Gaining Insight into Parallel Program
Performance using HPCToolkit

John Mellor-Crummey
Department of Computer Science
Rice University
johnmc@rice.edu

http://hpctoolkit.org

Lawrence Livermore National Laboratory August 7, 2012

Challenges for Computational Scientists

 Execution environments and applications are rapidly evolving

— architecture
— rapidly changing multicore microprocessor designs
— increasing scale of parallel systems
— growing use of accelerators
— applications
— transition from MPI everywhere to threaded implementations

— add additional scientific capabilities
— maintain multiple variants or configurations

e Steep increase in development effort to deliver performance,
evolvability, and portability

e Computational scientists need to
— assess weaknesses in algorithms and their implementations
— improve scalability of executions within and across nodes
— adapt to changes in emerging architectures

[Performance tools can play an important role as a guide j

Performance Analysis Challenges

e Complex architectures are hard to use efficiently
— multi-level parallelism: multi-core, ILP, SIMD instructions
— multi-level memory hierarchy
— result: gap between typical and peak performance is huge

e Complex applications present challenges
— measurement and analysis
— understanding behaviors and tuning performance

e Supercomputer platforms compound the complexity
— unique hardware
— unique microkernel-based operating systems

— multifaceted performance concerns
— computation
— communication

- 1/0

Performance Analysis Principles

 Without accurate measurement, analysis is irrelevant
— avoid systematic measurement error

— measure actual executions of interest, not an approximation
— fully optimized production code on the target platform

 Without effective analysis, measurement is irrelevant
— quantify and attribute problems to source code

— compute insightful metrics
— e.g., “scalability loss” or “waste” rather than just “cycles”

 Without scalability, a tool is irrelevant for supercomputing
— large codes
— large-scale threaded parallelism within and across nodes

Performance Analysis Goals

e Programming model independent tools

e Accurate measurement of complex parallel codes

— large, multi-lingual programs

— fully optimized code: loop optimization, templates, inlining

— binary-only libraries, sometimes partially stripped

— complex execution environments
— dynamic loading (Linux clusters) vs. static linking (Cray, Blue Gene)
— SPMD parallel codes with threaded node programs
— batch jobs

o Effective performance analysis
— insightful analysis that pinpoints and explains problems
— correlate measurements with code for actionable results
— support analysis at the desired level
intuitive enough for application scientists and engineers
detailed enough for library developers and compiler writers

e Scalable to petascale and beyond

HPCToolkit Design Principles

e Employ binary-level measurement and analysis
— observe fully optimized, dynamically linked executions
— support multi-lingual codes with external binary-only libraries

e Use sampling-based measurement (avoid instrumentation)
— controllable overhead
— minimize systematic error and avoid blind spots
— enable data collection for large-scale parallelism

Collect and correlate multiple derived performance metrics
— diagnosis typically requires more than one species of metric

 Associate metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

Support top-down performance analysis
— natural approach that minimizes burden on developers

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement
o Effective performance analysis

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

 Understanding temporal behavior
* Assessing process variability

e Understanding threading, GPU, locks, and memory hierarchy
— blame shifting
— attributing memory hierarchy costs to data

e Summary and conclusions

HPCToolkit Workflow

profile
execution
[hpcrun]

compile & link

optimized

call path

profile

binary

source I
code

binary
analysis
[hpcstruct]

program
structure

presentation

[hpcviewer/

hpctraceviewer]

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

HPCToolkit Workflow

profile
execution
[hpcrun]

call path
profile

compile & link
source i
code

* For dynamically-linked executables on stock Linux
— compile and link as you usually do: nothing special needed
* For statically-linked executables (e.g. for Blue Gene, Cray)

— add monitoring by using hpclink as prefix to your link line
— uses “linker wrapping” to catch “control” operations
process and thread creation, finalization, signals, ...

interpret profile
database correlate w/ source
[hpcprof/hpcprof-mpi]

optimized
binary

binary
analysis
[hpcstruct]

program
structure

presentation

[hpcviewer/

hpctraceviewer]

HPCToolkit Workflow

profile
execution
[hpcrun]

call path
profile

compile & link
source i
code

* Measure execution unobtrusively

— launch optimized application binaries

— dynamically-linked applications: launch with hpcrun to measure
— statically-linked applications: control with env variable settings
(measurement library previously added at link time)

— collect statistical call path profiles of events of interest

interpret profile
database correlate w/ source
[hpcprof/hpcprof-mpi]

optimized
binary

binary
analysis
[hpcstruct]

program
structure

presentation

[hpcviewer/

hpctraceviewer]

10

HPCToolkit Workflow

profile
execution
[hpcrun]

call path
profile

compile & link
source i
code

e Analyze binary with hpcstruct: recover program structure
— analyze machine code, line map, debugging information
— extract loop nesting & identify inlined procedures
— map transformed loops and procedures to source

interpret profile
database correlate w/ source
[hpcprof/hpcprof-mpi]

optimized
binary

binary
analysis
[hpcstruct]

program
structure

presentation

[hpcviewer/

hpctraceviewer]

11

HPCToolkit Workflow

profile
execution
[hpcrun]

call path
profile

compile & link

source I
code

optimized
binary

binary
analysis
[hpcstruct]

program
structure

e Combine multiple profiles
— multiple threads; multiple processes; multiple executions

e Correlate metrics to static & dynamic program structure

interpret profile
database —] correlate w/ source
[hpcprof/hpcprof-mpi]

presentation

[hpcviewer/

hpctraceviewer]

12

HPCToolkit Workflow

profile
execution
[hpcrun]

call path
profile

compile & link

source I
code

e Presentation

— explore performance data from multiple perspectives
— rank order by metrics to focus on what’s important
— compute derived metrics to help gain insight
e.g. scalability losses, waste, CPIl, bandwidth

— graph thread-level metrics for contexts
— explore evolution of behavior over time

interpret profile
: database correlate w/ source
[hpcprof/hpcprof-mpi]

optimized
binary

binary
analysis
[hpcstruct]

program
structure

presentation

[hpcviewer/

hpctraceviewer]

13

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement

o Effective performance analysis

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

 Understanding temporal behavior
* Assessing process variability

e Understanding threading, GPU, locks, and memory hierarchy
— blame shifting
— attributing memory hierarchy costs to data

e Summary and conclusions

14

Measurement

profile
execution
[hpcrun]

call path
profile

compile & link

source I
code

optimized
binary

binary
analysis
[hpcstruct]

program
structure

presentation

[hpcviewer/

interpret profile
database correlate w/ source
[hpcprof/hpcprof-mpi]

hpctraceviewer]

15

Call Path Profiling

Measure and attribute costs in context
sample timer or hardware counter overflows
gather calling context using stack unwinding

Call path sample Calling context tree
return address

return address
return address

instruction pointer ‘

@<

5 p

...not call frequency

Overhead proportional to sampling frequency...

16

Why Sampling?

The performance uncertainty principle implies that the accuracy of
performance data is inversely correlated with the degree of
performance instrumentation — Al Malony, PhD Thesis 1991

Instrumentation of MADNESS with TAU

Method Nt.:m ber of Runtime ||Overhead
Profiled Events || (seconds) (%)
Uninstrumented 654s
Compiler-based Instrumentation 1321 19625s
Regular Source Instrumentation 183 748s 14.4%
Source Instrumentation with headers (- 806 16285 150%
optHeaderinst)
-optHeaderinst and (sa(ﬂ:ecmtive instrumentation 539 6858 4.7%

callpath dep?h 2, -optHeaTderInst and selective 1773 693s 6%
instrumentation (auto)
callpath deptr.\ 100, -optHegderInst and selective 8535 893s 96.5%
instrumentation (auto)

Figure source: http://www.nic.uoregon.edu/tau-wiki/MADNESS
17

Why Sampling?

