within the window object of the destination process
 - target_disp is the offset into the window on the destination process. This is in terms of disp_unit used in window creation on target process
 - target_count and target_datatype are similar to count and datatype used in a receive

window is the window object returned from creation

- MPI_GET (void *origin_addr, int origin_count, MPI_Datatype origin_datatype, int target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype, MPI_Win window, ierr)
 - origin_addr is the address in the calling process where the data is to be transferred. It need not be within a memory window
 - origin_count is the number of elements of type origin_datatype to be transferred into origin_addr
 - target_rank is the rank within the window object of the destination process
 - target_disp is the offset into the window on the destination process. This is in terms of disp_unit used in window creation on target process
 - target_count and target_datatype are similar to count and datatype used in a send

window is the window object returned from creation

- MPI_ACCUMULATE (void *origin_addr, int origin_count, MPI_Datatype origin_datatype, int target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype,MPI_Op op,MPI_Win window,ierr)
 - All arguments besides op are the same as in get and put
 - op is an MPI_Op as in MPI_Reduce
 - op can only be a pre-defined operation
 - Still a one-sided operation (not collective)
 - Combines communication and computation
 - Like a put, but with a computation

Completing data transfers

- There are a number of different ways to complete data transfers
- The simplest is a barrier like mechanism (fence)
- This mechanism can also be used to ensure data is available
- The fence operation is collective across all process in the communicator used to create the windows
- Most suitable for data parallel applications
- A fence is used to separate local load/stores and RMA operations
- Multiple RMA operations may be completed with a single call to fence

- MPI_WIN_FENCE (int assert, MPI_Win win, ierr)
 - assert is an integer value used to provide information about the fence that may allow an MPI implementation to do performance optimization
 - win is the window object return in the MPI_Win_create call

Point-to-Point Message Passing

CALL MPI_COMM_RANK (MPI_COMM_WORLD, rank, ierr) IF (rank .eq. 0) then

CALL MPI_ISEND (outbuff, n, MPI_INT, 1, 0, MPI_COMM_WORLD, request, ierr)

ELSE

CALL MPI_IRECV (inbuff, n, MPI_INT, 0, 0, MPI_COMM_WORLD, request, ierr)

ENDIF

• • • • • • • •

Do other work

CALL MPI_WAIT (request, status, ierr)

CALL MPI_COMM_RANK (MPI_COMM_WORLD, rank, ierr) CALL MPI_TYPE_SIZE (MPI_INT, size, ierr)

IF (rank .eq. 0) then

CALL MPI_WIN_CREATE (MPI_BOTTOM, 0, 1, MPI_INFO_NULL, MPI_COMM_WORLD, win, ierr)

ELSE

CALL MPI_WIN_CREATE (inbuf, n*size, size, MPI_INFO_NULL,

MPI_COMM_WORLD, win, ierr)

ENDIF

CALL MPI_WIN_FENCE (0, win, ierr)

IF (rank .eq. 0) then

CALL MPI_PUT (outbuf, n, MPI_INT, 1, 0, n, MPI_INT, win, ierr) ENDIF

Do other work

CALL MPI_FENCE (0, win, ierr) CALL MPI_WIN_FREE (win, ierr)

MPI_Win_create (A,, &win); MPI_Win_fence (0, win); If (rank == 0) { MPI_Put (...., win); MPI_Put (...., win);

```
MPI_Put (...., win);
```

MPI_Win_fence (0, win); MPI_Get (...., win); MPI_Win_fence (0, win); A[rank] = 4; MPI_Win_fence (0, win); MPI_Put (..., win); MPI_Put (..., win);

Passive target RMA

- Requires synchronization calls by only the process initiating data transfer
- MPI_Win_lock and MPI_Win_unlock define an access epoch
- Lock and unlock apply only to the remote memory window, not the entire window object
- A call to unlock ensures all RMA operations performed since the call to lock have completed
- Lock and unlock pairs are required around local access to memory windows as well
- Locks can be shared or exclusive
- Some implementations may require windows to be allocated by MPI_Alloc_mem

MPI_WIN_LOCK (int locktype, int rank, int assert, MPI_Win win,ierr)

MPI_WIN_UNLOCK (int rank, MPI_Win win, ierr)

Locktype can be MPI_LOCK_SHARED or MPI_LOCK_EXCLUSIVE

Rank is the rank of the process that owns the window to be accessed

Assert is an integer value used for optimization

Win is the window object of which the targeted window is part

If (rank == 0) {
 MPI_Win_lock (MPI_LOCK_SHARED, 1, 0, win);
 MPI_Put (outbuf, n, MPI_INT, 1, 0, n, MPI_INT, win);
 MPI_Win_unlock (1, win);

Not widely implemented

MPICH and LAM only support active synchronization

Passive synchronization is in development

May be useful for applications that lend themselves to the get/put programming model

Evidence of some performance optimization on shared memory machines (and Cray!)

I have seen no evidence that there is any performance advantage on distributed memory machines. (Other than Cray!)

Course Outline

Day 2 Morning – Lecture MPI-I/O Afternoon – Lab Hands on exercises using MPI-I/O

Introduction

- > What is parallel I/O
- > Why do we need parallel I/O
- > What is MPI-I/O

MPI-I/O

- > Terms and definitions
- > File manipulation
- > Derived data types and file views

OUTLINE (cont)

MPI-I/O (cont)

- > Data access
 - Non-collective access
 - Collective access
 - Split collective access
- > File interoperability
- > Gotchas Consistency and semantics

INTRODUCTION

What is parallel I/O?

> Multiple processes accessing a single file

9/2/2004

INTRODUCTION

What is parallel I/O?

- > Multiple processes accessing a single file
- Often, both data and file access is noncontiguous
 - Ghost cells cause non-contiguous data access
 - Block or cyclic distributions cause noncontiguous file access

Non-Contiguous Access

9/2/2004

INTRODUCTION

What is parallel I/O?

- > Multiple processes accessing a single file
- Often, both data and file access is noncontiguous
 - Ghost cells cause non-contiguous data access
 - Block or cyclic distributions cause noncontiguous file access
- Want to access data and files with as few
 I/O calls as possible

INTRODUCTION (cont)

Why use parallel I/O?

- Many users do not have time to learn the complexities of I/O optimization
- > Use of parallel I/O can simplify coding
 - Single read/write operation vs. multiple read/write operations
- Parallel I/O potentially offers significant performance improvement over traditional approaches

INTRODUCTION (cont)

Traditional approaches

- > Each process writes to a separate file
 - Often requires an additional post-processing step
 - Without post-processing, restarts must use same number of processor
- Result sent to a master processor, which collects results and writes out to disk
- Each processor calculates position in file and writes individually

INTRODUCTION (cont)

What is MPI-I/O?

- MPI-I/O is a set of extensions to the original MPI standard
- This is an interface specification: It does
 NOT give implementation specifics
- It provides routines for file manipulation and data access
- Calls to MPI-I/O routines are portable across a large number of architectures

MPI-I/O

Terms and Definitions

- Displacement Number of bytes from the beginning of a file
- > etype unit of data access within a file
- filetype datatype used to express access patterns of a file
- file view definition of access patterns of a file
 - Defines what parts of a file are visible to a process

MPI-I/O

Terms and Definitions

- Offset Position in the file, relative to the current view, expressed in terms of number of etypes
- file pointers offsets into the file maintained by MPI
 - Individual file pointer local to the process that opened the file
 - Shared file pointer shared (and manipulated) by the group of processes that opened the file

FILE MANIPULATION

- MPI_FILE_OPEN(MPI_Comm comm, char *filename, int mode, MPI_Info info, MPI_File *fh, ierr)
 - Opens the file identified by *filename* on each processor in communicator *Comm*
 - Collective over this group of processors
 - Each processor must use same value for *mode* and reference the same file
 - info is used to give hints about access patterns

FILE MANIPULATION

MODES MPI MODE CREATE Must be used if file does not exist MPI MODE RDONLY MPI MODE RDWR MPI MODE WRONLY MPI MODE EXCL Error if creating file that already exists MPI MODE DELETE ON CLOSE MPI_MODE UNIQUE OPEN MPI MODE SEQUENTIAL MPI MODE APPEND

Hints

Hints can be passed to the I/O implementation via the info argument

- MPI_Info info
- MPI_Info_create (&info)
- MPI_Info_set (info, key, value)

key is a string specifying the hint to be applied value is a string specifying the value key is to be set to

