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Course Outline

Day 1
Morning - Lecture

Communicators/Groups
Extended Collective Communication
One-sided Communication

Afternoon - Lab
Hands on exercises demonstrating the use of 

groups, extended collectives, and one-sided 
communication
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Course Outline (cont)

Day 2
Morning – Lecture

MPI-I/O
Afternoon – Lab

Hands on exercises using MPI-I/O
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bCourse Outline (cont)

Day 3
Morning – Lecture

Performance Analysis of MPI programs
TAU
Vampir/VampirTrace

Afternoon – Lab
Hands on exercises using Vampir and 

VampirTrace
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Communicators and Groups

Introduction
Group Management
Communicator Management
Intercommunicators
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Communicators and Groups

Many MPI users are only familiar with the communicator 
MPI_COMM_WORLD

A communicator can be thought of a handle to a group
A group is an ordered set of processes

Each process is associated with a rank
Ranks are contiguous and start from zero

For many applications (dual level parallelism) 
maintaining different groups is appropriate

Groups allow collective operations to work on a subset 
of processes

Information can be added onto communicators to be 
passed into routines
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Communicators and Groups(cont)

While we think of a communicator as spanning 
processes, it is actually unique to a process

A communicator can be thought of as a handle 
to an object (group attribute) that describes a 
group of processes

An intracommunicator is used for 
communication within a single group

An intercommunicator is used for 
communication between 2 disjoint groups
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Communicators and Groups(cont)

MPI_COMM_WORLD
Comm1

P3

P2

P1

P0

Comm4

Comm5

Comm2
Comm3
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Communicators and Groups(cont)
Refer to previous slide

There are 4 distinct groups
These are associated with intracommunicators 

MPI_COMM_WORLD, comm1, and comm2, and comm3
P3 is a member of 2 groups and may have different ranks in 

each group(say 3 & 4)
If P2 wants to send a message to P1 it must use 

MPI_COMM_WORLD (intracommunicator) or comm5 
(intercommunicator)

If P2 wants to send a message to P3 it can use 
MPI_COMM_WORLD (send to rank 3) or comm1 (send to 
rank 4)

P0 can broadcast a message to all processes associated with 
comm2 by using intercommunicator comm5
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Group Management

All group operations are local
As will be clear, groups are initially not 

associated with communicators
Groups can only be used for message 

passing within a communicator
We can access groups, construct groups, 

and destroy groups
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Group Accessors

MPI_GROUP_SIZE(group, size, ierr)
MPI_Group group int size (C)
INTEGER group, size, ierr (Fortran)
This routine returns the number of processes in the 

group
MPI_GROUP_RANK(group, rank, ierr)

MPI_Group group int rank (C)
INTEGER group, rank, ierr (Fortran)
This routine returns the rank of the calling process



9/2/2004 David Cronk

Group Accessors (cont)

MPI_GROUP_TRANSLATE_RANKS (group1, 
n, ranks1, group2, ranks2, ierr)
MPI_Group group1, group2 int n, *ranks1, *ranks2 
INTEGER group1, n, ranks(), group2, ranks(), ierr 
This routine takes an array of n ranks (ranks1) which 

are ranks of processes in group1.  It returns in 
ranks2 the corresponding ranks of the processes 
as they are in group2

MPI_UNDEFINED is returned for processes not in 
group2
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Groups Accessors (cont)
MPI_GROUP_COMPARE (group1, group2 

result, ierr)
MPI_Group group1, group2 int result
INTEGER group1, group2, result, ierr (Fortran)
This routine returns the relationship between group1 

and group2
If group1 and group2 contain the same processes, 

ranked the same way, this routine returns 
MPI_IDENT

If group1 and group2 contain the same processes, 
but ranked differently, this routine returns 
MPI_SIMILAR

Otherwise this routine returns MPI_UNEQUAL
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Group Constructors

Group constructors are used to create new groups from existing 
groups

Base group is the group associated with MPI_COMM_WORLD 
(use mpi_comm_group to get this)

Group creation is a local operation
No communication needed

Following group creation, no communicator is associated with the
group
No communication possible with new group

Each process in a new group MUST create the group so it is 
identical!

Groups are created through some communicator creation routines 
covered later
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Group Constructors (cont)

MPI_COMM_GROUP (comm, group, ierr)
MPI_Comm comm MPI_Group group (c)
INTEGER comm, group, ierr (Fortran)
This routine returns in group the group 

associated with the communicator comm
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Group Constructors (cont)
Set Operations

MPI_GROUP_UNION(group1, group2, 
newgroup, ierr)

MPI_GROUP_INTERSECTION(group1, 
group2, newgroup, ierr)

MPI_GROUP_DIFFERENCE(group1, 
group2, newgroup, ierr)
MPI_Group group1, group2, *newgroup (C)
INTEGER group1, group2, newgroup, ierr 

(Fortran)



9/2/2004 David Cronk

Group Constructors (cont)
Set Operations

Union: Returns in newgroup a group consisting 
of all processes in group1 followed by all 
processes in group2, with no duplication

Intersection: Returns in newgroup all processes 
that are in both groups, ordered as in group1

Difference: Returns in newgroup all processes 
in group1 that are not in group2, ordered as 
in group1
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Group Constructors (cont)
Set Operations

Let group1 = {a,b,c,d,e,f,g} and group2 = 
{d,g,a,c,h,I}

MPI_Group_union(group1,group2,newgroup)
Newgroup = {a,b,c,d,e,f,g,h,I}

MPI_Group_intersection(group1,group2,newgro
up)
Newgroup = {a,c,d,g}

MPI_Group_difference(group1,group2,newgrou
p)
Newgroup = {b,e,f}
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Group Constructors (cont)
Set Operations

Let group1 = {a,b,c,d,e,f,g} and group2 = 
{d,g,a,c,h,I}

MPI_Group_union(group2,group1,newgroup)
Newgroup = {d,g,a,c,h,l,b,e,f}

MPI_Group_intersection(group2,group1,newgro
up)
Newgroup = {d,g,a,c}

MPI_Group_difference(group2,group1,newgrou
p)
Newgroup = {h,i}
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Group Constructors (cont)

MPI_GROUP_INCL(group, n, ranks, 
newgroup, ierr)
MPI_Group group, *newgroup int n, *ranks
INTEGER group, n, ranks(), newgroup, ierr
This routine creates a new group that 

consists of all the n processes with ranks 
ranks[0]..ranks[n-1]

The process with rank i in newgroup has 
rank ranks[i] in group
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Group Constructors (cont)

MPI_GROUP_EXCL(group, n, ranks, 
newgroup, ierr)
MPI_Group group, *newgroup int n, *ranks
INTEGER group, n, ranks(), newgroup, ierr
This routine creates a new group that consists of all 

the processes in group after deleting processes 
with ranks ranks[0]..ranks[n-1]

The relative ordering in newgroup is identical to the 
ordering in group
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Group Constructors (cont)

MPI_GROUP_RANGE_INCL(group, n, ranges, 
newgroup, ierr)
MPI_Group group, *newgroup int n, ranges[][3]
INTEGER group, n, ranges(*,3), newgroup, ierr)
Ranges is an array of triplets consisting of start rank, 

end rank, and stride
Each triplet in ranges specifies a sequence of ranks 

to be included in newgroup
The ordering in newgroup is as specified by ranges
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Group Constructors (cont)

MPI_GROUP_RANGE_EXCL(group, n, ranges, 
newgroup, ierr)
MPI_Group group, *newgroup int n, ranges[][3]
INTEGER group, n, ranges(*,3), newgroup, ierr)
Ranges is an array of triplets consisting of start rank, 

end rank, and stride
Each triplet in ranges specifies a sequence of ranks 

to be excluded from newgroup
The ordering in newgroup is identical to that in group
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Group Constructors (cont)

Let group = {a,b,c,d,e,f,g,h,i,j}
n=5, ranks = {0,3,8,6,2}
ranges= {(4,9,2),(1,3,1),(0,9,5)}
MPI_Group_incl(group,n,ranks,newgroup)

newgroup = {a,d,I,g,c}
MPI_Group_excl(group,n,ranks,newgroup)

newgroup = {b,e,f,h,j}
MPI_Group_range_incl(group,n,ranges,newgroup)

newgroup = {e,g,I,b,c,d,a,f}
MPI_Group_range_excl(group,n,ranges,newgroup)

newgroup = {h}
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Communicator Management

Communicator access operations are local, 
thus requiring no interprocess communication

Communicator constructors are collective and 
may require interprocess communication

All the routines in this section are for 
intracommunicators, intercommunicators will 
be covered separately



9/2/2004 David Cronk

Communicator Accessors
MPI_COMM_SIZE (MPI_Comm comm, int size, ierr)

Returns the number of processes in the group associated with 
comm

MPI_COMM_RANK (MPI_Comm comm, int rank, ierr)
Returns the rank of the calling process within the group 

associated with comm
MPI_COMM_COMPARE (MPI_Comm comm1, 

MPI_Comm comm2, int result, ierr) returns:
MPI_IDENT if comm1 and comm2 are handles for the same 

object
MPI_CONGRUENT if comm1 and comm2 have the same 

group attribute
MPI_SIMILAR if the groups associated with comm1 and 

comm2have the same members but in different rank order
MPI_UNEQUAL otherwise
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Communicator Constructors