The performance uncertainty principle implies that the accuracy of
performance data is inversely correlated with the degree of
performance instrumentation — Al Malony, PhD Thesis 1991

Instrumentation of MADNESS with TAU

Method Nt.:mber of Runtime ||Overhead
Profiled Events || (seconds) (%)
Uninstrumented 654s
Compiler-based Instrumentation 1321 19625s 2901%
- - . - I e [e |
Each of these instrumentation

- approaches ignores any functions in
libraries available only in binary form

AL

. o LI U\I\’\J
instrumentation (auto)

callpath depth 100, -optHeaderinst and selective
instrumentation (auto)

8535 893s 36.5%

Figure source: http://www.nic.uoregon.edu/tau-wiki/MADNESS

full instrumentation slows execution by 30x! 18

Novel Aspects of Our Approach

 Unwind fully-optimized and even stripped code
—use on-the-fly binary analysis to support unwinding

e Cope with dynamically-loaded shared libraries on Linux
— note as new code becomes available in address space

— problematic for instrumentation-based tools, unless using
Dyninst or Pin

* Integrate static & dynamic context information in presentation

— dynamic call chains including procedures, inlined functions,
loops, and statements

19

Measurement Effectiveness

Accurate

— PFLOTRAN on Cray XT @ 8192 cores
— 148 unwind failures out of 289M unwinds
— 5e-5% errors
— Flash on Blue Gene/P @ 8192 cores
— 212K unwind failures out of 1.1B unwinds
— 2e-2% errors
— SPEC2006 benchmark test suite (sequential codes)
— fully-optimized executables: Intel, PGI, and Pathscale compilers
— 292 unwind failures out of 18M unwinds (Intel Harpertown)
— 1e-3% error

Low overhead

— e.g. PFLOTRAN scaling study on Cray XT @ 512 cores
— measured cycles, L2 miss, FLOPs, & TLB @ 1.5% overhead

— suitable for use on production runs

20

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement

o Effective performance analysis

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

 Understanding temporal behavior
* Assessing process variability

e Understanding threading, GPU, locks, and memory hierarchy
— blame shifting
— attributing memory hierarchy costs to data

e Summary and conclusions

21

Effective Analysis

compile & link

source I
code

optimized
binary

profile
execution
[hpcrun]

call path
profile

binary
analysis
[hpcstruct]

program
structure

presentation
[hpcviewer/
hpctraceviewer]

interpret profile

-1 correlate w/ source
[hpcprof/hpcprof-mpi]

Recovering Program Structure

 Analyze an application binary
— identify object code procedures and loops
— decode machine instructions
— construct control flow graph from branches
— identify natural loop nests using interval analysis
— map object code procedures/loops to source code
— leverage line map + debugging information

— discover inlined code
— account for many loop and procedure transformations

Unique benefit of our binary analysis

 Bridges the gap between
— lightweight measurement of fully optimized binaries

— desire to correlate low-level metrics to source level abstractions

23

Analyzing Results with hpcviewer

" mbperf_iMesh.cpp &2 | "% TypeSequenceManager.hpp &3

public: bool

J iﬁ %} ‘Cs

22 * Define less-than comparison for EntitySequence
23 * of the entity handles in the pointed-to Entity$
24 */
25 class SequenceCompare {
26

@. stl_tree.h

ntitySequence*
start_handle();

costs for
¢ inlined procedures

loops

o function calls in full context

w\\ Callers View 'l-;, Flat View

Scope
¥ main

v

¥ [P testB(void*, int, double const*, int const*)

inlined from mbperf_iMesh.c
¥| loop at mbperf=iMesh.cpp: 280-313
¥ [BP imesh_getvtxarrcoords_

| PAPI_L1_DCM (I) ¥ PAPI_TOT_CYC () F

.8le+08
.43e+08
.20e+08

W W o o

¥ [MBCore:get_coords(unsigned long const*, int, double*) cc 3.20e+08

V| loop at MBCore.cpp: 681-693|

¥| inlined from stl_tree.h: 472
¥|loop at stl_tree.h: 1388

¥|inlined from TypeSequenceManager.hpp: 27 |1 78e+08

3.20e+08
2.04e+08
2.04e+08

TypeSequenceManager.hpp: 27 1.78e+08

S —————

37.
37.
23.
23.
20.
20.

.63e+08 100 %
.35e+08 96.7%

1%
1%
7%
6%
6%
6%

l1.13e+11 100 % &

1.10e+11 97.6%m|

0w o O Y NN

e+

.l16e+10
.16e+10
.38e+09
.37e+09
.56e+09
.56e+09

19.
19.
8.
8.

7

7.

RS

.5%
.9%
.3%
1%
1%
3%
3%
.6%‘:

6%

Principal Views

e Calling context tree view - “top-down” (down the call chain)
— associate metrics with each dynamic calling context
— high-level, hierarchical view of distribution of costs
— example: quantify initialization, solve, post-processing

e Caller’s view - “bottom-up” (up the call chain)
— apportion a procedure’s metrics to its dynamic calling contexts
— understand costs of a procedure called in many places
— example: see where PGAS put traffic is originating

 Flat view - ignores the calling context of each sample point
— aggregate all metrics for a procedure, from any context
— attribute costs to loop nests and lines within a procedure

— example: assess the overall memory hierarchy performance
within a critical procedure

25

Toolchain Demo:
Lulesh Serial Code

26

Source Code Attribution: LULESH A++

000 hpcviewer: lulesh-app

15 static inline
P Real_t AreaFace(const doubleArroy A&FaceCoord

{

doubleArray diff3l « (FaceCoords(3,0ll) aceloords(l,all));
doubleArray diffé2 « (FaceCoords(4,all) FaceCoords(2,all));
doubleArray - diff31 - diffe2;
doubleArray - diff31 + diffe2;

Real_t sun(fF*f) * sum(g®g) - sum(fg) * sus(f*g);

return areo ;

stotic inline
Real t Characteristiclength{ const doubleArray &ElemCoords,
| const Real_t &volume)
doubleArray area (Foce.index);|
for (Index_t Faceld « 1; Foceld <« 6 ; «+Faceld) {
areo(Faceld) « Arecface(GetFoce(Elemloords, Faceld)) ;
} I
Real_t charlength « Real_t(4.2) * volume / sart(mox(oree));

return charlength;

to inlined code

Performance

attribution

and loops

"% Calling Context View I3 | &, Calers View g, Flat View

T+ 6k T A A

Scope
Dxperiment Aggregate Metrics
¥Ymain
¥ioop at LULESH-App.C: 1802
Yioop at LULESH-App.C: 1817
Yinkned from LULLSH-App.C: 1619
¥ B 1626 LagrangeElements
¥inlined from LULESH-App.C: 1040
¥ Bb 1046 CalcKinematicsForElems
¥ioop at LULESH-App.C: 1003

7. operator*(doubleArray consté, doubleArray constd
operator-{doubleAsray consts, doubleArray constl)
operator-{doubleArray constd, doubleArray consté)
doubleArray: doubleArrayidoubleArray consts, imt)

27 operator*(GoubleArray consté, doubleAsray constéd)

manesmastida isfoenis smnre® Ao ininhcens samseh\

IPAPLTOT_CYC.[00} 00w PAPI_TOT_CYC|0,0] (E) PAPI_RES_STL.[0,0] (0 PAPI_RES STL.[0,0j (B0 P.
T.87e+12 100 &

7.
?.
7.
?.
7.
4.
2.
2.
2.
9.
9.
6.
5.
4.
4.
4.
3.
3.
3.

