New Corona System & CTS-2 Update

March 2019 LC User Meeting

Matt Leininger CTS-2 POC

Corona is a Follow-on to Catalyst: First AMD GPU Cluster for HPC, ML, and Data Science

Node

- AMD Naples 24-core 2.0 GHz
- Memory: 256 GB; 5.3 GB/core
- Memory BW: > 300 GB/s DDR
- 1.6 TB NVMe
- Mellanox HDR100
- 4 GPU per compute node

彗

164 2-Socket 24-Core Compute Nodes + 328 GPUs

System Nodes

- 82 CPU-only nodes
- 82 CPU+GPU
- 4 Gateways
- 1 Login
- 1 Management

Corona Highlights

Considering adding 328 AMD MI-60 GPUs to Corona

Corona FP Performance

Corona NVMe

NVMe HGST 2N200 3 DWPD	Read	Write
Sequential @ 128 KiB	3.35 GB/s	2.1 GB/s
Random @ 4 KiB	835K IOPs	200K IOPs
Total	549 TB/s; 137M IOPs	344 TB/s; 32.8M IOPs

Corona Software Environment

- Tri-Lab Operating System Software HPC environment as base foundation
 - TOSS 3.x based on RHEL 7.x
 - Provides smooth transition for TOSS team and LLNL HPC users
 - Includes AMD drivers, compilers, etc.
 - Slurm + Flux scheduler and resource manager
- Additional software for Data science & Machine Learning
 - Containers supported
 - Working with early users to explore other software

Corona is onsite and undergoing burn-in. Early User access in April.

Commodity Technology Systems

- Status of CTS-2 procurement
- Approximate Timeline
- Potential Architectures

CTS-2 activities leading to RFP and Contract

LANL

Market surveys

LLNL

Market surveys

SNL

Market surveys

2018-2019

CTS-2 and TOSS teams continue to work together during CTS-2 deployment & lifetime support CTS-2 Market surveys

Update Tech requirements

Release DRAFT RFP

Feedback on DRAFT RFP

Final RFP

Vendor Selection

Tri-lab negotiations

CTS-2 contract awarded

Oct. 2018 – March 2019

Oct. 2018 – March 2019

April 2019

April 2019 - May 2019

August 2019

Sept 2019

Sept-Oct 2019

Jan. 2020

DRAFT

CTS-2 Procurement Timeline

Potential CTS-2 Node Design

IPC Link

32-64 GB DIMMs DDR5 32GB x 8 DIMMs = 256 GB/socket > 200 GB/s per socket

CPU Architecture & Software Readiness are key aspect of CTS-2 Selection

- Intel Xeon, AMD Epyc, Marvell ThunderX, IBM Power all viable processors
- Maturity of platform?
- TOSS support
- Maturity of system software and overall software ecosystem?
- Cost/performance of platform?

What about GPU systems and HBM memory?

Bringing ATS features to CTS-2

- GPU are becoming more widely adopted
- Past commodity procurements were dominated by CPU-only SU's
- GPU system will be available under CTS-2
 - Programs responsible for determining the mix of CPU-only + GPU nodes/clusters best address workloads
 - How much GPU memory do you need?
 - What is the ratio of CPU's to GPU's?
 - Is hardware support for unified memory required?
 - Can all codes utilize GPU's?
 - Can all workloads utilize GPU's 3D vs 2D?

Bringing ATS features to CTS-2

- Give me the fast GPU memory but on CPU's!!!
- Today's GPU utilize High Bandwidth Memory (HBM v2 or HBM2)
- CPU + HBM may be a nice architecture for CTS
- Time to market is likely 2022+
- High Bandwidth Memory provides
 - ~3X more bandwidth per socket
 - ~4X less memory capacity per socket
 - 1-1.5 GB/core adapt applications accordingly
- CTS-2 will include options for CPU+HBM if/when available

Questions?

 Matt Leininger matt@llnl.gov

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.