There are 15 pre-defined keys

The implementation may or may not make use of hints

Hints

striping_factor

The number of I/O devices to be used

striping_unit

The number of bytes per block

collective_buffering

true or false: whether collective buffering should be performed

cb_block_size

Block size to be used for buffering (nodes access data in chunks this size

cb_buffer_size

The total buffer size that should be used for buffering (often block size times # nodes)

FILE MANIPULATION (cont)

MPI_FILE_CLOSE (MPI_File *fh)

- This routine synchronizes the file state and then closes the file
- The user must ensure all I/O routines have completed before closing the file
- This is a collective routine (but not synchronizing)

DERIVED DATATYPES & VIEWS

Derived datatypes are not part of MPI-I/O

- They are used extensively in conjunction with MPI-I/O
- A filetype is really a datatype expressing the access pattern of a file
- Filetypes are used to set file views

DERIVED DATATYPES & VIEWS

Non-contiguous memory access

MPI_TYPE_CREATE_SUBARRAY

- > NDIMS number of dimensions
- ARRAY_OF_SIZES number of elements in each dimension of full array
- ARRAY_OF_SUBSIZES number of elements in each dimension of sub-array
- ARRAY_OF_STARTS starting position in full array of subarray in each dimension
- > ORDER MPI_ORDER_(C or FORTRAN)
- > OLDTYPE datatype stored in full array
- > NEWTYPE handle to new datatype

NONCONTIGUOUS MEMORY ACCESS

NONCONTIGUOUS MEMORY ACCESS

- INTEGER sizes(2), subsizes(2), starts(2), dtype, ierr
- sizes(1) = 102
- sizes(2) = 102
- subsizes(1) = 100
- subsizes(2) = 100
- starts(1) = 1
- starts(2)= 1

CALL MPI_TYPE_CREATE_SUBARRAY(2,sizes,subsizes,starts, MPI_ORDER_FORTRAN,MPI_REAL8,dtype,ierr)

NONCONTIGUOUS FILE ACCESS

MPI FILE SET VIEW(MPI File FH, header MPI Offset DISP, 100 bytes MPI Datatype ETYPE, MPI Datatype FILETYPE, Memory layout char *DATAREP, MPI Info INFO, **IERROR**)

NONCONTIGUOUS FILE ACCESS

The file has 'holes' in it from the processor's perspective

MPI_TYPE_CONTIGUOUS(NUM,OLD,NEW,IERR)

NUM - Number of contiguous elements

OLD - Old data type

NEW - New data type

MPI_TYPE_CREATE_RESIZED(OLD,LB,EXTENT, NEW, IERR)

OLD - Old data type

LB - Lower Bound

EXTENT - New size

NEW - New data type

'Holes' in the file

Memory layout

CALL MPI_TYPE_CONTIGUOUS(2, MPI_INT, CTYPE, IERR)

DISP = 4

LB = 0

EXTENT=5*4

CALL MPI_TYPE_CREATE_RESIZED(CTYPE,LB,EXTENT,FTYPE,IERR)

CALL MPI_TYPE_COMMIT(FTYPE, IERR)

CALL MPI_FILE_SET_VIEW(FH,DISP,MPI_INT,FTYPE,'native',MPI_INFO_NULL, IERR)

NONCONTIGUOUS FILE ACCESS

The file has 'holes' in it from the processor's perspective A block-cyclic data distribution

NONCONTIGUOUS FILE ACCESS

The file has 'holes' in it from the processor's perspective

A block-cyclic data distribution

MPI_TYPE_VECTOR(

COUNT - Number of blocks

- **BLOCKLENGTH Number of elements per block**
- STRIDE Elements between start of each block
- OLDTYPE Old datatype
- NEWTYPE New datatype)

File layout (blocks of 4 ints)

CALL MPI_TYPE_VECTOR(3, 4, 16, MPI_INT, FILETYPE, IERR) CALL MPI_TYPE_COMMIT (FILETYPE, IERR) DISP = 4 * 4 * MYRANK

CALL MPI_FILE_SET_VIEW (FH, DISP, MPI_INT, FILETYPE, 'native', MPI_INFO_NULL, IERR)

NONCONTIGUOUS FILE ACCESS

The file has 'holes' in it from the processor's perspectiveA block-cyclic data distributionmulti-dimensional array access

NONCONTIGUOUS FILE ACCESS

The file has 'holes' in it from the processor's perspective A block-cyclic data distribution multi-dimensional array access MPI_TYPE_CREATE_SUBARRAY()

Distributed array access

9/2/2004

Distributed array access

Sizes(1) = 200

sizes(2) = 200

subsizes(1) = 100

subsizes(2) = 100

starts(1) = 0

starts(2) = 0

CALL MPI_TYPE_CREATE_SUBARRAY(2, SIZES, SUBSIZES, STARTS, MPI_ORDER_FORTRAN, MPI_INT, FILETYPE, IERR)

CALL MPI_TYPE_COMMIT(FILETYPE, IERR)

CALL MPI_FILE_SET_VIEW(FH, 0, MPI_INT, FILETYPE, 'NATIVE', MPI_INFO_NULL, IERR)

NONCONTIGUOUS FILE ACCESS

The file has 'holes' in it from the processor's perspective

- A block-cyclic data distribution
- multi-dimensional array distributed with a block distribution
- Irregularly distributed arrays

Irregularly distributed arrays

MPI_TYPE_CREATE_INDEXED_BLOCK

- **COUNT Number of blocks**
- LENGTH Elements per block
- MAP Array of displacements
- OLD Old datatype
- NEW New datatype

Irregularly distributed arrays

MAP_ARRAY

9/2/2004

Irregularly distributed arrays

CALL MPI_TYPE_CREATE_INDEXED_BLOCK (10, 1, FILE_MAP, MPI_INT, FILETYPE, IERR)

CALL MPI_TYPE_COMMIT (FILETYPE, IERR)

DISP = 0

CALL MPI_FILE_SET_VIEW (FH, DISP, MPI_INT, FILETYPE, 'native', MPI_INFO_NULL, IERR)

DATA ACCESS

9/2/2004

COLLECTIVE I/O

Memory layout on 4 processor

MPI temporary memory buffer

File layout

9/2/2004

Two-Phase I/O

9/2/2004

9/2/2004

9/2/2004

Collective I/O

Server-based Collective I/O

- Similar to client based, but the I/O nodes collect data in block sizes for file access
- No system buffer space needed on compute nodes

Disk-Directed I/O (DDIO)

Uses server-based collective I/O, but reads data from disk in a manner than minimizes disk head movement. The data is transferred between I/O nodes and compute nodes as they are read/written

DATA ACCESS ROUTINES

9/2/2004

EXPLICIT OFFSETS

Parameters

- > MPI_File FH File handle
- > MPI_Offset OFFSET Location in file to start
- > void *BUF Buffer to write from/read to
- > int COUNT Number of elements
- > MPI_Datatype DATATYPE Type of each element
- MPI_Status STATUS Return status (blocking)
- MPI_Request REQUEST Request handle (nonblocking,non-collective)

EXPLICIT OFFSETS (cont)

I/O Routines

- > MPI_FILE_(READ/WRITE)_AT ()
- > MPI_FILE_(READ/WRITE)_AT_ALL ()
- > MPI_FILE_I(READ/WRITE)_AT ()
- > MPI_FILE_(READ/WRITE)_AT_ALL_BEGIN ()
- > MPI_FILE_(READ/WRITE)_AT_ALL_END (FH, BUF, STATUS)

EXPLICIT OFFSETS

MPI_Type_vector (count, blocklen, stride, MPI_INT, &ftype); MPI_Type_commit (ftype); MPI_FIle_open (MPI_COMMI_WORLD, Infename, MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
MPI_File_set_view (fh, disp, MPI_INT, ftype, "native", MPI_INFO_NULL);
MPI_File_write_at (fh, 5, buff, 3, MPI_INT, &status);
MPI_File_close (&fh);

Parameters

- > MPI_File FH File handle
- > void *BUF Buffer to write to/read from
- int COUNT number of elements to be read/written
- > MPI_Datatype DATATYPE Type of each element
- > MPI_Status STATUS Return status (blocking)
- MPI_Request REQUEST Request handle (nonblocking, non-collective)