87e+12
870412
86e+12
Bet12
B6e+12
200412
0e+12
40e+i2
d0e+12
250411
18e+11
2%e411
Ode+ld
BC0e+10
0e+10
07e+10
95e+10
950410
92e+10

100 &%
100
99.8%
9%.0
99.8%
33N
30.4%
10,40
30.4%
1.
11.9%
7.0
0.68%
0.60
0.6%
0.5\
0.5%
0.5
0.5%

1.10e+08

$.20e407

J.18e009

1.0%7e+10
1.06e+10
$.%910009
4.29e+09
2.840009
£8.22e+08
8.320%08
T.64e08
4.5%Coc00
4.62e+08
2.630409
2.72e+08

. Aramn

0.0%

0.1%
0.1%
0.1%
0.1%
0.0
0.0%
0.0%
0.0%
0.0v
0.0%
0.0%
0.0%

a oA

5.64e¢11
S.6dev1l
5.63e+11
S.63ev1}
5.63e+11
2.83e412
1.75e+11
1.7%e+12
1.75e+11
6.C0et10
6.53e+10
5.06et10
4.36e+09
4.140409
4.70e+09
4.93ev09
5.26e+09
2.70e409%
d.44e409

" wraAn

100 %
160
99.8%
29.00
99.8%
se.2n
1.8
PR Y)
3l
1.9
11.6%
9.0%
0.8%
.M
0.8%
G.9%
0.9%
0.5%
0.8%

-~ an

5.6d4e+11
1.20e+07

4.00e¢0¢

8.16et08

S.40ev08

S5.46e408%

€.400407

5.60e+07
5.600407

2.00e+07

1.20e+07

. AR

100 &
.00

.00

o.1n

0.1
0.1%
o.00
0.0%
o.00

0.0%

- an

27

Handling Call Chains with Recursion

* Problem: some recursive algorithms, e.g., quicksort have
many long and unique call chains
— each sample can expose a unique call chain

— space overhead can be significant for recursive computations
that have many unique call chains, e.g. broad and deep trees

— for parallel programs, the total space overhead can be especially
problematic when thread-level views are merged

e Approach

— collapse recursive chains to save space

— preserve one level of recursion so high-level properties of the
recursive solution remain available

’ ‘/I\ ° 28

Example: Recursive Fibonacci

e Compact
representation

e Summarizes
costs for each
subtree in the
recursion

* Tribn-1) / Thib(n-2) =
1.619
(within .1% of the

golden ratio)

el -0

46 long fib(int n)

a7 {

48 1if (n < 2) return n;

49 else {

5@ long n1 = fib(n - 1);|

£l long n2 = fib(n - 2);

52 return nl + n2;

53}

54}

55

| A \ =

\\'\ Calling Context View 23 {Q\ Callers View | 1, Flat View \]

1|6 foa |

i A A

'WALLCLOCK (us).[0) () v WALLCROCK (us).[0] () |

iment Aggregate Metrics 2.95e+06 100 % .95e+06 100 %
¥main 2.95e+06 100 %
v B fib 2.95e+06 100 %

v Bfib J 1.83e+06 61.9% | 1.83e+06 61.9%

fib.c: 47 4.61le+05 15.6% 4.61e+05 15.6%

fib.c: 48 4.54e+05 15.4% .54e+05 15.4%

fib.c: 50 2.80e+05 9.5% .80e+05 9.5%

fib.c: 51 2.37e+05 8.0% 2.37e+05 8.0%

fib.c: 52 2.24e+05 7.6% 2.24e+05 7.6%

fib.c: 54 1.75e+05 5.9% J1.75e+os 5.9%

> B fib | 1.13e+06 38.1% | 1.13e+06 38.1%

29

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement

o Effective performance analysis

 Pinpointing scalability bottlenecks

— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

 Understanding temporal behavior
* Assessing process variability

e Understanding threading, GPU, locks, and memory hierarchy
— blame shifting
— attributing memory hierarchy costs to data

e Summary and conclusions

30

The Problem of Scaling

Efficiency

1.000

0.875

0.750

0.625

0.500

— lIdeal efficiency
— Actual efficiency

© D
N

X o X o b
\b‘?@q’u,\@%

CPUs

Note: higher is better

31

Goal: Automatic Scaling Analysis

* Pinpoint scalability bottlenecks
e Guide user to problems
* Quantify the magnitude of each problem

 Diagnose the nature of the problem

32

Challenges for Pinpointing Scalability Bottlenecks

e Parallel applications
— modern software uses layers of libraries
— performance is often context dependent

Example climate code skeleton

* Monitoring
— bottleneck nature: computation, data movement, synchronization?

— 2 pragmatic constraints
— acceptable data volume
— low perturbation for use in production runs 33

Performance Analysis with Expectations

* You have performance expectations for your parallel code
— strong scaling: linear speedup
— weak scaling: constant execution time

 Put your expectations to work

— measure performance under different conditions
— e.g. different levels of parallelism or different inputs

— express your expectations as an equation

— compute the deviation from expectations for each calling context

— for both inclusive and exclusive costs
— correlate the metrics with the source code
— explore the annotated call tree interactively

34

Pinpointing and Quantifying Scalability Bottlenecks

4 N 4 N

v
‘F X‘ ‘ ‘ OK B '9"‘ %ﬁm i\ 400K
- /P - _/

N

‘-

. 200K
:' coefficients for analysis ! %
1 ofstrong scaling y

35

Scalability Analysis Demo

Code:
Simulation:
Platform:
Experiment:
Scaling type:

xxxxx

Nova outbursts on white dwarfs

| PP YT T
Magnetic

1 .ellular nation
Rayleigh-Taylor Cellular detonatio

University of Chicago FLASH
white dwarf detonation
Blue Gene/P

8192 vs. 256 processors
weak

A

Laser-driven shock instabilities

E Orzag/Tang MHD . . -
vortex Rayleigh-Taylor instability

Helium burning on neutron stars

Figures courtesy of FLASH Team, University of Chicago 36

Improved Flash Scaling of AMR Setup

22 Ll 1 1 1 1 1 Ll

20 - standard surr_blks construction (orrery) —|— 4

18 custom surr_blks construction % i

16

-
-
k3
-
.
-
-
-
-
.
L
L]
-
.
L
*
.O
- “ —
L]
.
.
.
-
*
.
.
.
.
»
.
.
-
K3
.
..
.

10 |

Time (seconds)

o
.
.
-
L
.
o
»
3
-
.
.
=
-
.
o
-
.
-
-
-
-
-~
.
.
-
’.
*

»*
L
-
-
.
.
-
ot
*

e e e e——— s

0 2000 4000 6000 8000 10000 12000 14000 16000
Number of cores

Graph courtesy of Anshu Dubey, U Chicago 37

Scaling on Multicore Processors

e Compare performance
— single vs. multiple processes on a multicore system

e Strategy

— differential performance analysis
— subtract the calling context trees as before, unit coefficient for each

38

S3D: Multicore Losses at the Procedure Level

hpcviewer: [Profile Name]

¢ getrates.f \"1 rhsf.f90 &3 | ™8 diffflux_gen_uj.f l

10

I subroutine rhsf(q, rhs)

Changes
Ramanan Sankaran - 91/04/05
1. Diffusive fluxes are computed without having to convert units.

Execution time
increases 1.65x in
subroutine rhsf

Ignore older comments about conversion to (GS units.

This saves a lot of flops.
2. Mixavg and Lewis transport modules have been mede interchangeab]
by adding dummy arguments in both.

Author: James Sutherland

Date: April, 2082
This routine calculates the time rate of change for the
momentum, continuity, energy, and species equations.

subroutine rhsf
accounts for 13.0% of
the multicore scaling
loss Iin the execution

"% Calling Context View l ¢ Callers View‘ "% Flat View =0

2% L6 ol
Scope 1-core (g (1) l-core (ms) (E) core(l) (ms) (D) 8-core(l) (ms) (B)... Multicore Loss ¥
Experiment Aggregate Metrics 1.)fe08 100 % 1.11e08 100 % 1.88¢08 100% 1.88e08 100 % 7.64¢07 100 % q
rhsf 1.07e08 96.5% 6.60e06 5.9% 1.77e08 94.1% 1.65e07 8.8%| 9.92e06f13.0%}"
diffflux_proc_looptool 2.86e06 2.6% 2.86e06 2.6% B.12e¢06 4.3% 8.12e06 4.3% 5.27e05'm
integrate_erk_jstage_It 1.09e08 98.1% 1.25e06 1.1% 1.84e08 97.9% 5.94e06 3.2%| 4.70e06 6.13%
GET_MASS_FRAC.in.VARIABLES_M1.49006 1.3% 1.49e06 1.3% 6.08e06 3.2% €.08e06 3.2%| 4.59006 6.0%
ratx 1.01e07 9.1% 1.00e07 9.0% 4.4le07 23.5% 1.40e07 7.4% 3.95e06 5.2%
qssa 3.52e06 3.2% 3.52e06 3.2% 5.71e06 3.0% 5.71e06 3.0% 2.18e06 2.9%
ratt 3.26e07 29.2% 1.48e07 13.3%8 | 4.38e07 23.3% 1.66e07 8.8%| 1.76e06 2.3%
CALC_INV AVG_MOL WT.in.THER9.70e05 0.9% 9.70e05 0.9% 2.68e06 1.4% 2.68e06 1.4%| 1.70e08 2.23%
computeheatflux_looptool 1.46006 1.3% 1.46006 1.3% 2.88e06 1.5% 2.88006 1.5%| 1.41006 1.8%
rdwdot 3.09e06 2.8% 3.09e06 2.8% 4.33e06 2.3% 4.33e06 2.3% 1.24e06 1.6%