MPI_COMM_DUP (MPI_Comm comm, 
MPI_Comm newcomm, ierr)

This routine creates a duplicate of comm
newcomm has the same fixed attributes as 

comm
Defines a new communication domain

A call to MPI_Comm_compare (comm, newcomm, 
result) would return MPI_IDENT

Useful to library writers and library users
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Communicator Constructors
MPI_COMM_CREATE (MPI_Comm comm,MPI_Group 

group, MPI_Comm newcomm, ierr)
This is a collective routine, meaning it must be called by 

all processes in the group associated with comm
This routine creates a new communicator which is 

associated with group
MPI_COMM_NULL is returned to processes not in group
All group arguments must be the same on all calling 

processes
group must be a subset of the group associated with 

comm
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Communicator Constructors

CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)
CALL MPI_COMM_SIZE (MPI_COMM_WORLD, size, ierr)
CALL MPI_COMM_GROUP (MPI_COMM_WORLD, wgroup, ierr)

ranges (1,1) = 10
ranges(1,2) = size-1
ranges(1,3) = 1
CALL MPI_GROUP_RANGE_INCL (wgroup, 1, ranges, newgroup, ierr)
CALL MPI_COMM_CREATE (MPI_COMM_WORLD, newgroup, newcom, ierr)

newgroup is set to MPI_COMM_NULL in processes 0 
through 9 of MPI_COMM_WORLD
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Communicator Constructors

CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)
CALL MPI_COMM_SIZE (MPI_COMM_WORLD, size, ierr)
CALL MPI_COMM_GROUP (MPI_COMM_WORLD, wgroup, ierr)

ranges (1,1) = 10
ranges(1,2) = size-1
ranges(1,3) = 1
CALL MPI_GROUP_RANGE_INCL (wgroup, 1, ranges, newgroup, ierr)
CALL MPI_COMM_CREATE (MPI_COMM_WORLD, newgroup, newcom, ierr)
CALL MPI_GROUP_RANGE_EXCL (wgroup, 1, ranges, newgroup, ierr)
CALL MPI_COMM_CREATE (MPI_COMM_WORLD, newgroup, newcom, ierr)
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Communicator Constructors
MPI_COMM_SPLIT(MPI_Comm comm, int

color, int key, MPI_Comm newcomm, ierr)
MPI_Comm comm, newcomm int color, key
INTEGER comm, color, key, newcomm, err
This routine creates as many new groups and 

communicators as there are distinct values of 
color

The rankings in the new groups are determined by 
the value of key, ties are broken according to the 
ranking in the group associated with comm

MPI_UNDEFINED is used as the color for processes 
to not be included in any of the new groups
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Communication Constructors

00183913210Key

3U13373113UColor

kjihgfedcbaProc
ess

109876543210Rank

Both process a and j are returned MPI_COMM_NULL
3 new groups are created

{i, c, d}
{k, b, e, g, h}
{f}
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Communication Constructors

CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)

IF (myrank .ge. 10) THEN
color = 0

ELSE
color = MPI_UNDEFINED

ENDIF

CALL MPI_COMM_SPLIT (MPI_COMM_WORLD, color, 1, newcomm, ierr)
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Communication Constructors

CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)

IF (myrank .ge. 10) THEN
color = 0

ELSE
color = 1

ENDIF

CALL MPI_COMM_SPLIT (MPI_COMM_WORLD, color, 1, newcomm, ierr)
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Group 1

Group 2
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Destructors

The communicators and groups from a 
process’ viewpoint are merely handles

Like all handles in MPI, there is a limited 
number available – YOU CAN RUN 
OUT

MPI_GROUP_FREE (MPI_Group group, 
ierr)

MPI_COMM_FREE (MPI_Comm comm, 
ierr)
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Intercommunicators

Intercommunicators are associated with 2 
groups of disjoint processes

Intercommunicators are associated with a 
remote group and a local group

The target process (destination for send, 
source for receive) is its rank in the 
remote group

A communicator is either intra or inter, 
never both
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Intercommunicators

Intercommunicator
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Intercommunicator Accessors
MPI_COMM_TEST_INTER (MPI_Comm 

comm, int flag, ierr)
This routine returns true if comm is an 

intercommunicator, otherwise, false
MPI_COMM_REMOTE_SIZE(MPI_Comm 

comm, int size, ierr)
This routine returns the size of the remote group 

associated with intercommunicator comm
MPI_COMM_REMOTE_GROUP(MPI_Comm 

comm, MPI_Groupgroup, ierr)
This routine returns the remote group associated 

with intercommunicator comm
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Intercommunicator Constructors

The communicator constructors described 
previously will return an intercommunicator if 
the are passed intercommunicators as input
MPI_COMM_DUP: returns an intercommunicator 

with the same groups as the one passed in
MPI_COMM_CREATE: each process in group A 

must pass in group the same subset of group A 
(A1).  Same for group B (B1).  The new 
communicator has groups A1 and B1 and is only 
valid on processes in A1 and B1

MPI_COMM_SPLIT: As many new communicators 
as there are distinct pairs of colors are created
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MPI_COMM_CREATE

Intercomm1 is an intercommunicator that relates to groups A = 
{a,b,c,d,e,f,g,h,I,j} and groups B = {k,l,m,n,o,p,q,r,s,t}

All processes in group A create a new group A’ = {f, g, h, I, j}
All processes in group B create a new group B’ = {p, q, r, s, t}
All processes in group A call MPI_Comm_create with 

comm=intercomm1 and group = A’
All processes in group B call MPI_Comm_create with

comm=intercomm1 and group = B’
Processes {a,b,c,d,e, and k,l,m,n,o} are each returned newcomm = 

MPI_COMM_NULL
All processes in A’ are returned an intercommunicator with A’ as

the local group and B’ as the remote group
All processes in B’ are returned an intercommunicator with B’ as

the local group and A’ as the remote group



9/2/2004 David Cronk

MPI_COMM_SPLIT

00183913210Key

3U13371133UColor

kjihgfedcbaProc
ess

109876543210Rank

Group A

00183913210Key

3U17333U135Color

vutsrqponmlProc
ess

109876543210Rank

Group B
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MPI_COMM_SPLIT

Processes a, j, l, o, and u would all have 
MPI_COMM_NULL returned in 
newcomm

newcomm1 would be associated with 2 
groups: {e, i, d} and {t, n}

newcomm2 would be associated with 2 
groups: {k, b, c, g, h} and {v, m, p, r, q}

newcomm3 would be associated with 2 
groups: {f} and {s}
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Intercommunicator Constructors

MPI_INTERCOMM_CREATE (local_comm, local_leader, 
bridge_comm, remote_leader, tag, newintercomm, ierr)

This routine is called collectively by all processes in 2 disjoint 
groups

All processes in a particular group must provide matching 
local_comm and local_leader arguments

The local leaders provide a matching bridge_comm (a 
communicator through which they can communicate), in  
remote_leader the rank of the other leader within bridge_comm, 
and the same tag

The bridge_comm, remote_leader, and tag are significant only at 
the leaders

There must be no pending communication across bridge_comm 
that may interfere with this call
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Intercommunicators

comm1
comm2
comm3
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Communication Constructors

CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)

IF (myrank .ge. 10) THEN
color = 0

ELSE
color = 1

ENDIF

CALL MPI_COMM_SPLIT (MPI_COMM_WORLD, color, 1, newcomm, ierr)
CALL MPI_INTERCOMM_CREATE (newcom, 0, MPI_COMM_WORLD,

0, 111, newintercomm, ierr)

Now processes in each group can communicate with the intercommunicator.
For instance, process 0 of MPI_COMM_WORLD can broadcast
a value to all the processes with rank >= 10 in MPI_COMM_WORLD
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1              2           3               4            5       6            7              8            90

10             11            12             13              14 15               16           17               18     19

20           21               22           23              24  25              26            27              28      29

Intercommunicator interA

MPI_COMM_SPLIT (…..) Group of masters
Group of slaves

MPI_INTERCOMM_CREATE(..)
Process 0 call MPI_BCAST with interA….
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Intercommunicators

MPI_INTERCOMM_MERGE (MPI_Comm intercomm, 
int high, MPI_Comm newintracomm, ierr)
This routine creates an intracommunicator from a union 

of the two groups associated with intercomm
High is used for ordering.  All process within a particular 

group must pass the same value in for high (true or 
false)

The new intracommunicator is ordered with the high 
processes following the low processes

If both groups pass the same value for high, the ordering 
is arbitrary
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TAKE
A 

BREAK
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Extended Collective 
Communication

The original MPI standard did not allow 
for collective communication across 
intercommunicators

MPI-2 introduced this capability
Useful in pipelined algorithms where data 

needs to be moved from one group of 
processes to another
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Three types of collective

Rooted:
MPI_Gather and MPI_Gatherv
MPI_Reduce
MPI_Scatter and MPI_Scatterv
MPI_Bcast

All-to-all:
MPI_Allgather and MPI_Allgatherv
MPI_Alltoall, MPI_Alltoallv, and MPI_Alltoallw
MPI_Allreduce, MPI_Reduce_scatter

Other:
MPI_Scan, MPI_Exscan, and MPI_Barrier
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Data movement in extended 
collectives

Rooted:
One group (root group)  contains the root process 

while the other group (leaf group) has no root
Data moves from the root to all the processes in the 

leaf group (one-to-all) or vice-versa (all-to-one)
The root process uses MPI_ROOT for its root 

argument while all other processes in the root 
group pass MPI_PROC_NULL

All processes in the leaf group pass the rank of the 
root relative to the root group
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Data movement in extended 
collectives