I/O Routines

- > MPI_FILE_(READ/WRITE) ()
- > MPI_FILE_(READ/WRITE)_ALL ()
- > MPI_FILE_I(READ/WRITE) ()
- > MPI_FILE_(READ/WRITE)_ALL_BEGIN()
- > MPI_FILE_(READ/WRITE)_ALL_END (FH, BUF, STATUS)

int buff[12];

count = 6; blocklen = 2; stride = 4

MPI_Type_vector (count, blocklen, stride, MPI_INT, &ftype); MPI_Type_commit (ftype); disp = 50 + myrank*8; MPI_File_open (MPI_COMM_WORLD, filename, MPI_MODE_WRONLY, MPI_INFO_NULL, &fh); MPI_File_set_view (fh, disp, MPI_INT, ftype, "native", MPI_INFO_NULL); MPI_File_write(fh, buff, 6, MPI_INT, &status); MPI_File_write(fh, buff, 6, MPI_INT, &status); MPI_File_close (&fh);

9/2/2004


```
count = 5;
blocklen = 2;
stride = 4
```

MPI_Type_vector (count, blocklen, stride, MPI_INT, &ftype); MPI_Type_commit (ftype); disp = myrank*8; MPI_File_open (MPI_COMM_WORLD, filename, MPI_MODE_WRONLY, MPI_INFO_NULL, &fh); MPI_File_set_view (fh, disp, MPI_INT, ftype, "native", MPI_INFO_NULL); MPI_File_write(fh, buffA, 10, MPI_INT, &status); MPI_File_write(fh, buffB, 10, MPI_INT, &status); MPI_File_close (&fh);

int buffA[10]; Int buffB[10];

count = 5; blocklen = 2; stride = 4

MPI_Type_vector (count, blocklen, stride, MPI_INT, &ftype); MPI_Type_commit (ftype); disp = myrank*8; MPI_File_open (MPI_COMM_WORLD, filename, MPI_MODE_WRONLY, MPI_INFO_NULL, &fh); MPI_File_set_view (fh, disp, MPI_INT, ftype, "native", MPI_INFO_NULL); MPI_File_write(fh, buffA, 10, MPI_INT, &status); disp = disp + 4*20; MPI_File_set_view (fh, disp, MPI_INT, ftype, "native", MPI_INFO_NULL); MPI_File_write(fh, buffB, 10, MPI_INT, &status); MPI_File_write(fh, buffB, 10, MPI_INT, &status); MPI_File_close (&fh);

int buffA[10]; Int buffB[10];

count = 5; blocklen = 2; stride = 4

MPI_Type_vector (count, blocklen, stride, MPI_INT, &atype); extent = count*blocklen*nprocs*4; MPI_Type_create_resized (atype, 0, extent, &ftype); MPI_Type_commit (ftype); disp = myrank*8; MPI_File_open (MPI_COMM_WORLD, filename, MPI_MODE_WRONLY, MPI_INFO_NULL, &fh); MPI_File_set_view (fh, disp, MPI_INT, ftype, "native", MPI_INFO_NULL); MPI_File_write(fh, buffA, 10, MPI_INT, &status); MPI_File_write(fh, buffB, 10, MPI_INT, &status); MPI_File_close (&fh);

SHARED FILE POINTERS

All processes must have the same view

Parameters

- > MPI_File FH File handle
- void *BUF Buffer
- > int COUNT Number of elements
- > MPI_Datatype DATATYPE Type of the elements
- > MPI_Status STATUS Return status (blocking)
- MPI_Requests REQUEST Request handle (Nonblocking, non-collective

SHARED FILE POINTERS

I/O Routines

- > MPI_FILE_(READ/WRITE)_SHARED ()
- > MPI_FILE_I(READ/WRITE)_SHARED ()
- > MPI_FILE_(READ/WRITE)_ORDERED ()
- > MPI_FILE_(READ/WRITE)_ORDERED_B
 EGIN ()
- > MPI_FILE_(READ/WRITE)_ORDERED_E ND (FH, BUF, STATUS)

SHARED FILE POINTERS

```
100
                                                   100
                                                         100
                                                                                      100
comm = MPI COMM WORLD;
MPI_Comm_rank (comm, &rank);
                                              P0
                                                    P1
                                                                                      Pn-1
                                                          P2
amode = MPI MODE CREATE
  MPI MODE WRONLY;
MPI File open (comm, logfile, amode,
                                                   int buff[100];
  MPI INFO NULL, &fh);
                                                   MPI File open (comm, logfile, amode,
                                                     MPI INFO NULL, &fh);
do some computing
if (some event occurred) {
                                                   MPI_File_write_ordered (fh, buf, 100,
 sprintf(buf, "Process %d: %s\n", rank, event);
                                                     MPI INT, &status);
 size = strlen(buf);
                                                   MPI File close (&fh);
 MPI File write shared (fh, buf, size
  MPI CHAR, &status);
MPI File close (&fh);
```


FILE INTEROPERABILITY

MPI puts no constraints on how an implementation should store files

If a file is not stored as a linear byte stream, there must be a utility for converting the file into a linear byte stream

Data representation aids interoperability

FILE INTEROPERABILITY (cont)

Data Representation

- Native Data stored exactly as it is in memory.
- Internal Data may be converted, but may be readable by the same MPI implementation, even on different architectures
- > external32 This representation is defined by MPI. Files written in external32 format can be read by any MPI on any machine

FILE INTEROPERABILITY (cont)

Some MPI-I/O implementations (Romio), created files are no different than those created by the underlying file system.

This means normal Posix commands (cp, rm, etc) work with files created by these implementations

Non-MPI programs can read these files

GOTCHAS - Consistency & Semantics

Collective routines are NOT synchronizing Output data may be buffered

 Just because a process has completed a write does not mean the data is available to other processes

Three ways to ensure file consistency:

- > MPI_FILE_SET_ATOMICITY ()
- > MPI_FILE_SYNC ()
- > MPI_FILE_CLOSE ()

CONSISTENCY & SEMANTICS

- MPI_FILE_SET_ATOMICITY (MPI_File fh, int flag, ierr)
 - Causes all writes to be immediately written to disk.
 This is a collective operation

MPI_FILE_SYNC (MPI_File fh, ierr)

- Collective operation which forces buffered data to be written to disk
- MPI_FILE_CLOSE (MPI_File *fh)
 - Writes any buffered data to disk before closing the file

9/2/2004

CALL MPI_FILE_OPEN (..., FH)

CALL MPI_FILE_SET_ATOMICITY (FH)

CALL MPI_FILE_WRITE_AT (FH, 0, ...)

CALL MPI_FILE_READ_AT (FH, 100, ...)

CALL MPI_FILE_OPEN (..., FH) CALL MPI_FILE_SET_ATOMICITY (FH) CALL MPI_FILE_WRITE_AT (FH, 100, ...) CALL MPI_FILE_READ_AT (FH, 0, ...)

CALL MPI_FILE_OPEN (..., FH)

CALL MPI_FILE_SET_ATOMICITY (FH)

CALL MPI_FILE_WRITE_AT (FH, 0, ...)

CALL MPI_BARRIER ()

CALL MPI_FILE_READ_AT (FH, 100, ...)

CALL MPI_FILE_OPEN (..., FH) CALL MPI_FILE_SET_ATOMICITY (FH)

CALL MPI_FILE_WRITE_AT (FH, 100, ...)

CALL MPI_BARRIER ()

CALL MPI_FILE_READ_AT (FH, 0, ...)

CALL MPI_FILE_OPEN (..., FH)

CALL MPI_FILE_WRITE_AT (FH, 0, ...)

CALL MPI_FILE_CLOSE (FH)

CALL MPI_FILE_OPEN (..., FH)

CALL MPI_FILE_READ_AT (FH, 100, ...)

CALL MPI_FILE_OPEN (..., FH)

CALL MPI_FILE_WRITE_AT (FH, 100, ...)

CALL MPI_FILE_CLOSE (FH)

CALL MPI_FILE_OPEN (..., FH)

CALL MPI_FILE_READ_AT (FH, 0, ...)

- CALL MPI_FILE_OPEN (..., FH)
- CALL MPI_FILE_WRITE_AT (FH, 0, ...)
- CALL MPI_FILE_CLOSE (FH)
- CALL MPI_BARRIER ()
- CALL MPI_FILE_OPEN (..., FH)
- CALL MPI_FILE_READ_AT (FH, 100, ...)