39

hpcviewer: [Profile Name]

S3D: Multicore Losses at the Loop Level

2 diffflux_gen_uj.f 53|

*¢ getrates.f I ¢ rhsf.f90

2) then
1__ujUpper3d = (3 -1 +1)/3*34+1-1
dom=1,1__ujUpper3d, 3
don=1, n_spec - 1
do 1¢__2 - 1, nz
do 1¢__1 « 1, ny
199 do 1t__0Q = 1, nx
200 diffflux(lt__0, 1t__1, 1t__2, n, m) = -ds_mi
) *CLe__0, 1t__1, 1t__2, n) * (grad_ys(1t__0, 1t__1, 1t__2, n, m)
*s(1t_.0, 1t__1, 1t__2, n) * grad_mixmw(1t__0, 1t__1, 1t__2, m)
diffflux(lt__0, 1t__1, 1t__2, n_spec, m) - d
*lux(le__0, 1+__1, 1t__2, n_spec, m) diffflux(le__0, 1t__1, 1
*. n, m)

*ge.

diffflux(lt__ 9, 1t__1, t_2, n, m+ 1) = -d

*xavg(lt__0, 1t__1, 1t__2, n) * (grad_ys(1t__0, 1t__1, 1t__2, n'=m
A * arad mivewd1d A TF 1 Tk

LT A PNRYZ Y A R 2 Qa 14 1 14 2

Execution time
Increases 2.8x in the
loop that scales worst

loop contributes 6.9%
of the scaling loss for
the whole execution

2

"¢ Calling Context View I ¢ Callers View‘ "< Flat Vnewl

|2 &%

Scope

Ioo:atdiffflux_gen_uj.f: 197-22:2.86e06 2.6% 2.86e06 2.6% 8.12e06 4.3% 8.12e06 4.3%| 5

loop at integrate_erk_jstage_It_gel .09e08 98.1% 1.25e06 1.1% 1.84e08 97.9% 5.94e06 3.2%| 4.70e06 6.1%
loop at variables_m.f90. 88-99 1.49e06 1.3% 1.49e06 1.3% 6.08e06 3.2% 6.08e06 3.2% 4.60e06 6.0%
loop at rhsf.f90: 516-536 2.70e06 2.4% 1.31e06 1.2% 6.49e06 3.5% 3.72e06 2.0%| 2.4le06 3.1%
loop at rhsf.f90: 538-544 3.35e06 3.0% 1.45e06 1.3% 7.06006 3.8% 1.82e06 2.0%| 2.36006 3.1%
loop at rhsf.f90: 546-552 2.56e06 2.3% 1.47e06 1.3% 5.86e06 3.1% 3.42e06 1.8%| 1.96e06 2.6%
loop at thermchem_m.f90: 127-18.00e05 0©0.7% 8.00e05 0.7% 2.28e06 1.2% 2.28e06 1.2%| 1.48e06 1.9%
loop at heatflux_It_gen.f. 5-132 1.46€06 1.3% 1.46e06 1.3% 2.88e06 1.5% 2.88e06 1.5% 1.4le06 1.8%
loop at rhsf.f90: 576 6.65e05 0.6% 6.65e05 0.6% 1.87e06 1.0% 1.87e06 1.0%| 1.20e06 1.6%
loop at getrates.f: 504-505 8.00e06 7.2% 8.00e06 7.2% 8.74e06 4.7% 8.74e06 4.7% 7.35e05 1.0% 3
loop at derivative_x.f90: 213-6901.78e06 1.6% 1.78e06 1.6% 2.47e06 1.3% 2.47e06 1.3%| 6.95e05 0.9% 3

|6 fo W1
1-¢ (ms) () 1-core (ms) (E) re(1) (ms) (D) 8-core(l) (ms) (E)... Multicore loss ¥
27e06 | 6.9%] m

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement
o Effective performance analysis

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

 Understanding temporal behavior

* Assessing process variability

e Understanding threading, GPU, locks, and memory hierarchy
— blame shifting
— attributing memory hierarchy costs to data

e Summary and conclusions

41

Understanding Temporal Behavior

Profiling compresses out the temporal dimension

—te

mporal patterns, e.g. serialization, are invisible in profiles

What can we do? Trace call path samples
—sketch:

N times per second, take a call path sample of each thread
organize the samples for each thread along a time line
view how the execution evolves left to right

what do we view?

assign each procedure a color; view a depth slice of an execution

Processes

Time

42

Exposes Temporal Call Path Patterns

aNOn hpctraceviewer
£ Trace vew PFLOTRAN, 8184 processes, Cray XT5]l =T)
ol | SOt Y™ &) 4 L | Time Range: 0.0s |982.195 Process Range: 0.0|8184.0 Cross Mair: (129.487s, 484) E 8
- =:f;::ran

e

MPI rank

Il s

Call path
depth

+

Process-time view at selected depth E I

Cime)

! 1)] ' ..'.:.Y 'u 1y T

Depth-time view for selected rank

B timestepper_module_step
W snessoive_
B SNESSOlve
SNESSolve_LS
I SNES_KSPSolve
M KSPSoive
W KSPSolve_BCGS
B vecDotNorm2
B PP _Alireduce
B MPIDI_CRAY_SMPClus_Alle
B MPIR_Bcast
B MPIR_Bcast_binomial
B MPIC_Recy
[MPIDI_CRAY_Progress_wa
W MPIDI_CRAY progress
B MPIDI_CRAY _ptidev_progr
W PriEQPoll
W fast_nal_poll
B check_eqs_for_event
W FHEQCet
B IEQCGet_internal

&

Mini Map

43

Presenting Large Traces on Small Displays

e How to render an arbitrary portion of an arbitrarily large trace?
— we have a display window of dimensions i x w
— typically many more processes (or threads) than 4
— typically many more samples (trace records) than w

e Solution: sample the samples!
samples (of samples)

190000 0T 000 00>
00000000000

 ®©00 000000000 N

) : sample

g Trace with n processes definel

5000000000000 a pixel
C B A B A BN A B M B N B A

D 000000000000)

n --

MPBS: 16K cores @ 50 min

& Trace view @ eett-led4d = =0

Time Range: [1830.581s ,1920.242s] Process Range: [174,6717] Cross Hair: (1896.021s, 3143)

4 Depth View “ Summary View

NOTES:

H “l n =0

8 .
B main
B royfls64
W PMP1_Barrier

| MPIR_Barrier_impl

B MPIR_Bcast_impl
B MPIR_Bcast_intra
B MPIR_Bcast_binomial.is
W MPIC_Recv
MPIC_W&I(
B MPIDI_CH3I_Progress
B MPID_nem_gni_poll
W MPID_nem_gni_smsg_t
W MPID_nem_gni_datagr:

Mini Map

(1) I/O 1n this execution to /dev/null (to show we can scale without burning hours writing application data files)

(2) panel above shows a zoomed view of an execution detail.