All-to-all
Data sent by processes in group A are 

received by processes in group B while 
data sent by processes in group B are 
received by processes in group A
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MPI_Barrier (comm, ierr)

Syntactically identical to a situation where 
all processes are in the same group and 
call a barrier with the intracommunicator 
associated with said group

That is, all processes in group A may exit 
the barrier after all processes in group B 
have entered the call, and vice-versa
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MPI_BCAST (buff, count, dtype, 
root, comm, ierr)

Data is broadcast from the root to all processes 
in the leaf group

Root group: Root process passes MPI_ROOT 
for the root argument while others pass 
MPI_PROC_NULL.  Buff, count, and dtype
are not significant in non-root processes

Leaf group: All processes pass the same 
argument in root, which is the rank of the root 
process in the root group.  count and type
must be consistent with count and type on the 
root
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MPI_Bcast

root

MPI_BCAST
Leaf groupRoot group



9/2/2004 David Cronk

MPI_Gather (sbuf, scount, stype, 
rbuf,rcount,rtype,root, comm,ierr)
Data is gathered in rank order from all the processes in 

the leaf group into rbuf of the root
Root group: Root process passes MPI_ROOT for the 

root argument while others pass MPI_PROC_NULL. 
Leaf group: All processes pass the same argument in 

root, which is the rank of the root process in the root 
group. scount and stype must be consistent with 
rcount and rtype on the root

Send arguments are only meaningful at processes in 
the leaf group

Receive arguments are only meaningful at the root
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MPI_GATHER

Root group

root

Leaf group
MPI_GATHER
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MPI_Scatter (sbuf, scount, stype, 
rbuf,rcount,rtype,root, comm,ierr)
Data is scattered in rank order from the root to all the 

processes in the leaf group
Root group: Root process passes MPI_ROOT for the 

root argument while others pass MPI_PROC_NULL. 
Leaf group: All processes pass the same argument in 

root, which is the rank of the root process in the root 
group. rcount and rtype must be consistent with 
scount and stype on the root

Receive arguments are only meaningful at processes in 
the leaf group

Send arguments are only meaningful at the root
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MPI_SCATTER

Root group

root

Leaf group
MPI_SCATTER
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MPI_Allgather (sbuf,scount,stype,
rbuf,rcount,rtype, comm,ierr)

All arguments are meaningful at every 
process

Data from sbuf at all processes in group A 
is concatenated in rank order and the 
result is stored at rbuf of every process 
in group B and vice-versa

Send arguments in A must be consistent 
with receive arguments in B, and vice-
versa
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MPI_ALLGATHER

MPI_ALLGATHER B
A
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MPI_Alltoall (sbuff, scount, stype, 
rbuf, rcount, rtype, comm, ierr)

Result is as if each process in group A scatters 
its sbuff to each process in group B and each 
process in group B scatters its sbuff to each 
process in group A

Data is gathered in rbuff in rank order according 
to the rank in the group providing the data

Each process in group A sends the same 
amount of data to group B and vice-versa
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MPI_ALLTOALL

MPI_ALLTOALL
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MPI_Reduce (sbuf, rbuf, count, 
datatype, op, root, comm, ierr)
Root group: Root process passes MPI_ROOT for the 

root argument while others pass MPI_PROC_NULL
Leaf group: All processes pass the same argument in 

root, which is the rank of the root process in the root 
group

sbuf is only meaningful at processes in the leaf group
rbuf is only meaningful at the root
The result is as if the leaf group did a regular reduce 

except the results are stored at root
count, datatype, and op should be meaningless 

at non-root processes in root group
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MPI_Allreduce (sbuf, rbuf, count, 
datatype, op, comm, ierr)
The result is as if group A did a regular reduce 

except the results are stored at all the 
process in group B and vice versa

Count should be the same at all processes
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MPI_Reduce_scatter (sbuf, rbuf, 
rcounts, datatype, op, comm, ierr)
The result is as if group A did a regular reduce 

with count equal to the sum of rcounts
followed by a scatter to group B, and vice-
versa

rcount should be the same at all processes in 
each group and the sum of all the rcounts in 
group A should equal the sum of all rcounts in 
group B
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MPI_REDUCE_SCATTER

6   9  1   5 9   8   2   1 0   9   7  5

0   3   5   9 6   5   0   9 2   1   9  7

9   2   4   8 6   5   9  8 3   2   0  8

7  13 17  5

5   3  11  9

1210  6  2

4   7    9  3 2   1   5   4 7   6    4  2

3   6   8  2 3   2   6   5 5   4   2  0

7  13 17  5 5   3  11  9 1210  6  21514 10 22 2118 11 18 5  12 16 20

1514 10 22 2118 

1118 5  12 16 20

op = SUM, rcounts = 6 op = SUM, rcounts = 4
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MPI_Scan and MPI_Exscan

There are no extended collective 
operations for these 2 routines
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One Sided Communication

One sided communication allows shmem style 
gets and puts

Only one process need actively participate in 
one sided operations

With sufficient hardware support, remote 
memory operations can offer greater 
performance and functionality over the 
message passing model

MPI remote memory operations do not make 
use of a shared address space
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One Sided Communication

By requiring only one process to 
participate, significant performance 
improvements are possible
› No implicit ordering of data delivery
› No implicit synchronization

Some programs are more easily written 
with the remote memory access (RMA) 
model
› Global counter
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One Sided Communication

RMA operations require 3 steps
1. Define an area of memory that can be 

used for RMA operations (window)
2. Specify the data to be moved and 

where to move it
3. Specify a way to know the data is 

available
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One Sided Communication

Get

Put

WindowsAddress space
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One Sided Communication

Memory Windows
A memory window defines an area of memory that 

can be used for RMA operations
A memory window must be a contiguous block of 

memory
Described by a base address and number of bytes
Window creation is collective across a 

communicator
A window object is returned.  This window object is 

used for all subsequent RMA calls
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One Sided Communication

MPI_WIN_CREATE (void *base, MPI_Aint size, 
int disp_unit, MPI_Info info, MPI_Comm 
comm, MPI_Win *win, ierr)
base is the base address of the window
size is the size in bytes of the window
disp_unit is the displacement unit for data access (1 

for bytes)
info is used for performance tuning
comm is the communicator over which the call is 

collective
win is the window object returned
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One Sided Communication

Data movement
MPI_PUT
MPI_GET
MPI_ACCUMULATE

All data movement routines are non-
blocking

Synchronization call is required to ensure 
operation completion



9/2/2004 David Cronk

One Sided Communication
MPI_PUT (void *origin_addr, int origin_count, MPI_Datatype 

origin_datatype, int target_rank, MPI_Aint target_disp, int 
target_count, MPI_Datatype target_datatype, MPI_Win 
window, ierr)
origin_addr is the address in the calling process of the data to

be transferred.  It need not be within a memory window
origin_count is the number of elements of type origin_datatype 

to be transferred
target_rank is the rank within the window object of the 

destination process
target_disp is the offset into the window on the destination 

process.  This is in terms of disp_unit used in window 
creation on target process

target_count and target_datatype are similar to count and 
datatype used in a receive

window is the window object returned from creation



9/2/2004 David Cronk

One Sided Communication
MPI_GET (void *origin_addr, int origin_count, MPI_Datatype 

origin_datatype, int target_rank, MPI_Aint target_disp, int 
target_count, MPI_Datatype target_datatype, MPI_Win 
window, ierr)
origin_addr is the address in the calling process where the data

is to be transferred.  It need not be within a memory window
origin_count is the number of elements of type origin_datatype 

to be transferred into origin_addr
target_rank is the rank within the window object of the 

destination process
target_disp is the offset into the window on the destination 

process.  This is in terms of disp_unit used in window 
creation on target process

target_count and target_datatype are similar to count and 
datatype used in a send

window is the window object returned from creation
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One Sided Communication
MPI_ACCUMULATE (void *origin_addr, int

origin_count, MPI_Datatype origin_datatype, 
int target_rank, MPI_Aint target_disp, int
target_count, MPI_Datatype
target_datatype,MPI_Op op,MPI_Win 
window,ierr)
All arguments besides op are the same as in get and 

put
op is an MPI_Op as in MPI_Reduce
op can only be a pre-defined operation
Still a one-sided operation (not collective)
Combines communication and computation

Like a put, but with a computation
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One Sided Communication

Completing data transfers
There are a number of different ways to complete data 

transfers
The simplest is a barrier like mechanism (fence)
This mechanism can also be used to ensure data is available
The fence operation is collective across all process in the 

communicator used to create the windows
Most suitable for data parallel applications
A fence is used to separate local load/stores and RMA 

operations
Multiple RMA operations may be completed with a single call to 

fence



9/2/2004 David Cronk

One Sided Communication

MPI_WIN_FENCE (int assert, MPI_Win 
win, ierr)
assert is an integer value used to provide 

information about the fence that may allow 
an MPI implementation to do performance 
optimization

win is the window object return in the 
MPI_Win_create call
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Point-to-Point Message Passing
CALL MPI_COMM_RANK (MPI_COMM_WORLD, rank, ierr)
IF (rank .eq. 0) then