- CALL MPI_FILE_OPEN (..., FH)
- CALL MPI_FILE_WRITE_AT (FH, 100, ...)
- CALL MPI_FILE_CLOSE (FH)
- CALL MPI_BARRIER ()
- CALL MPI_FILE_OPEN (..., FH)
- CALL MPI_FILE_READ_AT (FH, 0, ...)

CALL MPI_FILE_OPEN (..., FH)

CALL MPI_FILE_WRITE_AT (FH, 0, ...)

CALL MPI_FILE_SYNCH (FH)

CALL MPI_BARRIER ()

CALL MPI_FILE_READ_AT (FH, 100, ...)

CALL MPI_FILE_OPEN (..., FH)

CALL MPI_FILE_WRITE_AT (FH, 100, ...)

CALL MPI_FILE_SYNCH (FH)

CALL MPI_BARRIER ()

CALL MPI_FILE_READ_AT (FH, 0, ...)

- CALL MPI_FILE_OPEN (..., FH)
- CALL MPI_FILE_WRITE_AT (FH, 0, ...)
- CALL MPI_FILE_SYNCH (FH)
- CALL MPI_BARRIER ()
- CALL MPI_FILE_SYNCH (FH)
- CALL MPI_FILE_READ_AT (FH, 100, ...)

- CALL MPI_FILE_OPEN (..., FH)
- CALL MPI_FILE_WRITE_AT (FH, 100, ...)
- CALL MPI_FILE_SYNCH (FH)
- CALL MPI_BARRIER ()
- CALL MPI_FILE_SYNCH (FH)
- CALL MPI_FILE_READ_AT (FH, 0, ...)

CONCLUSIONS

- MPI-I/O potentially offers significant improvement in I/O performance
- This improvement can be attained with minimal effort on part of the user
 - Simpler programming with fewer calls to I/O routines
 - Easier program maintenance due to simple API

Recommended references

- MPI The Complete Reference Volume 1, The MPI Core
- MPI The Complete Reference Volume 2, The MPI Extensions
- USING MPI: Portable Parallel Programming with the Message-Passing Interface
- Using MPI-2: Advanced Features of the Message-Passing Interface

Recommended references

http://pdb.cs.utk.edu

Click "View Database"

Go to "Documents"

- MPI_CHECK
- Guidelines for writing portable MPI programs

http://www.cs.utk.edu/~cronk/Using_MPI_IO.pdf http://www.cs.utk.edu/~cronk/Using_MPI_IO.doc

Course Outline

Day 3 Morning – Lecture Performance Analysis of MPI programs TAU Vampir/VampirTrace Afternoon – Lab

Hands on exercises using Vampir and VampirTrace

Performance Analysis

- It is typically much more difficult to debug and tune parallel programs
- Programmers often have no idea where to begin searching for possible bottlenecks
- A tool that allows the programmer to get a quick overview of the program's execution can aid the programmer in beginning this search

Basic Tuning Process

- Select "best" compiler flags
- Select/interface with "best" libraries
- Measure
- Validate
- Hand-tune (routine/loop-level tuning)
- ... iterate

Observation: The best way to improve parallel performance is often still to simply improve sequential performance!

Performance Analysis in Practice

Observation: many application developers don't use performance tools at all (or rarely)

Why?

Learning curve can be steep Results can be difficult to understand Investment (time) can be substantial Maturity/availability of various tools Not everyone is a computer scientist

Profiling

Recording of summary information during execution inclusive, exclusive time, # calls, hardware statistics, ...
Reflects performance behavior of program entities functions, loops, basic blocks user-defined "semantic" entities
Very good for low-cost performance assessment
Helps to expose performance bottlenecks and hotspots
Implemented through

sampling: periodic OS interrupts or hardware counter traps instrumentation: direct insertion of measurement code No temporal context

Tracing

Recording of information about significant points (events) during program execution entering/exiting code region (function, loop, block, ...) thread/process interactions (e.g., send/receive message)

Save information in event record

- timestamp
- CPU identifier, thread identifier
- Event type and event-specific information

Event trace is a time-sequenced stream of event records

Can be used to reconstruct dynamic program behavior

TAU Performance System

Tuning and Analysis Utilities (11+ year project effort)

Performance system framework for scalable parallel and distributed high-performance computing

Targets a general complex system computation model nodes / contexts / threads Multi-level: system / software / parallelism Measurement and analysis abstraction

Integrated toolkit for performance instrumentation, measurement, analysis, and visualization Portable performance profiling and tracing facility Open software approach with technology integration University of Oregon, Forschungszentrum Jülich, LANL

TAU Instrumentation Approach

Support for standard program events

Routines

Classes and templates

Statement-level blocks

Support for user-defined events

Begin/End events ("user-defined timers") Atomic events (e.g., size of memory allocated/freed) Selection of event statistics

Support definition of "semantic" entities for mapping Support for event groups Instrumentation optimization

TAU Instrumentation

Flexible instrumentation mechanisms at multiple levels

Source code

manual

automatic

C, C++, F77/90/95 (Program Database Toolkit (*PDT*)) OpenMP (directive rewriting (*Opari*), *POMP spec*)

Object code

pre-instrumented libraries (e.g., MPI using *PMPI*) statically-linked and dynamically-linked

Executable code

dynamic instrumentation (pre-execution) (*DynInstAPI*) virtual machine instrumentation (e.g., Java using *JVMPI*)

Multi-Level Instrumentation

Targets common measurement interface TAU API

Multiple instrumentation interfaces

Simultaneously active

Information sharing between interfaces

Utilizes instrumentation knowledge between levels

Selective instrumentation

Available at each level

Cross-level selection

Targets a common performance model

Presents a unified view of execution

Consistent performance events

TAU Performance Measurement

TAU supports profiling and tracing measurement Robust timing and hardware performance support using PAPI

Support for online performance monitoring

Profile and trace performance data export to file system Selective exporting

Extension of TAU measurement for multiple counters

Creation of user-defined TAU counters

Access to system-level metrics

Support for callpath measurement

Integration with system-level performance data Linux MAGNET/MUSE (Wu Feng, LANL)

TAU Measurement Options

Parallel profiling

- Function-level, block-level, statement-level
- Supports user-defined events
- TAU parallel profile data stored during execution
- Hardware counts values
- Support for multiple counters
- Support for callgraph and callpath profiling

Tracing

All profile-level events

Inter-process communication events

Trace merging and format conversion

TAU Analysis

Parallel profile analysis

Pprof

parallel profiler with text-based display

ParaProf

Graphical, scalable, parallel profile analysis and display

Trace analysis and visualization

Trace merging and clock adjustment (if necessary) Trace format conversion (ALOG, SDDF, VTF, Paraver)

Trace visualization using Vampir (Pallas/Intel)

Pprof Output (NAS Parallel Benchmark – LU)

Intel Quad PIII Xeon F90 + MPICH

Profile

- Node
- Context
- Thread

Events

- code
- MPI

emacs@neutron.cs.uoregon.edu •						
Buffers Files Tools Edit Search Mule Help						
Reading Profile files in profile.*						
	:	:				
	,					
 ∭%Time	Exclusive	Inclusive	#Call	#Subrs	Inclusive	Name
100.0	1	3:11.293	1	15	191293269	applu
99.6	3,667	3:10.463	ن 77200	37517	63487925	bcast_inputs
	6 491 6 461	2:00.320	97200	18600	9450	exchange_i bute
41.0	1:18.436	1:18.436	18600	0	4217	MPI Recv()
29.5	6,778	56,407	9300	18600	6065	blts
26.2	50,142	50,142	19204	0	2611	MPI_Send()
16.2	24,451	31,031	301	602	103096	rhs
1 3.9	7,501	7,501	9300	1010	807	jacid
	838 6 590	6,394 6,590	604 9300	1812	10918	exchange_3
	4 989	4 989	608	ň	8206	MPI Wait()
0.2	0.44	400	1	4	400081	init_comm
0.2	398	399	1	39	399634	MPI_Init()
0.1	140	247	1	47616	247086	setiv
0.1	131	131	57252	0	2	exact
	89	103	1	2	103168	erhs
	0.966	96	1	2	96458	read_input
	26	44	1	7937	44878	error
ll ŏ.ŏ	24	24	608	, , , , , , , , , , , , , , , , , , , ,	40	MPI Irecv()
0.0	15	15	1	5	15630	MPI_Finalize()
0.0	4	12	1	1700	12335	setbv
	2	<u>8</u>	3	3	2893	12norm
	3	3	8	0	491	MPI_Allreduce()
	1	د ۱	1	6	3874 1007	MPI Bannien()
	0.116	0.837	1	4	837	exchange 4
ŏ.ŏ	0.512	0.512	ī	ó	512	MPI_Keyval_create()
0.0	0.121	0.353	1	2	353	exchange_5
0.0	0.024	0.191	1	2	191	exchange_6
<u>L 0.0</u>	0.103	0.103	6	0	17	MPI_Type_contiguous()
	NPB_LU.out	(Fundame	ntal)L8lo	0		