45

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement
o Effective performance analysis

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

 Understanding temporal behavior

 Assessing process variability

e Understanding threading, GPU, locks, and memory hierarchy
— blame shifting
— attributing memory hierarchy costs to data

e Summary and conclusions

46

Example: Massive Parallel Bucket Sort (MPBS)

Program execution consists of two phases

* Produces a large number of files
— each file has a fixed numbered sequence of buckets
— each bucket has a fixed number of records
— each record is a 4, 8, or 16-byte integer

— each file produced by sequentially filling each bucket with
integer records

— most significant bits set to bucket number
— file complete when all buckets filled and file written to disk

 Performs a two-stage sort on the contents of all files

— records are sorted for a given bucket number across all of the
generated files

— then written to a single file
— this is repeated for each bucket
— this yields a single sorted file as a result

(Sample execution: radix sort, 960 cores, 512MB/core)

MPBS @ 960 cores, radix sort

Two views of load imbalance since not on a 2k cores

deeti €24 L[OCHT =0 Hamm =0
Time Range: (989.4725 ,1048.545s] Process Range: [0,959] Cross Hair: (1016.069s, 35) s Q
¥ Wmain

W oyfis6e
Mpsortui6s_mpi2

usort
W usortx

W mainsortSSCFE_id_Sf9
Ml nonuniformsortS SCFE,
I sortcountS SCFE_id_St¢

¥ pepth View | LIl summary View

0 0 0 hpcviewer: mpbs-mpi2, 960 cores, radix (hopper)
[% (Plot graph] usort: PAPLTOT_CYC () &3 \ =0
[Plot graph] usort: PAPI_TOT_CYC (I)
35.0E10 “
s
.E e = e e e = e s
;0.0[0 - 9 -0 0 -0 0000000000000 0000000000000 000.0-00-00-0
T T T T T T T T T T
00.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00
Process.Thread
859 else if(!stremp(pt_bsort, "gsort"))
260 gsortuibd(recvs[id], sdata);
861 else if(!stremp(pt_bsort, "radix"))
862 (void)usort(sdata, recvs[id], 9, (int64)(64-bbits-1));
863 }
864 timer_stop(&t);
865 print_times(id, &t, bssize, "Bytes");
866 log_times(pt_log, id, "SERIAL SORT 2", &t, bssize);
0c
%'. Calling Context View &3 | R, Callers View| f1. Flat View{ =0
|2 & |6 fm|M|E A A
Scope |[PAPI_TOT_CYC:Sum (I | PAPI_TOT_CYC:Mean (I) |PAPI_TOT_CYC:StdDev (I) |PAPI_TC
Experiment Aggregate Metrics 5.18e+14 100 % 5.18e+11 1.54e+11
¥main 5.18e+14 100 % 5.18e+11 l.54e+11
v B rbyfls64 4.52e+14 87.3% 4.52e+11 1.45e+11
Vloop at ioops.c: 2314 4.52e+14 87.3% 4.52e+11 1.45e+11
» B> MPI_Barrier 3.1le+14 60.0% 3.1le+11 1.27e+11
V B psortui64_mpi2 1.21e+14 23.3% 1.21le+11 2.46e+10
P loop at psort_mpi2... 5.04e+13 9.7% 5.04e+10 1.03e+10
» B> usort 2.56e+13 5.0% 2.56e+10 8.08e+09

48

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement
o Effective performance analysis

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

 Understanding temporal behavior
* Assessing process variability

 Understanding threading, GPU, locks, and memory hierarchy

— blame shifting

— attributing memory hierarchy costs to data

e Summary and conclusions

49

Blame Shifting

* Problem: in many circumstances sampling measures
symptoms of performance losses rather than causes

— worker threads waiting for work
— threads waiting for a lock
— MPI process waiting for peers in a collective communication

e Approach: shift blame for losses from victims to perpetrators

e Flavors
— active measurement
— analysis only

50

Cilk: A Multithreaded Language

cilk int fib(n) {

if (n < 2) return n;
else { @

}
}

int x, y;

x = spawn fib(n-1) ; @ @

y = spawn fib(n-2) ;

sync;

return/ (x + y); @ @ @

asynchronouls calls
create logical tasks that ’ ’ ..quickly create significant

only block ata sync...

logical parallelism.

51

Cilk Program Execution using Work Stealing

 Challenge: Mapping logical tasks to compute cores

e Cilk approach:

— lazy thread creation plus work-stealing scheduler
e spawn: a potentially parallel task is available
« an idle thread steals tasks from a random working thread

R <
. AN
(- - \ “‘II‘ ‘ = ~ -
Possible Execution: . N -

thread 1 begins ..”'\,v"" RN @
thread 2 steals from 1 A A /

thread 3 steals from 1 s Il A Vi ’ -

)
]
) N
o . Y4 ¢
L * \
K etC...) : @ ”. l @ l ‘ @ I
: " \ 7 \, /4
o 4

52

Wanted: Call Path Profiles of Cilk

X thread 1
thread 2

thread 3

Work stealing separates
user-level calling contexts in
space and time

* Consider thread 3: i .
— physical call path: | /l

Logical call path profiling: Recover full relationship

between physical and user-level execution 53

Effective Performance Analysis

Three Complementary Techniques:

e Recover logical calling contexts in presence of work-stealing

lllllllllllllllllllll

cilk int fib(n) { . s
if (n < 2) {...} @_:’
| L 2

else { e T
int x, y;
x = spawn fib(n-1) ; /f
y = spawn fib (n-2);

high parallel overhead from

sync; creating many small tasks

return (x + y):

 Quantify parallel idleness (insufficient parallelism)
* Quantify parallel overhead

o Attribute idleness and overhead to logical contexts
— at the source level

94

Measuring & Attributing Parallel Idleness

* Metrics: Effort = “work” + “idleness”
— associate metrics with user-level calling contexts

— insight: attribute idleness to its cause: context of working thread
a thread looks past itself when ‘bad things’ happen to others

* Work stealing-scheduler: one thread per core

— maintain W (# working threads) and | (# idling threads)
slight modifications to work-stealing run time
— atomically incr/decr W when thread exits/enters scheduler
 when a sample event interrupts a working thread
— | = #cores - W
— apportion others’ idleness to me: |/ W

e Example: Dual quad-cores; on a sample, 5 are working:

o o

foreach W +=1 > W=5 idle: drop sample
worker: Z +=3/5 ZI — 3 (it’s in the scheduler!)

95

Parallel Overhead

e Parallel overhead

— when a thread works on something other than user code
(we classify waiting for work as idleness)

* Pinpointing overhead with call path profiling

— impossible, without prior arrangement
« work and overhead are both machine instructions

— insight: have compiler tag instructions as overhead

— quantify samples attributed to instructions that represent ovhd
use post-mortem analysis

56

Blame Shifting:
Lulesh OpenMP Code

S7

HPCToolkit OpenMP Metrics Explained

e p_reqg_core idleness

— idleness for each parallel region is measured with respect to the maximum
number of threads ever requested for a parallel region. The number of
threads for a parallel region is specified by omp_set_num_threads,
OMP_NUM_THREADS, or (by default) the number of cores on the node.

p_all_core_idleness
— idleness for each parallel region is measured with respect to the total
number of cores on the node.

e p_all _thread idleness

— idleness for each parallel region is measured with respect to the number of
threads employed for that parallel region.

e p_work
— useful work performed by the thread

e p_overhead

— work performed by the thread on behalf of the OpenMP runtime system
shared library

58

Blame Shifting for Hybrid Codes

® |f GPU is idle, code executing on CPU is responsible for
not offloading (enough) work to GPU

+ Attribute blame to CPU code executing while GPU is idle

® |f CPU is idle waiting for GPU kernel(s) to finish,
executing GPU kernel(s) are responsible for CPU
idleness

+ Attribute proportional blame to each such kernels

® Credit codes that are well overlapped

59

Performance Expectations for Hybrid Code with Blame Shifting

Top GPU-kernel may not be the best candidate for tuning

Performance Expectations for Hybrid Code with Blame Shifting

Kernel A Kernel B

5% expected gain by
tuning Kernel A

Top GPU-kernel may not be the best candidate for tuning

61

Performance Expectations for Hybrid Code with Blame Shifting

Kernel A Kernel B

5% expected gain by 40% expected gain
tuning Kernel A by tuning Kernel B

Top GPU-kernel may not be the best candidate for tuning

62

Performance Expectations for Hybrid Code with Blame Shifting

— >
CPU

Kernel A Kernel B

5% expected gain by 40% expected gain
tuning Kernel A by tuning Kernel B

Blame shifting

Top GPU-kernel may not be the best candidate for tuning

63

HPCToolkit GPU Metrics Explained

« CPU_IDLE (Cl)

— When a sample event occurs in a CPU context C, this metric is incremented for C if the CPU thread is waiting for
some GPU activity to finish.

« CPU_IDLE_CAUSE (CIC)

— When a sample event occurs while the CPU is waiting in a context C, this metric is incremented for each context G
that launched a kernel active on a GPU.

e GPU_IDLE_CAUSE (GIC)

— When a sample event occurs in a CPU context C, this metric is incremented for C when there are no active GPU
kernels.

« OVERLAPPED_CPU (OC)

— When a sample event occurs in a CPU context C, this metric is incremented for C when CPU thread is not waiting
for a GPU that has some unfinished activity.