CALL MPI_ISEND (outbuff, n, MPI_INT, 1, 0, 
MPI_COMM_WORLD, request, ierr)

ELSE 
CALL MPI_IRECV (inbuff, n, MPI_INT, 0, 0, 

MPI_COMM_WORLD, request, ierr)
ENDIF
……..
Do other work
……..
CALL MPI_WAIT (request, status, ierr)
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One Sided Communication
CALL MPI_COMM_RANK (MPI_COMM_WORLD, rank, ierr)
CALL MPI_TYPE_SIZE (MPI_INT, size, ierr)
IF (rank .eq. 0) then
CALL MPI_WIN_CREATE (MPI_BOTTOM, 0, 1, MPI_INFO_NULL,

MPI_COMM_WORLD, win, ierr)
ELSE
CALL MPI_WIN_CREATE (inbuf, n*size, size, MPI_INFO_NULL,

MPI_COMM_WORLD, win, ierr)
ENDIF
CALL MPI_WIN_FENCE (0, win, ierr)
IF (rank .eq. 0) then
CALL MPI_PUT (outbuf, n, MPI_INT, 1, 0, n, MPI_INT, win, ierr)

ENDIF
………
Do other work
………
CALL MPI_FENCE (0, win, ierr)
CALL MPI_WIN_FREE (win, ierr)
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One Sided Communication

MPI_Win_fence (0, win);
MPI_Get (…. , win);
MPI_Win_fence (0, win);
A[rank] = 4;
MPI_Win_fence (0, win);
MPI_Put ( … , win);
MPI_Win_fence (0, win);

MPI_Win_create (A, …., &win);
MPI_Win_fence (0, win);
If (rank == 0) {
MPI_Put (….., win);
MPI_Put (….., win);
……
MPI_Put (….., win);

}
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One Sided Communication

Passive target RMA
Requires synchronization calls by only the process initiating 

data transfer
MPI_Win_lock and MPI_Win_unlock define an access epoch
Lock and unlock apply only to the remote memory window, not 

the entire window object
A call to unlock ensures all RMA operations performed since 

the call to lock have completed
Lock and unlock pairs are required around local access to 

memory windows as well
Locks can be shared or exclusive
Some implementations may require windows to be allocated by 

MPI_Alloc_mem
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One Sided Communication

MPI_WIN_LOCK (int locktype, int rank, int
assert, MPI_Win win,ierr)

MPI_WIN_UNLOCK (int rank, MPI_Win win, 
ierr)
Locktype can be MPI_LOCK_SHARED or 

MPI_LOCK_EXCLUSIVE
Rank is the rank of the process that owns the 

window to be accessed
Assert is an integer value used for optimization
Win is the window object of which the targeted 

window is part
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One Sided Communication

If (rank == 0) {
MPI_Win_lock (MPI_LOCK_SHARED, 1, 0, win);
MPI_Put (outbuf, n, MPI_INT, 1, 0, n, MPI_INT, win);
MPI_Win_unlock (1, win);

}
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One Sided Communication

Not widely implemented
MPICH and LAM only support active 

synchronization
Passive synchronization is in development

May be useful for applications that lend themselves 
to the get/put programming model

Evidence of some performance optimization on 
shared memory machines (and Cray!)

I have seen no evidence that there is any 
performance advantage on distributed memory 
machines. (Other than Cray!)
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Course Outline

Day 2
Morning – Lecture

MPI-I/O
Afternoon – Lab

Hands on exercises using MPI-I/O
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MPI-I/O

Introduction
› What is parallel I/O
› Why do we need parallel I/O
› What is MPI-I/O

MPI-I/O
› Terms and definitions
› File manipulation
› Derived data types and file views
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OUTLINE (cont)

MPI-I/O (cont)
› Data access

• Non-collective access
• Collective access
• Split collective access

› File interoperability
› Gotchas - Consistency and semantics
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INTRODUCTION
What is parallel I/O?

› Multiple processes accessing a single file
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INTRODUCTION
What is parallel I/O?

› Multiple processes accessing a single file
› Often, both data and file access is non-

contiguous
• Ghost cells cause non-contiguous data access
• Block or cyclic distributions cause non-

contiguous file access
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Non-Contiguous Access

File layoutLocal Mem
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INTRODUCTION
What is parallel I/O?

› Multiple processes accessing a single file
› Often, both data and file access is non-

contiguous
• Ghost cells cause non-contiguous data access
• Block or cyclic distributions cause non-

contiguous file access
› Want to access data and files with as few 

I/O calls as possible
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INTRODUCTION (cont)

Why use parallel I/O?
› Many users do not have time to learn the 

complexities of I/O optimization
› Use of parallel I/O can simplify coding

• Single read/write operation vs. multiple 
read/write operations

› Parallel I/O potentially offers significant 
performance improvement over traditional 
approaches
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INTRODUCTION (cont)

Traditional approaches
› Each process writes to a separate file

• Often requires an additional post-processing 
step

• Without post-processing, restarts must use 
same number of processor

› Result sent to a master processor, which 
collects results and writes out to disk

› Each processor calculates position in file 
and writes individually
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INTRODUCTION (cont)

What is MPI-I/O?
› MPI-I/O is a set of extensions to the 

original MPI standard
› This is an interface specification: It does 

NOT give implementation specifics
› It provides routines for file manipulation 

and data access
› Calls to MPI-I/O routines are portable 

across a large number of architectures
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MPI-I/O

Terms and Definitions
› Displacement - Number of bytes from the 

beginning of a file
› etype - unit of data access within a file
› filetype - datatype used to express access 

patterns of a file
› file view - definition of access patterns of a 

file
• Defines what parts of a file are visible to a 

process
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MPI-I/O

Terms and Definitions
› Offset - Position in the file, relative to the 

current view, expressed in terms of number 
of etypes

› file pointers - offsets into the file 
maintained by MPI

• Individual file pointer - local to the process that 
opened the file

• Shared file pointer - shared (and manipulated) 
by the group of processes that opened the file
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FILE MANIPULATION

MPI_FILE_OPEN(MPI_Comm comm, char 
*filename, int mode, MPI_Info info, MPI_File 
*fh, ierr)
Opens  the file identified by filename on each 

processor in communicator Comm
Collective over this group of processors
Each processor must use same value for mode and 

reference the same file
info is used to give hints about access patterns
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FILE MANIPULATION
MODES

MPI_MODE_CREATE
Must be used if file does not exist

MPI_MODE_RDONLY
MPI_MODE_RDWR
MPI_MODE_WRONLY
MPI_MODE_EXCL

Error if creating file that already exists
MPI_MODE_DELETE_ON_CLOSE
MPI_MODE_UNIQUE_OPEN
MPI_MODE_SEQUENTIAL
MPI_MODE_APPEND
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Hints
Hints can be passed to the I/O implementation 

via the info argument
MPI_Info info
MPI_Info_create (&info)
MPI_Info_set (info, key, value)

key is a  string specifying the hint to be applied
value is a string specifying the value key is to be set 

to
There are 15 pre-defined keys
The implementation may or may not make use 

of hints
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Hints

striping_factor
The number of I/O devices to be used

striping_unit
The number of bytes per block

collective_buffering
true or false: whether collective buffering should be performed

cb_block_size
Block size to be used for buffering (nodes access data in 

chunks this size
cb_buffer_size

The total buffer size that should be used for buffering (often 
block size times # nodes)
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FILE MANIPULATION (cont)

MPI_FILE_CLOSE (MPI_File *fh)
This routine synchronizes the file state and 

then closes the file
The user must ensure all I/O routines have 

completed before closing the file
This is a collective routine (but not 

synchronizing)
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DERIVED DATATYPES & VIEWS

Derived datatypes are not part of MPI-I/O
They are used extensively in conjunction 

with MPI-I/O
A filetype is really a datatype expressing 

the access pattern of a file
Filetypes are used to set file views
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DERIVED DATATYPES & VIEWS
Non-contiguous memory access
MPI_TYPE_CREATE_SUBARRAY

› NDIMS - number of dimensions
› ARRAY_OF_SIZES - number of elements in each dimension 

of full array
› ARRAY_OF_SUBSIZES - number of elements in each 

dimension of sub-array
› ARRAY_OF_STARTS - starting position in full array of sub-

array in each dimension
› ORDER - MPI_ORDER_(C or FORTRAN)
› OLDTYPE - datatype stored in full array
› NEWTYPE - handle to new datatype
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NONCONTIGUOUS MEMORY 
ACCESS

0,1010,0

1,1 1,100

101,1 100,100

101,101101,0
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NONCONTIGUOUS MEMORY 
ACCESS

INTEGER sizes(2), subsizes(2), starts(2), dtype, ierr
sizes(1) = 102
sizes(2) = 102
subsizes(1) = 100
subsizes(2) = 100
starts(1) = 1
starts(2)= 1
CALL MPI_TYPE_CREATE_SUBARRAY(2,sizes,subsizes,starts, 

MPI_ORDER_FORTRAN,MPI_REAL8,dtype,ierr)
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NONCONTIGUOUS FILE ACCESS

MPI_FILE_SET_VIEW(
MPI_File FH,
MPI_Offset DISP,
MPI_Datatype ETYPE,
MPI_Datatype FILETYPE,
char *DATAREP,
MPI_Info INFO,
IERROR)

header

100 bytes

Memory  layout
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NONCONTIGUOUS FILE ACCESS