Terminology – Example

For routine "int main()": Exclusive time 100-20-50-20=10 secs Inclusive time 100 secs Calls 1 call Subrs (no. of child routines called) 3 Inclusive time/call 100secs

```
int main( )
f1(); /* takes 20 secs */
 f2(); /* takes 50 secs */
 f1(); /* takes 20 secs */
 /* other work */
}
/*
Time can be replaced by counts
from PAPI e.g., PAPI FP INS.
```


ParaProf (NAS Parallel Benchmark – LU)

Using TAU

Install TAU % configure ; make clean install Instrument application **TAU Profiling API** Typically modify application makefile include TAU's stub makefile, modify variables Set environment variables directory where profiles/traces are to be stored **Execute** application % mpirun –np <procs> a.out; Analyze performance data paraprof, vampir, pprof, paraver ...

Description of Optional Packages

 PAPI – Measures hardware performance data e.g., floating point instructions, L1 data cache misses etc.
 DyninstAPI – Helps instrument an application binary at runtime or rewrites the binary

EPILOG – Trace library. Epilog traces can be analyzed by EXPERT [FZJ], an automated bottleneck detection tool.

Opari – Tool that instruments OpenMP programs

Vampir – Commercial trace visualization tool [formally Pallas, now intelb]

Paraver – Trace visualization tool [CEPBA]

TAU Measurement System Configuration

configure [OPTIONS] {-**C**++=<**C**C>, -**CC**=<**C**C>} {-pthread, -sproc} -openmp -jdk=<dir> (JDK) -opari=<dir> tool -papi=<dir> -pdt=<dir> -dyninst=<dir> Package -mpi[inc/lib]=<dir> instrumentation -python[inc/lib]=<dir> -epilog=<dir>

Specify C++ and C compilers Use pthread or SGI sproc threads Use OpenMP threads Specify Java instrumentation

Specify location of Opari OpenMP

Specify location of PAPI Specify location of PDT Specify location of DynInst

Specify MPI library

Specify Python instrumentation Specify location of EPILOG

9/2/2004

TAU Measurement System Configuration

configure [OPTIONS] -TRACE -PROFILE (default) -PROFILECALLPATH -PROFILEMEMORY routine -MULTIPLECOUNTERS -COMPENSATE -CPUTIME -PAPIWALLCLOCK -PAPIVIRTUAL -SGITIMERS -LINUXTIMERS

Generate binary TAU traces Generate profiles (summary) Generate call path profiles Track heap memory for each

Use hardware counters + time Compensate timer overhead Use usertime+system time Use PAPI's wallclock time Use PAPI's process virtual time Use fast IRIX timers Use fast x86 Linux timers

Compiling

- % configure [options]
- % make clean install

Creates <arch>/lib/Makefile.tau<options> stub Makefile

and <arch>/lib/libTau<options>.a [.so] libraries which defines a single configuration of TAU

Compiling: TAU Makefiles

Include TAU Stub Makefile (<arch>/lib) in the user's Makefile. Variables:

TAU CXX TAU CC, TAU F90 TAU DEFS TAU LDFLAGS TAU INCLUDE TAU LIBS TAU SHLIBS TAU MPI LIBS TAU MPI FLIBS TAU FORTRANLIBS TAU CXXLIBS TAU INCLUDE MEMORY TAU DISABLE

Specify the C++ compiler used by TAU Specify the C, F90 compilers Defines used by TAU. Add to CFLAGS Linker options. Add to LDFLAGS Header files include path. Add to CFLAGS Statically linked TAU library. Add to LIBS Dynamically linked TAU library TAU's MPI wrapper library for C/C++ TAU's MPI wrapper library for F90 Must be linked in with C++ linker for F90 Must be linked in with F90 linker Use TAU's malloc/free wrapper lib TAU's dummy F90 stub library Note: Not including TAU_DEFS in CFLAGS disables instrumentation in C/C++ programs (TAU DISABLE for f90).

ICLU

Including TAU Makefile - F90

```
include $PET HOME/PTOOLS/tau-2.1
F90 = $(TAU F90)
FFLAGS = -I<dir>
LIBS = $(TAU_LIBS) $(TAU_CXXLIBS)
OBJS = \dots
TARGET= a.out
TARGET: $ (OBJS)
      $(F90) $(LDFLAGS) $(OBJS) -0 $@ $(LIBS)
.f.o:
      $(F90) $(FFLAGS) -c $< -o $@
```


TAU Makefile for PDT with MPI

```
include $PET/PTOOLS/tau-2.13.5/rs6000/lib/Makefile.tau-mpi-pdt
FCOMPILE = $(TAU F90) $(TAU MPI INCLUDE)
PDTF95PARSE = $(PDTDIR)/$(PDTARCHDIR)/bin/f95parse
TAUINSTR = $(TAUROOT)/$(CONFIG ARCH)/bin/tau instrumentor
PDB=merged.pdb
COMPILE RULE= $(TAU INSTR) $(PDB) $< -o $*.inst.f -f sel.dat;
      $(FCOMPILE) $*.inst.f -o $@;
LIBS = $(TAU MPI FLIBS) $(TAU LIBS) $(TAU CXXLIBS)
OBJS = f1.0 f2.0 f3.0 ...
TARGET= a.out
TARGET: $ (PDB) $ (OBJS)
      $(TAU F90) $(LDFLAGS) $(OBJS) -0 $@ $(LIBS)
$(PDB): $(OBJS:.o=.f)
      (PDTF95PARSE) (OBJS:.o=.f) (TAU MPI INCLUDE) -o (PDB)
# This expands to f95parse *.f -I.../mpi/include -omerged.pdb
.f.o:
```

\$ (COMPILE_RULE)

Compensation of Instrumentation Overhead

- Runtime estimation of a single timer overhead
- Evaluation of number of timer calls along a calling path
- Compensation by subtracting timer overhead
- Recalculation of performance metrics to improve the accuracy of measurements
- Configure TAU with –COMPENSATE configuration option

TAU Performance System Status

Computing platforms (selected)

IBM SP / pSeries, SGI Origin 2K/3K, Cray T3E / SV-1 / X1, HP (Compaq) SC (Tru64), Sun, Hitachi SR8000, NEC SX-5/6, Linux clusters (IA-32/64, Alpha, PPC, PA-RISC, Power, Opteron), Apple (G4/5, OS X), Windows

Programming languages

C, C++, Fortran 77/90/95, HPF, Java, OpenMP, Python

Thread libraries

pthreads, SGI sproc, Java, Windows, OpenMP

Compilers (selected)

Intel KAI (KCC, KAP/Pro), PGI, GNU, Fujitsu, Sun, Microsoft, SGI, Cray, IBM (xlc, xlf), Compaq, NEC, Intel

Vampir/VampirTrace

Vampirtrace is an instrumented MPI library to link with user code for automatic tracefile generation on parallel platforms

Vampir is a visualization program used to visualize trace data generated by Vampitrace

Vampir/VampirTrace

http://www.pallas.com/e/products/vampir

Version 4.0

Languages and Libraries: C, C++, Fotran77/90/95, HPF, MPI, OpenMP support being worked on

Supported Platforms: Most all HPC platforms (for how long?)

Vampirtrace

Profiling library for MPI applications

- Produces tracefiles that can be analyzed with the Vampir performance analysis tool or the Dimemas performance prediction tool.
- Merely linking your application with Vampirtrace enables tracing of all MPI calls. On some platforms, calls to user-level subroutines are also recorded.
- API for controlling profiling and for defining and tracing user-defined activities.