¢ OVERLAPPED_GPU (OG)

— When a sample event occurs in a CPU context C, this metric is incremented this metric is incremented for each
context G that launched a kernel active on the GPU if the CPU thread is not waiting for GPU.

o GPU_ACTIVITY_TIME (GAT)
— This metric is increased by T for the GPU context that launched a kernel K, where T is the time K spent executing.
. H_TO_D_BYTES (H2D)

— This metric is incremented by bytes transferred from CPU to GPU, and attributed to the calling context where the
host to device memory copy was invoked.

. D_TO_H_BYTES (D2H)
— This metric is incremented by bytes transferred from GPU to CPU and attributed to the calling context where
device to host memory copies were invoked.

Note, that we don't have a GPU_IDLE metric (unlike CPU_IDLE), because when the GPU is idle,
there is clearly no code executing on it, contrary to that when CPU is idle, it makes sense to
show where the CPU was idling.

Hybrid Code Demo:
Lulesh: CPU/GPU blame shifting
LAMMPS: Tracing

65

LAMMPS Slow GPU Copies on Keeneland

e From Keeneland support staff:

“My first guess is that those nodes had GPUs that weren't seated
correctly -- instead of PCle x16, they only had PCle x8 or less”

e Sample related error log messages:
---PCIE (needs GPU reseat)
kid036 : GPU 0 has incorrect PCle width
kid036 : GPU 0 has low bandwidth (< 5.0GB/s) : 3.08614
kid058 : GPU 0 has incorrect PCle width
kid058 : GPU 0 has low bandwidth (< 5.0GB/s) : 0.405049
kid105 : GPU 0 has incorrect PCle width
kid105 : GPU 0 has low bandwidth (< 5.0GB/s) : 0.813523

66

LAMMPS Culnit Delay on Keeneland

32 MPI processes 64 MPI processes

6 ewer: Imp_keeneland_gpu_gcc_03 e O O
~0 SCC 3~ €D>4 L0 H= =0 carran =0
B Hair: (7.109s, 16.0) 10 ()

B main
B LAMMPS_NS::Input::file(

wer: Imp_keeneland_gpu_gcc_03

+i-[E€d R L[OHM= =O|[Bcuran] =E
ross Hair: (9.732s, 22.0) 10 @

B main

I LAMMPS_NS::Input:-file(
[LAMMPS_NS::Input::exe
I LAMMPS_NS::Input::pac
I LAMMPS_NS::Modify::ac
M inlined from fix_gpu.h:
W FixGPU

M Imp_init_device(ompi_c
Il LAMMPS_AL::Device <flc

' Trace View

race Vi

~6 sec

Mime Range: [0.11

Time Range: [0.367s ,20.9

\ ——————2r

B Imp_init_device(ompi_c
I LAMMPS_AL::Device <flc

culnit B UCL_Device
AICIV IV) /7 | Ml ~unknown-proc~ culnit
aLins M ~unknown-proc~
CAKNOWN-Proc~ M ~unknown-proc~

M cudbgApilnit M ~unknown-proc~

M cudbgApilnit
M cudbgApilnit
B ~unknown-proc~
Ml cudbgApilnit
M cudbgApilnit
M cudbgApilnit
M cudbgApilnit
M cudbgApilnit
M ~unknown-proc~

M cudbgApilnit

T UL T s

..... = P kid043 |
. . M cudbgApilnit L ——
M cudbgApilnit

~Lnknown-proc~ ;] r
|

kid043
kid021

kid096

k|d096 T kid020

. T
KId020 |t
Kid033 |

kid008 ¢/ ec "

case

Mini Map

o7

¥ Depth Viewl “ Sul

Blame Shifting to Understand Lock Contention

 Lock contention causes idleness
— explicitly threaded programs (Pthreads, etc)
— implicitly threaded programs (critical sections in OpenMP, Cilk...)

 Use “blame-shifting” to shift blame from victim to perpetrator
— use shared state (locks) to communicate blame

e How it works
— consider spin-waiting
— sample a working thread:
charge to ‘work’ metric
— sample an idle thread
accumulate in idleness counter assoc. with lock (atomic add)

— working thread releases a lock
- atomically swap 0 with lock’s idleness counter
exactly represents contention while that thread held the lock
unwind the call stack to attribute lock contention to a calling context

68

Lock contention in MADNESS

578 add(MEMFUN_OBIT(memfunT)& obj,

579 memfunT memfun,

580 const arglT& argl, const arg2T& arg2, const arg3T& arg3, const TaskAttributes& |
581 Future<REMFUTURE(MEMFUN_RETURNT (memfunT))> result;

add(new TaskMemfun<memfunT>(result,obj,memfun,argl,arg?,arg3,attr));

- RS quantum chemistry; MPI + pthreads
e

e
"3 Calling Context View W tr, Flat View
| 56 |5 A A 16 cores; 1 thread/core (4 x Barcelona)
Scope ... %idleness (@ll/E) ¥ idleness (all/E)
Experiment Aggregate Metrics 2.35e+01 100 % |1.57e+09 100 ¢

¥ pthread_spin_unlock 100.0 lock contention
v & madness:Spinlock :unlock() const 2.35e+01 100.0

accounts for 23.5%
of execution time.

1.78e+01 75.6%

1.78e401 75.6%

7.35e+00 31.2%

¥ @ inlined from worldmutex.h: 142
v @imadness: ThreadPool::add(madness::PoolTaskinterface*)
v <3 inlined from worldtask.h: 581
» @ madness:Future<> madness:WorldObject<> task<>(7.35e+00 31.2%

.92e+08 31.2%

4
4 .
v 43 inlined from worldtask.h: 569 4.560400 19.4% |3.0¢ Addlng futures
» ¢ madness:Future<> madness:WorldObject<>:task<>(4.56e+00 19.4% |3.03 to shared global
» &3 inlined from worlddep.h: 68 1.53e+00 6.5% (1.0 work queue.
v 43 inlined from worldtask.h: 570 1.49¢400 £€.3% 9.97e407 6.3%
» @@ madness:Future<> madness:WorldObject<>:task<>(1.49e+00 6.3%|9.97e+07 6.3%
» & inlined from worldtask.h: 558 1.38e+00 5.9% |9.26e+07 5.9%
2.9% |4.49¢407 2.9%

> 48 madness Future<> madncss::WorIdTastucuc;:add<>(ma|5-720-01

—_— IS 69

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement
o Effective performance analysis

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

 Understanding temporal behavior
* Assessing process variability

e Understanding threading, GPU, locks, and memory hierarchy
— blame shifting

— attributing memory hierarchy costs to data

e Summary and conclusions

70

Data Centric Analysis

 Goal: associate memory hierarchy performance losses with data

e Approach
— intercept allocations to associate with their data ranges

— associate latency with data using “instruction-based sampling” on
AMD Opteron CPUs

 identify instances of loads and store instructions
 identify the data structure an access touches based on L/S address
 measure the total latency associated with each L/S

— present quantitative results using hpcviewer

71

Data Centric Analysis of S3D

AOO hpcviewer: s3d_f90.x =

#} variables_m.f90 ¥ solve_driver.f90 =% integrate_erk Jst... =% rhsf.f90 W #% thermchem_m.f90) =8

1701 there is an extra 1000 in the numerator for the molecular weight conversion
180
rateconv = l_ref * 1.8e6 / (rho_.ref * a_ref)

1231 get reaction rate from getrates and convert units

f‘~k do k = kzl, kzu
386 do j = jyl,jyu H 1
7 det 2, i yspecies latency for this
loop is 14.5% of total

latency in program

yspec(:) = yspecies(i, 3, k, =)|<
390 call getrates(pressure(i,j,k)*pconv,temp(i,j,k)*tconv, &
391 yspec,icknrk,rckwrk,rr_rl)

393 rer(i,3,k,:) = re_rl(:) * rateconv * molwt(:)

395 enddo
196 enddo
enddo

3199 return
4 end subroutine reaction_rate_bounds

41.2% of memory hierarchy

latency related to yspecies
array

*3: Calling Context View) A, Callers View fg, Flat View
0|6 & A A
Scope
Experiment Aggregate Metrics