The file has ‘holes’ in it from the 
processor’s perspective
MPI_TYPE_CONTIGUOUS(NUM,OLD,NEW,IERR)

NUM - Number of contiguous elements
OLD - Old data type
NEW - New data type

MPI_TYPE_CREATE_RESIZED(OLD,LB,EXTENT,
NEW, IERR)

OLD - Old data type
LB - Lower Bound
EXTENT - New size
NEW - New data type
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‘Holes’ in the file

Memory layout

File layout (2 ints followed by 3 ints)

CALL MPI_TYPE_CONTIGUOUS(2, MPI_INT, CTYPE, IERR)

DISP = 4

LB = 0

EXTENT=5*4

CALL MPI_TYPE_CREATE_RESIZED(CTYPE,LB,EXTENT,FTYPE,IERR)

CALL MPI_TYPE_COMMIT(FTYPE, IERR)

CALL MPI_FILE_SET_VIEW(FH,DISP,MPI_INT,FTYPE,’native’,MPI_INFO_NULL, IERR)
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NONCONTIGUOUS FILE ACCESS

The file has ‘holes’ in it from the 
processor’s perspective

A block-cyclic data distribution
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NONCONTIGUOUS FILE ACCESS

The file has ‘holes’ in it from the 
processor’s perspective

A block-cyclic data distribution
MPI_TYPE_VECTOR(

COUNT - Number of blocks
BLOCKLENGTH - Number of elements per block
STRIDE - Elements between start of each block
OLDTYPE - Old datatype
NEWTYPE - New datatype)
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Block-cyclic distribution

P0 P1 P2 P3

File layout (blocks of 4 ints)

CALL MPI_TYPE_VECTOR(3, 4, 16, MPI_INT, FILETYPE, IERR)

CALL MPI_TYPE_COMMIT (FILETYPE, IERR)

DISP = 4 * 4 * MYRANK

CALL MPI_FILE_SET_VIEW (FH, DISP, MPI_INT, FILETYPE, ‘native’, 
MPI_INFO_NULL, IERR)
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NONCONTIGUOUS FILE ACCESS

The file has ‘holes’ in it from the 
processor’s perspective

A block-cyclic data distribution
multi-dimensional array access
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NONCONTIGUOUS FILE ACCESS

The file has ‘holes’ in it from the 
processor’s perspective

A block-cyclic data distribution
multi-dimensional array access

MPI_TYPE_CREATE_SUBARRAY()
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Distributed array access

(0,199)

(199,0) (199,199)

(0,0)
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Distributed array access

Sizes(1) = 200

sizes(2) = 200

subsizes(1) = 100

subsizes(2) = 100

starts(1) = 0

starts(2) = 0

CALL MPI_TYPE_CREATE_SUBARRAY(2, SIZES, SUBSIZES, STARTS, 
MPI_ORDER_FORTRAN, MPI_INT, FILETYPE, IERR)

CALL MPI_TYPE_COMMIT(FILETYPE, IERR)

CALL MPI_FILE_SET_VIEW(FH, 0, MPI_INT, FILETYPE, ‘NATIVE’, 
MPI_INFO_NULL, IERR)
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NONCONTIGUOUS FILE ACCESS

The file has ‘holes’ in it from the 
processor’s perspective

A block-cyclic data distribution
multi-dimensional array distributed with a 

block distribution
Irregularly distributed arrays
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Irregularly distributed arrays

MPI_TYPE_CREATE_INDEXED_BLOCK
COUNT - Number of blocks
LENGTH - Elements per block
MAP - Array of displacements
OLD - Old datatype
NEW - New datatype
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Irregularly distributed arrays

0   1    2         4            7                 11  12        15                      20         22

0   1    2    4    7   11  12  15  20  22

MAP_ARRAY
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Irregularly distributed arrays

CALL MPI_TYPE_CREATE_INDEXED_BLOCK (10, 1, FILE_MAP, MPI_INT, 
FILETYPE, IERR)

CALL MPI_TYPE_COMMIT (FILETYPE, IERR)

DISP = 0

CALL MPI_FILE_SET_VIEW (FH, DISP, MPI_INT, FILETYPE, ‘native’, 
MPI_INFO_NULL, IERR)
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DATA ACCESS

Explicit
Offsets

Individual
File Pointers

Shared 
File Pointers

Blocking

Non-Blocking

Non-Collective
Collective
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COLLECTIVE I/O

Memory layout on 4 processor

MPI temporary memory buffer

File layout



9/2/2004 David Cronk

Two-Phase I/O

I/O Node I/O Node
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Two-Phase I/O

I/O Node I/O Node

SHUFFLE
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Two-Phase I/O with Data Sieving

I/O Node I/O Node

Shuffle and Sieve
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Collective I/O

Server-based Collective I/O
› Similar to client based, but the I/O nodes collect 

data in block sizes for file access
› No system buffer space needed on compute 

nodes
Disk-Directed I/O (DDIO)

Uses server-based collective I/O, but reads data 
from disk in a manner than minimizes disk head 
movement.  The data is transferred between I/O 
nodes and compute nodes as they are 
read/written
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DATA ACCESS ROUTINES
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EXPLICIT OFFSETS

Parameters
› MPI_File FH - File handle
› MPI_Offset OFFSET - Location in file to start
› void *BUF - Buffer to write from/read to
› int COUNT - Number of elements
› MPI_Datatype DATATYPE - Type of each element
› MPI_Status STATUS - Return status (blocking)
› MPI_Request REQUEST - Request handle (non-

blocking,non-collective)
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EXPLICIT OFFSETS (cont)

I/O Routines
› MPI_FILE_(READ/WRITE)_AT ()
› MPI_FILE_(READ/WRITE)_AT_ALL ()
› MPI_FILE_I(READ/WRITE)_AT ()
› MPI_FILE_(READ/WRITE)_AT_ALL_BEGIN ()
› MPI_FILE_(READ/WRITE)_AT_ALL_END (FH, 

BUF, STATUS)
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EXPLICIT OFFSETS

header

50 bytes

int buff[3];

count = 5;
blocklen = 2;
stride = 4

MPI_Type_vector (count, blocklen, 
stride, MPI_INT, &ftype);

MPI_Type_commit (ftype);

disp = 58;
MPI_File_open (MPI_COMM_WORLD, filename, 

MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
MPI_File_set_view (fh, disp, MPI_INT, ftype, “native”,

MPI_INFO_NULL);
MPI_File_write_at (fh, 5, buff, 3, MPI_INT, &status);
MPI_File_close (&fh);
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IDIVIDUAL FILE POINTERS

Parameters
› MPI_File FH - File handle
› void *BUF - Buffer to write to/read from
› int COUNT - number of elements to be 

read/written
› MPI_Datatype DATATYPE - Type of each element
› MPI_Status STATUS - Return status (blocking)
› MPI_Request REQUEST - Request handle (non-

blocking, non-collective)
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INDIVIDUAL FILE POINTERS

I/O Routines
› MPI_FILE_(READ/WRITE) ()
› MPI_FILE_(READ/WRITE)_ALL ()
› MPI_FILE_I(READ/WRITE) ()
› MPI_FILE_(READ/WRITE)_ALL_BEGIN()
› MPI_FILE_(READ/WRITE)_ALL_END (FH, 

BUF, STATUS)
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INDIVIDUAL FILE POINTERS

fp0 fp1 fp0 fp1 fp0 fp1

int buff[12];

count = 6;
blocklen = 2;
stride = 4

MPI_Type_vector (count, blocklen, 
stride, MPI_INT, &ftype);

MPI_Type_commit (ftype);

disp = 50 + myrank*8;
MPI_File_open (MPI_COMM_WORLD, filename, 

MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
MPI_File_set_view (fh, disp, MPI_INT, ftype, “native”,

MPI_INFO_NULL);
MPI_File_write(fh, buff, 6, MPI_INT, &status);
MPI_File_write(fh, buff, 6, MPI_INT, &status);
MPI_File_close (&fh);
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INDIVIDUAL FILE POINTERS

int buffA[10];
Int buffB[10];

count = 5;
blocklen = 2;
stride = 4

MPI_Type_vector (count, blocklen, 
stride, MPI_INT, &ftype);

MPI_Type_commit (ftype);

disp = myrank*8;
MPI_File_open (MPI_COMM_WORLD, filename, 

MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
MPI_File_set_view (fh, disp, MPI_INT, ftype, “native”,

MPI_INFO_NULL);
MPI_File_write(fh, buffA, 10, MPI_INT, &status);
MPI_File_write(fh, buffB, 10, MPI_INT, &status);
MPI_File_close (&fh);
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INDIVIDUAL FILE POINTERS

int buffA[10];
Int buffB[10];

count = 5;
blocklen = 2;
stride = 4

MPI_Type_vector (count, blocklen, 
stride, MPI_INT, &ftype);

MPI_Type_commit (ftype);

disp = myrank*8;
MPI_File_open (MPI_COMM_WORLD, filename, 

MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
MPI_File_set_view (fh, disp, MPI_INT, ftype, “native”,

MPI_INFO_NULL);
MPI_File_write(fh, buffA, 10, MPI_INT, &status);
disp = disp + 4*20;
MPI_File_set_view (fh, disp, MPI_INT, ftype, “native”,

MPI_INFO_NULL);
MPI_File_write(fh, buffB, 10, MPI_INT, &status);
MPI_File_close (&fh);