Vampir Features

- Tool for converting tracefile data for MPI programs into a variety of graphical views
- Highly configurable
- Timeline display with zooming and scrolling capabilities
- Profiling and communications statistics Source-code clickback

Running and Analyzing Vampirtraceinstrumented Programs

- Programs linked with Vampirtrace are started in the same way as ordinary MPI programs.
- Use Vampir to analyze the resulting tracefile.
- A configuration file is saved that controls all your default values

An example program

Poisson solver (iterative)

After each iteration, each process must exchange data with both its left and right neighbor

Each process does a sendrecv to its right followed by a sendrecv to its left

Getting Started

If your path is set up correctly, simply enter "vampir"

To open a tracefile, select "File" followed by "Open Tracefile" Select tracefile to open or enter a known tracefile

The entire event trace is **not** opened. Rather, metadata Is read and a frame display is opened. This is a preview Of the trace

Frame Display

Right click to get a context menu and select load/Whole Trace

9/2/2004

Summary Chart

By default, Vampir starts with a summary chart of the entire execution run

9/2/2004

Summary Timeline

9/2/2004

Timeline

Vampir 4.0 - Timeline		
	redblack_sndrcv.stf (13.)	333 ns - 0,951 s = 0,951 s)
	V_Z S V_4 S	
ocess V Lleen Code	MDT_Breat	
ocess Z Usen Code		ter a na ana ana ana ana ana ana ana ana a
ocess J Usen Code	MDL Deast	📫 😂 u ra (ra cumu nomen conferencijanni no raza (rana meļuma) (rijna cumu nomena aufragas (rijn 🔍
ocess 4 <u>osei _code</u>		🚬 🚽 🖓 (rate con que con en concepta de concepta (construction de concepta de la construction de cons
acess 6	llsen Code	👘 🕄 to react pression and the second construction of t
ocess 7 User Code	MDT Desct	
acess 8	User Code	
rocess 9 User Code	MP1 Brast	ta (na na mana (na dan ang na na mana (na dan ka
rocess 10	User Code	ter of a second content of the second s
rocess 11	User Code	te reneare a reneare and a substrant renear (press) are addressed (press) and
rocess 12 User Code	MPT Theast	a nana ana ana ang ang akangara Aparatan ana ana akangkanya 👘
rocess 13 User Code	MPI Boast	te in the contract of the cont
rocess 14 User Code	MPI Deast	
rocess 15 User Code	MPI-Beast	
rocess 16	User_Code	
rocess 17 User_Code	Mai Deast	
rocess 18	User_Code	240
rocess 19	User_Code	240
rocess 20 User_Code	MPI_Beast	
rocess 21 User_Code		248
rocess 22	User_Code	248
rocess 23	User_Code	-240
rocess 24 User_Code	MPI_Dcast	
rocess 25 User_Code	MPI_Dcast	
rocess 26 User_Code	MPI_Beast	
rocess 27	User_Code	
rocess 28 User_Code	MPI_Bcast	
rocess 29 <mark>User_Code</mark>	MPI_Beast	
rocess 30 <mark>User_Code</mark>	MPI_Beast	
rocess 31	User_Code	

Zoomed Timeline

💽 Vampir 4.0 - Timeline 🛛 🖉			巴
	redblack_sndrcv.stf (0.624 s - 1	0.635 s = 10.968 ms)	
0.626 s	0,628 s 0,63 s	0,632 s 0,634	l s
Process 0 214	MPI_Sendnecv	MPI_Sendnecv	214 MPI
Process 1 214 214	MPI_Sendnecv	MPI_Sendnecv	214Calculation
Process 2 214 214	MPI_Sendnecv	MPI_Sendrecv	214
Process 3 214 214	MPI_Sendnecv	MPI_Sendnecv 250	214
Process 4 214 214 253	MPI_Sendrecv 1000	HPI_Sendrecy (258)	214
Process 5 214 214 258	MPI_Sendrecy	MPI_Sendnecv	214
Process 6 214 214 250 >	MPI_Sendrecv	HPI_Sendrecv	214
Process 7 214 214 258	MPI_Sendrecv	MPI_Sendrecv	214
Process 8 214 214 250	MPI_Sendrecv	HPI_Sendrecv	214
Process 9 214	MPI_Sendrecv	MPI_Sendrecv	214
Process 10	MPI_Sendrecv H 258 >	MPI_Sendrecv	214
Process 11 214 258	MPI_Sendrecy	MPI_Sendrecv	214
Process 12	HPI_Sendrecv	MPI_Sendrecv	214
Process 13 214 Allreduce	HPI_Sendrecv I Prot_Allreduce	MPI_Sendrecv H MPI_Altreduct	214
Process 14	MPI_Sendrecv	MPI_Sendrecv H MPI_Allreduce	214
Process 15	MPI_Sendrecv	PI_Sendrecv H MPI_Allreduce	214
Process 16	MPI_Sendrecv / / / / ////Allreduce >	MPI_Sendrecv	214
Process 17	MPI_Sendrecv / /////Altreduce >	MPI_Sendrecv M PI_Allreduce	214
Process 18 PLAllreduce	MPI_Sendrecv H MAPI_Allreduce >	214 A PI_Allreduce	214
Process 19 API_Allreduce	MPI_Sendrecv	214 /PI_Allreduce	214
Process 20 MILAIIreduce	214 PI_Allreduce	214 A MAIL Allreduce	214
Process 21 MILAIIreduce	214 / PI_Altreduce >	214 H Maineduce	214
Process 22 MILAIIreduce	214 All All reduce	214 A Pri_Alfreduce	214
Process 23 MILAIIreduce	214 The Alireduce	214 I Pl_Allreduce	214 1
Process 24 11 Allreduce	214 A Fight All Plant Plant	214 March Allereduce	214 1
Process 25 MILAIIreduce	214 I I PL Ritreduce	214 MPL Alfreduce	214 1
	214 Pi_Hireduce		
	214 Millineduce	S1471 M / Di Httreduce	
Process 28 mil_Hitreduce	n officialization	Pi_Hiireduce	
Process 23 III Allocation		A A A A A A A A A A A A A A A A A A A	
Process 30 mil_Hilleduce	A PL Ollastas	PI 011meduce	
Process 31 mightireduce			

Clicking on an activity

Vampir 4.0	- Identified G	lobal (Operation		凹		
Root:	Process 0						
Participants:	Process(s) 0-	-31					
Operation:	MPI_Allreduce	•					
Communicator:	3						
Interval:	0.62712 s - 0	• . 63040	9 s				
Duration:	3.288413 ms						
Length (s/r):	Length (s/r): 256 bytes / 256 bytes						
Send rate:	76.025 Kbytes	:/s					
Local V	/alues		Clos	е			

Clicking on an activity

Vampir 4.0	- Identified M	essage		凹
Origin:	Process 5			
Destination:	Process 6			
Tag:	1000			
Communicator:	3			
Interval:	0.626552 s -	0,629261	s	
Duration:	2.70972 ms			
Length:	400 bytes			
Data rate:	144.157 Kbyte	s/s		
Sour	rce		Close	

9/2/2004

Clicking on an activity

Vampir 4.0 - Ider	tified Activity	<u> </u>
Location:	Process 7	
Operation:	Red-Black (365)	
Activity:	Calculation (4)	
Interval:	0.6263 s - 0.62652 s	
Duration:	0.21984 ms	
Source:	red_black.f90 : 264	Show Source
Next Interval:	press button for search	Next Activity
Previous Interval:	press button for search	Previous Activity
	Close	