VALLOCATE_VARIABLES_ARRAYS.in.VARIABLES_M

ST).[0,0] () #(LD+ST).[0,0] (E) CACHE_MISS.[0,0] (1)

LATENCY.[0,0] (v #(LD
2c+04 100 & 5.02¢+04 100 & 9.92¢+03 100 \0

8o40 04

5.68e+05 41.2%

.400+03 18.7% 3.14e+03 31.6%

¥ solve_driver wegerTe 0 9.40e+403 18.7% 3.14e+03 31.6%
¥loop at solve_driver.f90: 137 5.66c+405 41.0% 9.32¢4023 18.6% 3.11e+03 31.4%
¥ Bpintegrate 5.660+05 41.0% 9.320+03 18.6% 3.11e+03 31.4%

¥ Bbintegrate_erk_jstage_|t 5.36e+05 36.9% 8.51e+03 17.0% 2.92e+03 29.5%
¥loop at integrate_erk_jstage_lt_gen.f: 47 5.36c+05 38.9% 8.51e+403 17.0% 2.92¢403 29.5%

¥ Bdrhsf
¥ B> REACTION_RATE.in.CHEMKIN_M
¥ B)REACTION_RATE_BOUNDS.In.CHEMKIN_M
¥loop at chemkin_m.f90: 385
¥ioop at chemkin_m.f90: 386
¥loop at chemkin_m.f90: 387

«170+05 37.4% 7.99e+03 15.9% 2.78e+03 28.0%
.57e+05 18.6% 1.24e+03 2.5% 1.20e+03 12.1%
«57e405 18.6% 1.24e+03 .5% 1.10e+03 2.2% 1.20e+03 12.1%
57e+05 18.6% 1.24e+03 .5% 1.20e+03 12.1%
1 1
1

NN NN W»

.24e+03 2.5% .20e+03 12.1%
Q.05 18 631.24e403 2.5% 1.20e+03 12.1%

¥loop at chemkin_m.f90: 389 h.100403 2.2% 1.10e+03 2.2% 1.06e+03 10.7% ,

chemkin_m.f90: 389 —— o .100403 2.2% 1.10e+03 2.2% 1.06e+03 10.7% ¥

C =) <>

LTS)

7amof 433m |

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement
o Effective performance analysis

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

 Understanding temporal behavior
* Assessing process variability

e Understanding threading, GPU, locks and memory hierarchy
— blame shifting
— attributing memory hierarchy costs to data

e Summary and conclusions

73

Summary

e Sampling provides low overhead measurement

e Call path profiling + binary analysis + blame shifting = insight
— scalability bottlenecks
— where insufficient parallelism lurks
— sources of lock contention
— load imbalance
— temporal dynamics
— bottlenecks in hybrid code
— problematic data structures

e Other capabilities
— attribute memory leaks back to their full calling context

74

Status

 Operational today on

— 64- and 32-bit x86 systems running Linux (including Cray XT/E/K)
— IBM Blue Gene/P/Q
— IBM Power7 systems running Linux

* Emerging capabilities
— NVIDIA GPU
measurement and reporting using GPU hardware counters

— data centric analysis

e Available as open source software at hpctoolkit.org

75

Ongoing Work

e Standardize OpenMP tools API
— enable first-class support for BG/Q OpenMP implementation

e Visualization of massive traces
— parallel trace server

e Harden support for GPU and hybrid codes

76

Some Challenges Ahead

 Support characteristics of emerging hardware and software

— heterogeneous hardware

« manycore, CPU+GPU

« dynamic power and frequency scaling
— software

 one-sided communication

« asynchronous operations

« dynamic parallelism

« adaptation

« failure recovery

* new programming models

 Augment monitoring capabilities throughout the stack
— hardware, OS, runtime, language-level API

 Transition from descriptive to prescriptive feedback
 Guide online adaptation and tuning

77

Anecdotal Comparison with Tau and Vampir

Original HPCToolkit TAU VampireTrace CCP
Program time Profiling Tracing Profiling Tracing Tracing Tracing
LAMMPS 21.0 23.2(10.5%) | 23.9 (13.8%) 31.3(49.0%) | 36.6 (74.3%) 7846.6 (37265%) 21.0 (0%)
LULESH 17.0 18.2 (7%) 18.3 (7.7%) 27.7 (63%) | 27.6 (62.4%) 912.5(5268%) 17.6 (3.5%)
Table 1. Time Comparison.
HPCToolkit TAU VampireTrace CCP
Program Profiling | Tracing Profiling Tracing Tracing Tracing
LAMMPS 17MB 67MB 98MB (5.8x) 5.2GB (79.5x) 85GB (1299x) 152MB (2.3x)
LULESH 268KB 4.0MB 1.2MB (4.6x) | 175MB (43.8x) 559MB (139.8x) 11MB (2.8x)

Table 2. Size Comparison.

NOTE: Despite HPCToolkit's need to wrap GPU

interfaces for hybrid codes, which increases

overhead, HPCToolkit’s space and time overhead
IS still much lower than other tools

78

HPCToolkit Capabilities at a Glance

000 hpcviewer: MOAB: mbperf_iMesh 200 B (Barcelona 2360 SE) calling context

[mbgert_iveshcpp 33 [, Typesequenceltanagerhpp 53|, st treeh view

22 ¥ Define less-than comparison for EntitySequence pointers os a comparison 0

* of the entity handles in the pointed-to EntitySequences.
Y

class SequenceCompare {
26 public: bool operator()(const EntitySequence* o,

{ return a->end_handle() < b->start_handle(); } C?S.ts for
k ¢inlined procedures

*loops

£ imedi
.

4 Calling ContextView, , Callers View| 1, Flat View,

I) o

Scope
¥ main

calls in full context

LLLLLDGM()¥: PAPLTOT_CYC ()
63e+08 100 ¢ 1.13e+11 100 §
8le+08 78.9% 0.98e+1l 86.5%
436408 39.6% 3.37e+410 29.9%)
1180410 19.38
J16e+10 19.1%)

8.
¥ B testBivoid®,int, double constr,int const) 8.
|ineg from mbperf, esh.cop: 261] (2
[loop at mbper, esh.cop. 280-313] >
¥ B imesh_getvixarrcoords_ 3.20408 37.1%
¥ B> MBCore:get_coords(unsigned long const*, int, double*) cc 3.20e+08 37.1%
¥[loop at MéCore cop: 681-693] A
2

W[linlined from sti_treeh: 472

046408 23,78 0.38e409 8.3%

V|

04e408 23,68 9.37¢409

780408 20,63

v [inlined from TypeSequenceManager hpp:27

1
0
3
2
2
20408 37.18 | 2.16e410 19.1%
9
9
8
TypeSequenceManager.hpp: 27 1.78e408 20.63 8

]
1560409 7.64
\56e409 7

Attribute Costs to Code

ann

7 Trace view =olg =0

hpcviewer: [Profile Name]

Execution time

R gevrates ! | M rhsff90 | aiffflux_gen_uif 83 |
D e < 31D /33011 increases 2.8x in the
dom « 1,1__ujUpperdt 3

loop that scales worst

ds_mixav
*(1e_0, 11, 1 nm e
*s(1e_0, 11,

loop contributes a
52| 8.9% scaling loss to

lux(lt_.0, 1t
)

o ...| whole execution
*xavg(lt..0, 1t e By -
{-\ Calling Context View | =%, Callers View | =%, Flat View, “o
284 56/
oop at iffux_gen_ujF: 197-22: 2.86006 2.60 . @

100p at derivative_x.f90: 213-6901 . 78006

Pinpoint & Quantify
Scaling Bottlenecks

calsuck

S
Wl collectves barie
Wsiret AVl

Wgusnerc Aol
Wsasnercoonas poll

add(MEMFUN_OBJT (memfunT)& obj,
memfunT memfun,
const arglTh argl, const arg2T& arg2, const argdT& argd, const TaskAttributesk
Future<REMFUTURECMEMFUN_RETURNT (memfunT))> result;
add(new TaskMemfuncmemfunT>(result,obj,memfun,argl,arg2,arg3,attr));

return resul

} | quantum chemistry; MPI + pthreads |

Bgasnerc gecevent

X Calling Context View | &, Callers View, Tz, rmv.ew{
| 4“6 fw ¥ & A~ |16 cores; 1 thread/core (4 x Barcelona) |