9/2/2004 David Cronk

INDIVIDUAL FILE POINTERS

int buffA[10];
Int buffB[10];

count = 5;
blocklen = 2;
stride = 4

MPI_Type_vector (count, blocklen, 
stride, MPI_INT, &atype);

extent = count*blocklen*nprocs*4;
MPI_Type_create_resized (atype, 0,

extent, &ftype);
MPI_Type_commit (ftype);

disp = myrank*8;
MPI_File_open (MPI_COMM_WORLD, filename, 

MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
MPI_File_set_view (fh, disp, MPI_INT, ftype, “native”,

MPI_INFO_NULL);
MPI_File_write(fh, buffA, 10, MPI_INT, &status);
MPI_File_write(fh, buffB, 10, MPI_INT, &status);
MPI_File_close (&fh);
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SHARED FILE POINTERS

All processes must have the same view
Parameters

› MPI_File FH - File handle
› void *BUF - Buffer
› int COUNT - Number of elements
› MPI_Datatype DATATYPE - Type of the elements
› MPI_Status STATUS - Return status (blocking)
› MPI_Requests REQUEST - Request handle (Non-

blocking, non-collective
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SHARED FILE POINTERS

I/O Routines
› MPI_FILE_(READ/WRITE)_SHARED ()
› MPI_FILE_I(READ/WRITE)_SHARED ()
› MPI_FILE_(READ/WRITE)_ORDERED ()
› MPI_FILE_(READ/WRITE)_ORDERED_B

EGIN ()
› MPI_FILE_(READ/WRITE)_ORDERED_E

ND (FH, BUF, STATUS)
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SHARED FILE POINTERS
comm = MPI_COMM_WORLD;
MPI_Comm_rank (comm, &rank);
amode = MPI_MODE_CREATE |

MPI_MODE_WRONLY;
…..
MPI_File_open (comm, logfile, amode,

MPI_INFO_NULL, &fh);
…..
do some computing
if (some event occurred) {

sprintf(buf, “Process %d: %s\n”, rank, event);
size = strlen(buf);
MPI_File_write_shared (fh, buf, size

MPI_CHAR, &status);
}
MPI_File_close (&fh);
…..

int buff[100];

MPI_File_open (comm, logfile, amode,
MPI_INFO_NULL, &fh);

MPI_File_write_ordered (fh, buf, 100,
MPI_INT, &status);

MPI_File_close (&fh);

P0 P1 Pn-1P2

100 100 100 100
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FILE INTEROPERABILITY

MPI puts no constraints on how an 
implementation should store files

If a file is not stored as a linear byte 
stream, there must be a utility for 
converting the file into a linear byte 
stream

Data representation aids interoperability
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FILE INTEROPERABILITY (cont)

Data Representation
› Native - Data stored exactly as it is in 

memory.
› Internal - Data may be converted, but may  

be readable by the same MPI 
implementation, even on different 
architectures

› external32 - This representation is defined 
by MPI.  Files written in external32 format 
can be read by any MPI on any machine
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FILE INTEROPERABILITY (cont)

Some MPI-I/O implementations (Romio), 
created files are no different than those 
created by the underlying file system.

This means normal Posix commands (cp, 
rm, etc) work with files created by these 
implementations

Non-MPI programs can read these files
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GOTCHAS - Consistency & 
Semantics

Collective routines are NOT synchronizing
Output data may be buffered

› Just because a process has completed a 
write does not mean the data is available 
to other processes

Three ways to ensure file consistency:
› MPI_FILE_SET_ATOMICITY ()
› MPI_FILE_SYNC ()
› MPI_FILE_CLOSE ()
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CONSISTENCY & SEMANTICS

MPI_FILE_SET_ATOMICITY (MPI_File fh, int
flag, ierr)
› Causes all writes to be immediately written to disk.  

This is a collective operation
MPI_FILE_SYNC (MPI_File fh, ierr)

› Collective operation which forces buffered data to 
be written to disk

MPI_FILE_CLOSE (MPI_File *fh) 
› Writes any buffered data to disk before closing the 

file
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Cached

Process 0                                                       Process 1

Write aqua dataRead magenta data

Close file

Read aqua data
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GOTCHA!!!

CALL MPI_FILE_OPEN (…, FH)

CALL 
MPI_FILE_SET_ATOMICITY 
(FH)

CALL MPI_FILE_WRITE_AT (FH, 
100, …)

CALL MPI_FILE_READ_AT (FH, 
0, …)

CALL MPI_FILE_OPEN (…, FH)

CALL 
MPI_FILE_SET_ATOMICITY 
(FH)

CALL MPI_FILE_WRITE_AT (FH, 
0, …)

CALL MPI_FILE_READ_AT (FH, 
100, …)
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GOTCHA!!!

CALL MPI_FILE_OPEN (…, FH)

CALL 
MPI_FILE_SET_ATOMICITY 
(FH)

CALL MPI_FILE_WRITE_AT (FH, 
100, …)

CALL MPI_BARRIER ()

CALL MPI_FILE_READ_AT (FH, 
0, …)

CALL MPI_FILE_OPEN (…, FH)

CALL 
MPI_FILE_SET_ATOMICITY 
(FH)

CALL MPI_FILE_WRITE_AT (FH, 
0, …)

CALL MPI_BARRIER ()

CALL MPI_FILE_READ_AT (FH, 
100, …)
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GOTCHA!!!

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH, 
100, …)

CALL MPI_FILE_CLOSE (FH)

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_READ_AT (FH, 
0, …)

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH, 
0, …)

CALL MPI_FILE_CLOSE (FH)

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_READ_AT (FH, 
100, …)
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GOTCHA!!!

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH, 
100, …)

CALL MPI_FILE_CLOSE (FH)

CALL MPI_BARRIER ()

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_READ_AT (FH, 
0, …)

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH, 
0, …)

CALL MPI_FILE_CLOSE (FH)

CALL MPI_BARRIER ()

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_READ_AT (FH, 
100, …)



9/2/2004 David Cronk

GOTCHA!!!

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH, 
100, …)

CALL MPI_FILE_SYNCH (FH)

CALL MPI_BARRIER ()

CALL MPI_FILE_READ_AT (FH, 
0, …)

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH, 
0, …)

CALL MPI_FILE_SYNCH (FH)

CALL MPI_BARRIER ()

CALL MPI_FILE_READ_AT (FH, 
100, …)
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GOTCHA!!!

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH, 
100, …)

CALL MPI_FILE_SYNCH (FH)

CALL MPI_BARRIER ()

CALL MPI_FILE_SYNCH (FH)

CALL MPI_FILE_READ_AT (FH, 
0, …)

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH, 
0, …)

CALL MPI_FILE_SYNCH (FH)

CALL MPI_BARRIER ()

CALL MPI_FILE_SYNCH (FH)

CALL MPI_FILE_READ_AT (FH, 
100, …)
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CONCLUSIONS

MPI-I/O potentially offers significant 
improvement in I/O performance

This improvement can be attained with 
minimal effort on part of the user
Simpler programming with fewer calls to I/O 

routines
Easier program maintenance due to simple 

API
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Recommended references

MPI - The Complete Reference Volume 1, The 
MPI Core

MPI - The Complete Reference Volume 2, The 
MPI Extensions

USING MPI: Portable Parallel Programming 
with the Message-Passing Interface

Using MPI-2: Advanced Features of the 
Message-Passing Interface
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Recommended references

http://pdb.cs.utk.edu
Click “View Database”
Go to “Documents”

• MPI_CHECK
• Guidelines for writing portable MPI programs

http://www.cs.utk.edu/~cronk/Using_MPI_IO.pdf
http://www.cs.utk.edu/~cronk/Using_MPI_IO.doc

http://pdb.cs.utk.edu/
http://pdb.cs.utk.edu/
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Course Outline

Day 3
Morning – Lecture

Performance Analysis of MPI programs
TAU
Vampir/VampirTrace

Afternoon – Lab
Hands on exercises using Vampir and 

VampirTrace
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Performance Analysis 

It is typically much more difficult to debug 
and tune parallel programs

Programmers often have no idea where to 
begin searching for possible bottlenecks

A tool that allows the programmer to get a 
quick overview of the program’s 
execution can aid the programmer in 
beginning this search
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Basic Tuning Process 

Select “best” compiler flags
Select/interface with “best” libraries
Measure
Validate
Hand-tune (routine/loop-level tuning)
… iterate

Observation:  The best way to improve parallel performance is often
still to simply improve sequential performance!
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Performance Analysis in Practice

Observation: many application developers 
don’t use performance tools at all (or 
rarely)

Why?
Learning curve can be steep
Results can be difficult to understand
Investment (time) can be substantial
Maturity/availability of various tools
Not everyone is a computer scientist
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Profiling

Recording of summary information during execution
inclusive, exclusive time, # calls, hardware statistics, …

Reflects performance behavior of program entities
functions, loops, basic blocks
user-defined “semantic” entities

Very good for low-cost performance assessment
Helps to expose performance bottlenecks and hotspots
Implemented through

sampling: periodic OS interrupts or hardware counter traps
instrumentation: direct insertion of measurement code

No temporal context
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Tracing

Recording of information about significant points 
(events) during program execution
entering/exiting code region (function, loop, block, …)
thread/process interactions (e.g., send/receive message)

Save information in event record
timestamp
CPU identifier, thread identifier
Event type and event-specific information