Zoomed Timeline

💽 Vampir 4.0 - Timeline 🛛 🖉			巴
	redblack_sndrcv.stf (0.624 s - 1	0.635 s = 10.968 ms)	
0.626 s	0,628 s 0,63 s	0,632 s 0,634	l s
Process 0 214	MPI_Sendnecv	MPI_Sendnecv	214 MPI
Process 1 214 214	MPI_Sendnecv	MPI_Sendnecv	214Calculation
Process 2 214 214	MPI_Sendnecv	MPI_Sendrecv	214
Process 3 214 214	MPI_Sendnecv	MPI_Sendnecv 250	214
Process 4 214 214 253	MPI_Sendrecv 1000	HPI_Sendrecy (258)	214
Process 5 214 214 258	MPI_Sendrecy	MPI_Sendnecv	214
Process 6 214 214 250 >	MPI_Sendrecv	HPI_Sendrecv	214
Process 7 214 214 258	MPI_Sendrecv	MPI_Sendrecv	214
Process 8 214 214 250	MPI_Sendrecv	HPI_Sendrecy	214
Process 9 214	MPI_Sendrecv	MPI_Sendrecv	214
Process 10	MPI_Sendrecv H 258 >	MPI_Sendrecv	214
Process 11 214 258	MPI_Sendrecy	MPI_Sendrecv	214
Process 12	HPI_Sendrecv	MPI_Sendrecv	214
Process 13 214 Allreduce	HPI_Sendrecv I Prot_Allreduce	MPI_Sendrecv H MPI_Altreduct	214
Process 14	MPI_Sendrecv	MPI_Sendrecv H MPI_Allreduce	214
Process 15	MPI_Sendrecv	PI_Sendrecv H MPI_Allreduce	214
Process 16	MPI_Sendrecv / / / / ////Allreduce >	MPI_Sendrecv	214
Process 17	MPI_Sendrecv / /////Altreduce >	MPI_Sendrecv M PI_Allreduce	214
Process 18 PLAllreduce	MPI_Sendrecv H MAPI_Allreduce >	214 A PI_Allreduce	214
Process 19 Pl_Allreduce	MPI_Sendrecv	214 /PI_Allreduce	214
Process 20 MILAIIreduce	214 PI_Allreduce	214 A MAIL Allreduce	214
Process 21 MILAIIreduce	214 / PI_Altreduce >	214 H Maineduce	214
Process 22 MILAIIreduce	214 All All reduce	214 A Pri_Alfreduce	214
Process 23 MILAIIreduce	214 The Alireduce	214 I Pl_Allreduce	214 1
Process 24 111_Allreduce	214 A Fight All Plant Plant	214 March Allereduce	214 1
Process 25 MILAIIreduce	214 I I PL Ritreduce	214 MPL Alfreduce	214 1
	214 Pi_Hireduce		
	214 Millineduce	S1471 M / Di Httreduce	
Process 28 mil_Hitreduce	n officialization	Pi_Hiireduce	
Process 23 III Allocation		A A A A A A A A A A A A A A A A A A A	
Process 30 mil_Hilleduce	A PL Ollastas	PI 011meduce	
Process 31 mightireduce			

Zoomed Summary CHart

9/2/2004

A different approach

Rather than use sendrecv, use nonblocking communication

- Allows data movement to occur concurrently
- Should greatly reduce the amount of time spent waiting for data

9/2/2004

💽 Vampir 4.0 - Timeline				四
	redblack_icomm.stf (13.333)	ns – 0.698 s = 0.698 s)		
0.1 s	0.2 s 0.3 s	0.4s 0.5s	0.6 s	
Process 0 User_Code	PI_Comm_spl	lit 🗧		MPI
Process 1 User_Code	- PI_Comm_sp]	lit		Application
Process 2 User_Code		211		Calculation
Process 3 User_Code	<mark>≁Pi_Comm_</mark> spl	lit		
Process 4 User_Code	240-nPI_Comm_spl	lit		
Process 5 User_Code	240%PI_Comm_sp1	it		
Process 6	¦ User_Dode	2.		
Process 7	¦ Usen'_Code			
Process 8 User_Code		243		
Process 9	User_Code			
Process 10 User_Code	MPI_Beast	*		
Process 11 User_Code	240 MPI_Comm_spl	it		
Process 12	User_Çode	2	 	
Process 13 User_Code	246 PI_Comm_sp.	lit		
Process 14 User_Code	249D-#PI_Comm_sp1	lit		
Process 15	User_Code	2.		
Process 16	User_Code		REAL PROPERTY	
Process 17 User_Code	MPI_Dcast	<u> </u>	• · · · · · · · · ·	
Process 18 User_Code	M <mark>PI_Dcast</mark>	<u></u> 24		
Process 19 User_Code	240 > MPI_Comm_sp.	lit	• · · · · · · · · · · · · · · · · · · ·	
Process 20 User_Code	PI_Comm_spl	it		
Process 21 User_Code				
Process 22	User_Code			
Process 23 User_Code	24C*Pi_Comm_sp.	lit		
Process 24 User_Code	240 PI_Comm_spl	lit		
Process 25 User_Code	24 8D_MPI_Comm_sp 1	it		
Process 26	User_Code			
Process 27 User_Code	MPI_Dcast		••••••••••••••••••••••••••••••••••••••	
Process 28 User_Code	Mni_Bcast			
Process 29 User_Code	MIT_Beast	>		
Process 30	User_Code			
Process 31	User_Code			
\leq				

Vampir 4.0	- Summary C	hart 📗									I 🛛
re	edblack_icomm.	stf (Occu	urences,	13,333	ns-0,698	s) (Per	Process)	(Count d	only Entri	es)	
Sum									1082#		
MPI_Isend			387.5#								
MPI_Recv			387,5#								
MPI_Waitall	200										
MPI_Allreduce	100#										
MPI_Wtime	2#										
MPI_Comm_rank	1#										
MPI_Comm_size	1#										
MPI_Bcast	1#										
MPI_Comm_split	1#										
MPI_Finalize	1#										
	120#	240#	360#	480)# 600)# 72	0# 84	0# 96	50 # 108	0# 1200#	MPT

Vampir 4.0 -	Timeline					巴
		redblack.	_icomm.stf (0.583 s - 0.	.587 s = 4.317 m	s)	
	0.584 s 0.5	584 s0,585 s	0,585 s _0,586 s	0 . 586 s	0 , 587 s 0,587 s	:
Process 0 <mark>365</mark>	365 -21	3 3 365	365 213	<mark>.0⊳</mark> \$65	365 21.3	50 PI
Process 1 <mark>365</mark>	365	256 565	365 - 1	2 <mark>58 ></mark> 365	365 - 17-	Calculation
Process 2 <mark>365</mark>	365	253 365	365	<mark>958 ⊳</mark> 365	365	253
Process 3 <mark>365</mark>	365	58 365	365	2 58 > 865	365	250
Process 4 <mark>365</mark>	365	258 - 865	365	1 <mark>50 ></mark> 365	- 365 - 2	<mark></mark> 250—_▶_
Process 5 365	365	350 - 1 865	365	50 <mark>865</mark>	365 . 1	2 <u>50</u>
Process 6 <mark>365</mark>	365	2 50 3 65	365 - 2 7	9 <mark>50 ></mark> 865	216 1 365	<u>270</u>
Process 7 365	365	350 - 1 865	365	<mark>958 ⊳</mark> 765		<u>250 - ></u>
Process 8>365	365	250 265	365	2 58 - 865	365	208
Process 9 365	365	200 ≥ 865	365	<mark>200 ⊳</mark> 365	- 1 365 - 1 1	
Process 10 365	365	2.8 2 665	365 -4 71 4	<mark>.0 ≥</mark> 365	365	250
Process 11 365	365	3 20 - 2 65	- <u> </u>	<mark>9,50 ≥</mark> 365	365 - 2	<u> 50 > </u>
Process 12 365	365	200 - 2 65	<u>216</u> 17 365 1 17	2 00 - 2 65	365	250
Process 13 365	365	4 1 1 600 ≥ 365	- 365 - 1	920 - 2 65	- 365 - 7	
Process 14 365	365	2 58 - 865	416 365 365	2.00 865	365 - 4, 21	2,50
Process 15 365	365	4 1 4 5 5 565	365	468 5 65	365	2.0
Process 10 665	365	4 6 5	365 4	2.00 2.000	365	200
Process 1 665	- 365	2.00 565	- 365 - 2 AT	250 P 665	365	2.0
Process 1 P665	365	2.50 2555	365 44 7	2.50 2.555	365	2.8
Process 19 365	365	2.00 2 665		9.50 × 565	365 -216 -	<u> </u>
Process 20 365	365	N 200 2005		2.30 2655	365	
Process 21 365	365		365 - 47	900 P665	365 H. 1	
Process 22 365	365		SUD	2.50 2.565		
Process 23 365	365	4 0 00 0005	- <u>- 565</u> - 1	2,00 2665 Second Sec		200
Process 2 P65	365			2.0 565		200
Process 2 765	565		360 10		560 L / P	200
Process 26 565	365		365 4	250 2655	300	250
Process 2P655	A 205				201 300 201	250
Process 200	365			200 2000 550 200 200		
Process 23 665	365			200 0000		0.50
Process 51-pb5						2.0
Frucess at 660	300 213	2.00 2.00	1000		200 210 22.0	

By switching to non-blocking communication we have reduced the overall execution time.Much of the remaining time is from start-upWe have eliminated the sever imbalance in wait time

- There is still a high ratio of MPI to application
 - Probably due to not having a large enough problem size