Scope <. % idleness (al/E)y.
Experiment Aggregate Metrics 2.35e401 100

[=]

idleness (all/E)
1.57e409 100 &

be limbalance) ¥ TOT_CYC:Sum ()
pflotran 5.28e+15 1.85e+16 100 &
¥ B timestepper_module_stepperrun_ 5.17e+15 | 1.82e+16 9s.3&|
¥ loop at timestepper.F90: 384 5.17e+15 | 1.82e+16 98.23
v B _module_stepp . 2.22e+15 | 1.33e+16 72.0%
¥ loop at timestepper.F90: 1230 2.22e+15 | 1.33e+16 72.0%
¥ loop at timestepper.F90: 1254 2.22e+15 1.32e+16 71.3%
¥ B snessolve 2.22e+15 1.30e+16 70.4%
¥ B SNESSolve 2.22e+15 1.30e+16 70.4%
¥ B SNESSolve_LS 2.22e+15 1.30e+16 70.4%
[ioopatisc 181] 1
> B3[SNES_KsPSolve . 5
> _SN(SComnutekcob 6.21e414 4

————————
ierr = |SNESComputelacobian nes,X,&snes—>jncubinn,&snes—>jn<cbian‘pre,ﬂ
S !

err - KSPSetOperators(snes->ksp,snes->jacobian,snes->jacobian_pre, flg:
ierr = |SNES_KSPSolve{snes,snes->ksp,F,Y);CHKERRQ(ierr); v
i

000,000
000,000

SNESComputelacobian: TOT_CYC (I)

470,000,000,000

000,000

O e S N ——

1,000 2000 3,000 4000 | 5000 6000 7000 8000
Process. [hreads
SNES_KSPSolve: TOT_CYC (I)

i&u’\.iﬁ#‘\ﬂ‘r"’f""’;“

Assess Imbalance
and Variability

T there 13 o extra 1800 (n the numerator for the sclecular welght comversion

ratecony - L_ref * 1,066 / (rho.ref * a.ref)

1 g6t reaction rote from getrates ond convert units

latency for this

gt = yspeciests, 3, k. DI
TN setratestorestureCi .k piony.tempCi 3. O"ecom,
Vipec, ke chmrk 113

rrrGisk = rr.

3 * rotecony * molat(:)

enddo

loop is 14.5% of total
latency in program

“nd subroutine reaction_rate_bounds

¥ pthread_spin_unlock | EFEErSIR (LI

S ateior 100.0 | lOCK contention .
786401 75.68 accoun!s.for2'3.5ﬂa
of execution time.

v 48 madness Spinlock-unlock() const
v & inlined from worldmutex.h: 142 1.

41.2% of memory hierarchy

5 Caing Context iew 2, Callrs View_ i, Pl Vew,

T+ h 6N EA N

scone

v 4@]madness ThreadPool -add(madness:PoolTaskinterface*) 1.78e401 75.6%
v 43 inlined from worldtask.h: 581

|7-35e+00 31.2%
» €@ madness:Future<> madness:WorldObject<> task<>{7.35e+00 31.2%
v 48 inlined from worldtask.h: 569 4.560400 19.4%

92e+08 31.2%

Adding futures

ALLOCATI_VARIARLES ARSAYS i VARARLES M

 Bintegrae_erk stage 1t
1009 st Integrate_eek stage 1 gen . 47

N0 D #0401 @ CACHEMSS. 001 @

latency related to ys
array

120

7 oepthview

Analyze Behavior
over Time

» €8 madness: Future<> madness: WorldObject<>
» 48 inlined from worlddep.h: 68
v 48 inlined from worldtask.h: 570

» ¢8 madness:Future<> madness:WorldObject<>
» 48 inlined from worldtask.h: 558

» 48 madness:Future<> madness:WorldTaskQueue:add <>(mal 6.72e-01

task<>(4.56e400 19.4%

: to shared global
o4 work queue.

1.490400 6.3% (9.976407 €.3%
task<>{1.49e400 6.3%(9.97e+07 6.3%
1.38e400 5.9% |9.26e407 5.9%

2.9%

4.
4
3
3
1.53e400 6.5% |1.
9
9
9
4

.49e407 2.9%

Shift Blame from
Symptoms to Causes

ey
¥ B RACTION BATLn 0NN M

chermin,m.150. 369

resos 23

Losased 10,

T

Associate Costs with Data

hpctoolkit.org

HPCToolkit Documentation

http://hpctoolkit.org/documentation.html

e Comprehensive user manual:

http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
— Quick start guide
— essential overview that almost fits on one page

— Using HPCToolkit with statically linked programs
— a guide for using hpctoolkit on BG/P and Cray XT

— The hpcviewer user interface

— Effective strategies for analyzing program performance with
HPCToolkit

— analyzing scalability, waste, multicore performance ...
— HPCToolkit and MPI

— HPCToolkit Troubleshooting
— why don’t | have any source code in the viewer?
— hpcviewer isn’t working well over the network ... what can | do?

e |nstallation guide

80

Using HPCToolkit

Add hpctoolkit’s bin directory to your path
— use hpctoolkit

Perhaps adjust your compiler flags for your application
— sadly, most compilers throw away the line map unless -g is on the

command line. add -g flag after any optimization flags if using anything but
the Cray compilers/ Cray compilers provide attribution to source without -

g.
Add hpclink as a prefix to your Makefile’s link line
— e.g. hpclink mpixlf -o myapp foo.o ... lib.a -1m ...

Decide what hardware counters to monitor

— statically-linked executables (e.g., Cray, Blue Gene)
— use hpclink to link your executable
— launch executable with environment var HPCRUN_EVENT_LIST=LIST
(BG/P hardware counters supported)

— dynamically-linked executables (e.g., Linux)
— use hpcrun -L to learn about counters available for profiling
— use papi_avail
you can sample any event listed as “profilable”

81

Using Profiling and Tracing Together

e When tracing, good to have an event that represents a
measure of time

— e.g., WALLCLOCK or PAPI_TOT_CYC

e Turn on tracing while sampling using one of the above events

— Cray XT/E/K: set environment variable in your launch script
setenv HPCRUN_EVENT_LIST “PAPI_TOT_CYC@3000000”
setenv HPCRUN_TRACE 1
aprun your_app

— Linux: use hpcrun

hpcrun -e PAPI_TOT_CYC@3000000 -t your_app

— Blue Gene/P at ANL: pass environment settings to cqsub

cqsub -p YourAllocation -q prod-devel -t 30 -n 2048 -c 8192 \
--mode vn --env HPCRUN_EVENT_LIST=WALLCLOCK@1000 \
--env HPCRUN_TRACE=1 your_app

82

Monitoring Using Hardware Counters

e Cray XT/E/K: set environment variable in your launch script

setenv HPCRUN_EVENT _LIST “PAPI_TOT_CYC@3000000
PAPI_L2_MISS@400000 PAPI_TLB_MISS@400000
PAPI_FP_OPS@400000”

aprun your_app

e Linux: use hpcrun

hpcrun -e PAPI_TOT_CYC@3000000 -e PAPI_L2_ MISS@400000 \

-e PAPI_TLB_MISS@400000 -e PAPI_FP_OPS@400000 \
your_app

e Blue Gene/P at ANL: pass environment settings to cqsub

cqsub -p YourAllocation -q prod-devel -t 30 -n 2048 -c 8192 \
--mode vh --env HPCRUN_EVENT LIST=WALLCLOCK@1000

your_app

\

83

Analysis and Visualization

 Use hpcstruct to reconstruct program structure
— e.9g. hpcstruct your app
— creates your_app.hpcstruct

e Use hpcprof to correlate measurements to source code
— run hpcprof on the front-end node

— run hpcprof-mpi on the compute nodes to analyze data in parallel

e Use hpcviewer to open resulting database

e Use hpctraceviewer to explore traces (collected with -t option)

84

Memory Leak Detection with HPCToolkit

o Statically linked code
— hpclink --memleak -o your app foo.o ... lib.a -1lm ...

— at launch time
— setenv HPCTOOLKIT EVENT LIST=MEMLEAK

— your_app

* Dynamically linked code
— hpcrun -e MEMLEAK your_app

85