Event trace is a time-sequenced stream of event 
records

Can be used to reconstruct dynamic program behavior
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TAU Performance System
Tuning and Analysis Utilities (11+ year project effort)
Performance system framework for scalable parallel and 

distributed high-performance computing
Targets a general complex system computation model

nodes / contexts / threads
Multi-level: system / software / parallelism
Measurement and analysis abstraction

Integrated toolkit for performance instrumentation, 
measurement, analysis, and visualization
Portable performance profiling and tracing facility
Open software approach with technology integration

University of Oregon , Forschungszentrum Jülich, LANL
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TAU Instrumentation Approach

Support for standard program events
Routines
Classes and templates
Statement-level blocks

Support for user-defined events
Begin/End events (“user-defined timers”)
Atomic events (e.g., size of memory allocated/freed)
Selection of event statistics

Support definition of “semantic” entities for mapping
Support for event groups
Instrumentation optimization
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TAU Instrumentation

Flexible instrumentation mechanisms at multiple 
levels
Source code

manual
automatic

C, C++, F77/90/95 (Program Database Toolkit (PDT))
OpenMP (directive rewriting (Opari), POMP spec)

Object code
pre-instrumented libraries (e.g., MPI using PMPI)
statically-linked and dynamically-linked

Executable code
dynamic instrumentation (pre-execution) (DynInstAPI)
virtual machine instrumentation (e.g., Java using JVMPI)
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Multi-Level Instrumentation

Targets common measurement interface
TAU API

Multiple instrumentation interfaces
Simultaneously active

Information sharing between interfaces
Utilizes instrumentation knowledge between levels

Selective instrumentation
Available at each level
Cross-level selection

Targets a common performance model
Presents a unified view of execution

Consistent performance events
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TAU Performance Measurement

TAU supports profiling and tracing measurement
Robust timing and hardware performance support using 

PAPI
Support for online performance monitoring

Profile and trace performance data export to file system
Selective exporting

Extension of TAU measurement for multiple counters
Creation of user-defined TAU counters
Access to system-level metrics

Support for callpath measurement
Integration with system-level performance data

Linux MAGNET/MUSE (Wu Feng, LANL)
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TAU Measurement Options
Parallel profiling

Function-level, block-level, statement-level
Supports user-defined events
TAU parallel profile data stored during execution
Hardware counts values
Support for multiple counters
Support for callgraph and callpath profiling

Tracing
All profile-level events
Inter-process communication events
Trace merging and format conversion
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TAU Analysis

Parallel profile analysis
Pprof

parallel profiler with text-based display
ParaProf

Graphical, scalable, parallel profile analysis and display

Trace analysis and visualization
Trace merging and clock adjustment (if necessary)
Trace format conversion (ALOG, SDDF, VTF, 

Paraver)
Trace visualization using Vampir (Pallas/Intel) 
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Pprof Output (NAS Parallel 
Benchmark – LU)Intel Quad

PIII Xeon
F90 + 

MPICH
Profile

- Node
- Context
- Thread

Events
- code
- MPI
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Terminology – Example
int main( )
{ /* takes 100 secs */

f1(); /* takes 20 secs */
f2(); /* takes 50 secs */
f1(); /* takes 20 secs */

/* other work */
}

/*
Time can be replaced by  counts
from PAPI e.g., PAPI_FP_INS. */

For routine “int main( )”:
Exclusive time 

100-20-50-20=10 secs
Inclusive time 

100 secs
Calls

1 call
Subrs (no. of child routines 

called)
3

Inclusive time/call 
100secs
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ParaProf (NAS Parallel 
Benchmark – LU)

node,context, thread Global profiles Routine 
profile across 
all nodes

Event legend

Individual profile
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Using TAU

Install TAU
% configure ; make clean install

Instrument application
TAU Profiling API

Typically modify application makefile
include TAU’s stub makefile, modify variables

Set environment variables
directory where profiles/traces are to be stored

Execute application
% mpirun –np <procs> a.out; 

Analyze performance data
paraprof, vampir, pprof, paraver …
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Description of Optional Packages

PAPI – Measures hardware performance data e.g., 
floating point instructions, L1 data cache misses etc.

DyninstAPI – Helps instrument an application binary at 
runtime or rewrites the binary

EPILOG – Trace library. Epilog traces can be analyzed 
by EXPERT [FZJ], an automated bottleneck 
detection tool.

Opari – Tool that instruments OpenMP programs
Vampir – Commercial trace visualization tool [formally 

Pallas, now intelb]
Paraver – Trace visualization tool [CEPBA]
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TAU Measurement System 
Configuration

configure [OPTIONS]
{-c++=<CC>, -cc=<cc>} Specify C++ and C compilers
{-pthread, -sproc} Use pthread or SGI sproc threads
-openmp Use OpenMP threads
-jdk=<dir> Specify Java instrumentation 

(JDK) 
-opari=<dir> Specify location of Opari OpenMP 

tool
-papi=<dir> Specify location of PAPI 
-pdt=<dir> Specify location of PDT
-dyninst=<dir> Specify location of DynInst 

Package
-mpi[inc/lib]=<dir> Specify MPI library 

instrumentation
-python[inc/lib]=<dir> Specify Python instrumentation
-epilog=<dir> Specify location of EPILOG 
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TAU Measurement System 
Configuration

configure [OPTIONS]
-TRACE Generate binary TAU traces
-PROFILE (default) Generate profiles (summary)
-PROFILECALLPATH Generate call path profiles
-PROFILEMEMORY Track heap memory for each 

routine
-MULTIPLECOUNTERS Use hardware counters + time
-COMPENSATE Compensate timer overhead
-CPUTIME Use usertime+system time 
-PAPIWALLCLOCK Use PAPI’s wallclock time
-PAPIVIRTUAL Use PAPI’s process virtual time
-SGITIMERS Use fast IRIX timers
-LINUXTIMERS Use fast x86 Linux timers
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Compiling

% configure [options]
% make clean install

Creates <arch>/lib/Makefile.tau<options> stub Makefile
and <arch>/lib/libTau<options>.a [.so] libraries which defines a 
single configuration of TAU
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Compiling: TAU Makefiles

Include TAU Stub Makefile (<arch>/lib) in the user’s Makefile. 
Variables:

TAU_CXX Specify the C++ compiler used by TAU
TAU_CC, TAU_F90 Specify the C, F90 compilers
TAU_DEFS Defines used by TAU. Add to CFLAGS
TAU_LDFLAGS Linker options. Add to LDFLAGS
TAU_INCLUDE Header files include path. Add to CFLAGS
TAU_LIBS Statically linked TAU library. Add to LIBS
TAU_SHLIBS Dynamically linked TAU library
TAU_MPI_LIBS TAU’s MPI wrapper library for C/C++
TAU_MPI_FLIBS TAU’s MPI wrapper library for F90
TAU_FORTRANLIBS Must be linked in with C++ linker for F90
TAU_CXXLIBS Must be linked in with F90 linker 
TAU_INCLUDE_MEMORY Use TAU’s malloc/free wrapper lib
TAU_DISABLE TAU’s dummy F90 stub library

Note: Not including TAU_DEFS in CFLAGS disables instrumentation in 
C/C++ programs (TAU_DISABLE for f90).
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Including TAU Makefile - F90  
Example 3.5/rs6000/lib/Makefile.tau-pdtinclude $PET_HOME/PTOOLS/tau-2.1

F90 = $(TAU_F90)
FFLAGS = -I<dir>
LIBS = $(TAU_LIBS) $(TAU_CXXLIBS)
OBJS = ...
TARGET= a.out
TARGET: $(OBJS)

$(F90) $(LDFLAGS) $(OBJS) -o $@ $(LIBS)
.f.o:

$(F90) $(FFLAGS) -c $< -o $@
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TAU Makefile for PDT with MPI 
and F90include $PET/PTOOLS/tau-2.13.5/rs6000/lib/Makefile.tau-mpi-pdt

FCOMPILE = $(TAU_F90) $(TAU_MPI_INCLUDE) 
PDTF95PARSE = $(PDTDIR)/$(PDTARCHDIR)/bin/f95parse
TAUINSTR = $(TAUROOT)/$(CONFIG_ARCH)/bin/tau_instrumentor
PDB=merged.pdb
COMPILE_RULE= $(TAU_INSTR) $(PDB) $< -o $*.inst.f –f sel.dat;\

$(FCOMPILE) $*.inst.f –o $@;
LIBS = $(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)
OBJS = f1.o f2.o f3.o …
TARGET= a.out
TARGET: $(PDB) $(OBJS)

$(TAU_F90) $(LDFLAGS) $(OBJS) -o $@ $(LIBS)
$(PDB): $(OBJS:.o=.f)

$(PDTF95PARSE) $(OBJS:.o=.f) $(TAU_MPI_INCLUDE) –o$(PDB)
# This expands to f95parse *.f –I…/mpi/include -omerged.pdb
.f.o:

$(COMPILE_RULE)
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Compensation of Instrumentation 
Overhead

Runtime estimation of a single timer overhead
Evaluation of number of timer calls along a 

calling path
Compensation by subtracting timer overhead
Recalculation of performance metrics to improve 

the accuracy of measurements
Configure TAU with –COMPENSATE

configuration option
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TAU Performance System Status 

Computing platforms (selected)
IBM SP / pSeries, SGI Origin 2K/3K, Cray T3E / SV-1 / X1, HP 