Another example

Parallel sort

Each process sorts its portion of the data and sends the results to process 0 Process 0 merges the results into a final sort

Activity Chart

9/2/2004

Timeline

9/2/2004

Message statistics

9/2/2004

Each process still sorts its local data

Pass the data based on a tree algorithm, with half the processes receiving data and merging it

Continue up the tree to the root

9/2/2004

💿 Vampir 4.0 - Timeline						四
	sort_tr	ee.stf (13.333 ns -	7.226 s = 7.226	is)		
<u>1.0</u> s	2.0 s	3.0s 4	.0 s 5.()s 6.()s 7.0 s	
Process 0 381-7 247 361	61 User_Code	lser_Code	User_Code		User_Code	MPI
Process 1 361 247 361	861 User_Code	lser_Code				Application
Process 2 361 240 247 361	861 User_Code					
Process 3 361 361 361	861 User_Code					
Process 4 361 248 247 361	861					
Process 5 361 247 361	861					
Process 6 361 248 247 361	361					
Process 7 361 247 361	361					
Process 8 361 243 247 361						
Process 9 361 247 361						
Process 10 361 247 361						
Process 11 361 361						
Process 12 361 249 247 361						
Process 13 361 361						
Process 14 361 243 361						
Process 15 361 243 247 361						
Process 16 361 243 247 361						
Process 17 361 361						
Process 18 361 243 247 361			1	!		
Process 19 361 361 361			1	!		
Process 20 <mark>361 243 - 247 361</mark>				1		
Process 21 361 247 361			1	1		
Process 22 361 247 361			1	1	I I I I	
Process 23 361 243 247 361			1	1	I I I I	
Process 24 361 248 247 361				1	1 I 1 I	
Process 25 361 246 247 361				1		
Process 26 361 243 2 247 361				1		
Process 27 361 243 247 361				1		
Process 28 361 243 2 247 361				1		
Process 29 361 243 247 361				1		
Process 30 361				1		
Process 31 361 243 247 361				1		

9/2/2004

9/2/2004

9/2/2004

Vampir 4.0 - Activity Chart Process 0									
redt	black_icomm.stf (Times, 13.333 ns-0.698 s) (Per Process)								
Sum	0.663 s								
User_Code	0.261 s								
MPI_Comm_split	0.257 s								
Red-Black	51,285 ms								
MPI_Allreduce	31.154 ms								
MPI_Recv	25.107 ms								
Exchangered	11.063 ms								
Exchangeblack	11.03 m\$								
MPI_Isend	8.787 m\$								
MPI_Waitall	5.715 ms								
Initialisation	0.158 ms								
MPI_Finalize	0.135 ms								
MPI_Comm_rank	0.117 ms								
MPI_Bcast	0.114 ms								
MPI_Wtime	91.053 us								
MPI_Comm_size	25.24 us								
	0.1 s 0.2 s 0.3 s 0.4 s 0.5 s 0.6 s 0.7 s								

9/2/2004

9/2/2004

• Vampir 4.0 -	Activity	y Chart I	Process	; 0				四
redblack_ic	omm.stf	(Times,	13,333	ns-0,698 s) (Per	Process)	(Inclusive)	
User_Code : Initialisation : MPI_Comm_split : Red-Black : Exchangeblack : MPI_Allreduce : Exchangered : MPI_Recv : MPI_Send : MPI_Send : MPI_Finalize : MPI_Comm_rank : MPI_Comm_rank : MPI_Comm_size :	0.663 : 0.257 : 0.257 : 0.144 : 35.748 31.154 25.955 25.107 8.787 : 0.135 : 0.135 : 0.117 : 0.114 : 91.053 25 : 24 :	S S S MS MS MS MS NS NS NS NS NS NS						
sum:	1.454 s	3						

Displays

💽 Van	npir 4.0							巴四
File	<u>G</u> lobal	Displays	Process	Displays	Filter <u>s</u>	Preferences	Extras	Help
0								

Timeline Activity Chart Summary Chart Message Statistics File I/O Statistics

Global Timeline Display

Context menu is activated with a right mouse click inside any display window Zoom in by selecting start of desired region, left click held, drag mouse to end of desired region and release Can zoom in to unlimited depth

Step out of zooms from context menu

Activity Charts

Default is pie chart, but can also use histograms or table mode Can select different activities to be shown Can hide some activities Can change scale in histograms

Summary Charts

Shows total time spent on each activity

- Can be sum of all processors or average for each processor
- Similar context menu options as activity charts

Default display is horizontal histogram, but can also be vertical histogram, pie chart, or table

Communication Statistics

Shows matrix of comm statistics

- Can show total bytes, total msgs, avg msg size, longest, shortest, and transmission rates
- Can zoom into sub-matrices
- Can get length statistics
- Can filter messages by type (tag) and communicator

Tracefile Size

- Often, the trace file from a fully instrumented code grows to an unmanageable size
 - > Can limit the problem size for analysis
 - > Can limit the number of iterations
 - > Can use the vampirtrace API to limit size
 - vttraceoff (): Disables tracing
 - vttraceon(): Re-enables tracing

- First, make sure there is available speedup in the MPI routines
 - > Use a profiling tool such as VAMPIR
 - If the total time spent in MPI routines is a small fraction of total execution time, there is probably not much use tuning the message passing code
 - BEWARE: Profiling tools can miss compute cycles used due to non-blocking calls!

- If MPI routines account for a significant portion of your execution time:
 - > Try to identify communication hot-spots
 - Will changing the order of communication reduce the hotspot problem?
 - Will changing the data distribution reduce communication without increasing computation?
 - Sending more data is better than sending more messages

- > Are you using non-blocking calls?
 - Post sends/receives as soon as possible, but don't wait for their completion if there is still work you can do!
 - If you are waiting for long periods of time for completion of non-blocking sends, this may be an indication of small system buffers. Consider using buffered mode.

- > Are you sending lots of small messages?
 - Message passing has significant overhead (latency). Latency accounts for a large proportion of the message transmission time for small messages.
 - Consider marshaling values into larger messages if this is appropriate
 - If you are using derived datatypes, check if the MPI implementation handles these types efficiently
 - Consider using MPI_PACK where appropriate
 - » dynamic data layouts or sender needs to send the receiver meta-data.

- > Use collective operations when appropriate
 - many collective operations use mechanisms such as broadcast trees to achieve better performance
- > Is your computation to communication ratio too small?
 - You may be running on too many processors for the problem size

MPI_CHECK

Tool developed at the University of Iowa for debugging MPI programs written in free or fixed format Fortran 90 and Fortran 77

You can download your own free copy of the software and license at <u>http://www.hpc.iastate.edu/MPI-CHECK.htm</u>

MPI-CHECK does both compile-time and runtime error checking

Compile Time Error Checking

Checks for consistency in the data type of each argument

- Checks the number of arguments
- Checks the little used intent of each argument

Run-Time Error Checking

Buffer data type inconisistency

This error is flagged if the Fortran data type of the send or receive buffer of an MPI send or receive call is inconsistent with the declared datatype in the MPI call

Buffer out of bounds

This error is flagged if either the starting or ending address of a send or receive buffer is outside the declared bounds of the buffer

Improper placement of MPI_Init or MPI_Finalize

Run-Time Error Checking

Illegal message length

Invalid MPI Rank

Actual or potential deadlock

Any cycle of blocking send calls creates a potential for deadlock. While this deadlock may not be manifest on all machines, MPI-CHECK will detect if the potential for deadlock exists.

Using MPI-CHECK

Programs are compiled the same way as normal, except mpicheck is the first command on the command line:

f90 -o a.out -O3 main.f90 sub1.f90 sub2.f90 -Impi

Becomes

mpicheck f90 –o a.out –O3 main.f90 sub1.f90 sub2.f90 –lmpi

Source files are required, rather than object files Programs are ran just as without MPI-CHECK

Remarks

While MPI-CHECK does not flag all possible MPI errors, and it may flag some instances of correct usage as potential errors, it has been shown to be very useful in discovering many subtle, yet common, MPI programming errors. It is easy to use and adds little overhead to the execution times of programs.

More information on MPI-CHECK and MPI-CHECK2 (deadlock detection) can be found at:

http://www.hpc.iastate.edu/Papers/mpicheck/mpicheck1.htm and

http://www.hpc.iastate.edu/Papers/mpicheck2/mpicheck2.htm