(Compaq) SC (Tru64), Sun, Hitachi SR8000, NEC SX-5/6, 
Linux clusters (IA-32/64, Alpha, PPC, PA-RISC, Power, 
Opteron), Apple (G4/5, OS X), Windows

Programming languages
C, C++, Fortran 77/90/95, HPF, Java, OpenMP, Python

Thread libraries
pthreads, SGI sproc, Java,Windows, OpenMP

Compilers (selected)
Intel KAI (KCC, KAP/Pro), PGI, GNU, Fujitsu, Sun, Microsoft, 

SGI, Cray, IBM (xlc, xlf), Compaq, NEC, Intel
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Vampir/VampirTrace

Vampirtrace is an instrumented MPI 
library to link with user code for 
automatic tracefile generation on 
parallel platforms

Vampir is a visualization program used to 
visualize trace data generated by
Vampitrace
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Vampir/VampirTrace

http://www.pallas.com/e/products/vampir
Version 4.0
Languages and Libraries: C, C++, 

Fotran77/90/95, HPF, MPI, OpenMP 
support being worked on

Supported Platforms: Most all HPC 
platforms (for how long?)

http://www.pallas.com/e/products/vampir
http://www.pallas.com/e/products/vampir
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Vampirtrace

Profiling library for MPI applications
Produces tracefiles that can be analyzed with 

the Vampir performance analysis tool or the 
Dimemas performance prediction tool.

Merely linking your application with Vampirtrace 
enables tracing of all MPI calls.  On some 
platforms, calls to user-level subroutines are 
also recorded.

API for controlling profiling and for defining and 
tracing user-defined activities.
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Vampir Features

Tool for converting tracefile data for MPI 
programs into a variety of graphical 
views

Highly configurable
Timeline display with zooming and 

scrolling capabilities
Profiling and communications statistics
Source-code clickback
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Running and Analyzing Vampirtrace-
instrumented Programs

Programs linked with Vampirtrace are 
started in the same way as ordinary 
MPI programs.

Use Vampir to analyze the resulting 
tracefile.

A configuration file is saved that 
controls all your default values
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An example program

Poisson solver (iterative)
After each iteration, each process must 

exchange data with both its left and 
right neighbor

Each process does a sendrecv to its right 
followed by a sendrecv to its left
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Getting Started

If your path is set up correctly, simply enter “vampir”

To open a tracefile, select “File” followed by “Open Tracefile”
Select tracefile to open or enter a known tracefile

The entire event trace is not opened.  Rather, metadata
Is read and a frame display is opened.  This is a preview
Of the trace
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Frame Display

Right click to get a context menu and select load/Whole Trace
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Summary Chart
By default, Vampir starts with a summary chart of the entire
execution run
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Summary Timeline
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Timeline
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Zoomed Timeline
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Clicking on an activity
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Clicking on an activity
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Clicking on an activity
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Zoomed Timeline
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Zoomed Summary CHart
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A different approach

Rather than use sendrecv, use non-
blocking communication

Allows data movement to occur 
concurrently

Should greatly reduce the amount of time 
spent waiting for data
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A Different Approach
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A Different Approach
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A Different Approach
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A Different Approach
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A Different Approach
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A Different Approach
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A Different Approach

By switching to non-blocking communication we 
have reduced the overall execution time.

Much of the remaining time is from start-up
We have eliminated the sever imbalance in wait 

time
There is still a high ratio of MPI to application

› Probably due to not having a large enough 
problem size
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Another example

Parallel sort
Each process sorts its portion of the data 

and sends the results to process 0
Process 0 merges the results into a final 

sort 
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Activity Chart
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Timeline
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Message statistics
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A different approach to sort

Each process still sorts its local data
Pass the data based on a tree algorithm, 

with half the processes receiving data 
and merging it

Continue up the tree to the root
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A different approach to sort
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A different approach to sort
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A different approach to sort
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Process Activity Chart Displays
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Process Activity Chart Displays
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Process Activity Chart Displays
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Process Activity Chart Displays
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Process Activity Chart Displays
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Process Activity Chart Displays
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Process Activity Chart Displays
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Displays

Timeline
Activity Chart
Summary Chart
Message Statistics
File I/O Statistics
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Global Timeline Display

Context menu is activated with a right 
mouse click inside any display window

Zoom in by selecting start of desired 
region, left click held, drag mouse to 
end of desired region and release

Can zoom in to unlimited depth
Step out of zooms from context menu
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Activity Charts

Default is pie chart, but can also use 
histograms or table mode

Can select different activities to be shown
Can hide some activities
Can change scale in histograms
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Summary Charts

Shows total time spent on each activity
Can be sum of all processors or average 

for each processor
Similar context menu options as activity 

charts
Default display is horizontal histogram, 

but can also be vertical histogram, pie 
chart, or table
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Communication Statistics

Shows matrix of comm statistics
Can show total bytes, total msgs,  avg msg 

size, longest, shortest, and transmission 
rates

Can zoom into sub-matrices
Can get length statistics
Can filter messages by type (tag) and 

communicator



9/2/2004 David Cronk

Tracefile Size

Often, the trace file from a fully 
instrumented code grows to an 
unmanageable size
› Can limit the problem size for analysis
› Can limit the number of iterations
› Can use the vampirtrace API to limit size

• vttraceoff ():  Disables tracing
• vttraceon(): Re-enables tracing
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Performance Analysis and Tuning

First, make sure there is available 
speedup in the MPI routines
› Use a profiling tool such as VAMPIR
› If the total time spent in MPI routines is a 

small fraction of total execution time, there 
is probably not much use tuning the 
message passing code

• BEWARE:  Profiling tools can miss compute 
cycles used due to non-blocking calls!
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Performance Analysis and Tuning

If MPI routines account for a significant 
portion of your execution time:
› Try to identify communication hot-spots

• Will changing the order of communication 
reduce the hotspot problem?

• Will changing the data distribution reduce 
communication without increasing 
computation?

– Sending more data is better than sending more 
messages



9/2/2004 David Cronk

Performance Analysis and Tuning

› Are you using non-blocking calls?
• Post sends/receives as soon as possible, but 

don’t wait for their completion if there is still 
work you can do!

• If you are waiting for long periods of time for 
completion of non-blocking sends, this may be 
an indication of small system buffers.  Consider 
using buffered mode.
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Performance Analysis and Tuning

› Are you sending lots of small messages?
• Message passing has significant overhead 

(latency).  Latency accounts for a large 
proportion of the message transmission time for 
small messages.

– Consider marshaling values into larger messages if 
this is appropriate

– If you are using derived datatypes, check if the MPI 
implementation handles these types efficiently

– Consider using MPI_PACK where appropriate
» dynamic data layouts or sender needs to send 

the receiver meta-data.
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Performance Analysis and Tuning

› Use collective operations when appropriate
• many collective operations use mechanisms 

such as broadcast trees to achieve better 
performance

› Is your computation to communication ratio 
too small?

• You may be running on too many processors 
for the problem size
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MPI_CHECK

Tool developed at the University of Iowa for 
debugging MPI programs written in free or 
fixed format Fortran 90 and Fortran 77

You can download your own free copy of the 
software and license at 
http://www.hpc.iastate.edu/MPI-CHECK.htm

MPI-CHECK does both compile-time and run-
time error checking 

http://www.hpc.iastate.edu/MPI-CHECK.htm
http://www.hpc.iastate.edu/MPI-CHECK.htm
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Compile Time Error Checking

Checks for consistency in the data type of 
each argument

Checks the number of arguments
Checks the little used intent of each 

argument
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Run-Time Error Checking

Buffer data type inconisistency
This error is flagged if the Fortran data type of the 

send or receive buffer of an MPI send or receive 
call is inconsistent with the declared datatype in 
the MPI call

Buffer out of bounds
This error is flagged if either the starting or ending 

address of a send or receive buffer is outside the 
declared bounds of the buffer

Improper placement of MPI_Init or MPI_Finalize
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Run-Time Error Checking

Illegal message length
Invalid MPI Rank
Actual or potential deadlock

Any cycle of blocking send calls creates a 
potential for deadlock.  While this deadlock 
may not be manifest on all machines, MPI-
CHECK will detect if the potential for 
deadlock exists.
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Using MPI-CHECK

Programs are compiled the same way as 
normal, except mpicheck is the first command 
on the command line:
f90 –o a.out –O3 main.f90 sub1.f90 sub2.f90 –lmpi
Becomes
mpicheck f90 –o a.out –O3 main.f90 sub1.f90 

sub2.f90 –lmpi
Source files are required, rather than object files
Programs are ran just as without MPI-CHECK
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Remarks

While MPI-CHECK does not flag all possible MPI errors, and it may 
flag some instances of correct usage as potential errors, it has
been shown to be very useful in discovering many subtle, yet 
common, MPI programming errors.  It is easy to use and adds 
little overhead to the execution times of programs.

More information on MPI-CHECK and MPI-CHECK2 (deadlock 
detection) can be found at:

http://www.hpc.iastate.edu/Papers/mpicheck/mpicheck1.htm
and 
http://www.hpc.iastate.edu/Papers/mpicheck2/mpicheck2.htm

http://www.hpc.iastate.edu/Papers/mpicheck/mpicheck1.htm
http://www.hpc.iastate.edu/Papers/mpicheck2/mpicheck2.htm
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