
IBM Spectrum MPI
Version 10 Release 1

User's Guide

GC27-8265-00

IBM

IBM Spectrum MPI
Version 10 Release 1

User's Guide

GC27-8265-00

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 55.

This edition applies to version 10, release 1, modification 0 of IBM Spectrum MPI (product number 5725-G83) and
to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables v

About this information vii
Who should use this information vii
Conventions and terminology used in this
information viii
Prerequisite and related information viii
How to send your comments ix

Chapter 1. Getting started 1
Introduction 1
Limitations 2
Migrating from IBM Parallel Environment Runtime
Edition to IBM Spectrum MPI 3

Chapter 2. Understanding IBM Spectrum
MPI. 5
IBM Spectrum MPI code structure 5
MPI library support 5

Chapter 3. IBM Spectrum MPI supported
features 7
64-bit support 7
Thread safety 7
Portable Hardware Locality (hwloc) 7
GPU support 8
FCA (hcoll) support 8
MPI-IO 9
IBM Platform LSF 9
Debugger support 9
PMIx 10

Chapter 4. Understanding IBM
Spectrum MPI's collective library
(libcollectives) 11
MCA parameters for collective communication . . 11

MCA parameters for general use 11

Chapter 5. Interconnect selection . . . 13
Using the PAMI verbs bypass 14
Specifying use of the FCA (hcoll) library. 14
Managing on-host communication 15
Specifying an IP network 15
Displaying communication methods between hosts 15

Chapter 6. Compiling applications . . . 17
Using the wrapper compiler scripts 17

Chapter 7. Running applications. . . . 19
Establishing a path to the IBM Spectrum MPI
executables and libraries 19
Running programs with mpirun 19

Specifying the hosts on which your application
runs 19
Starting a SPMD (Single Program, Multiple Data)
application 21
Starting an MPMD (multiple program, multiple
data) application. 21
mpirun options 22

Running applications with IBM Platform LSF . . . 25
Running jobs with ssh or rsh 26

Chapter 8. Debugging and profiling
applications 29
Using the TotalView debugger with IBM Spectrum
MPI 29
Using the Allinea DDT debugger with IBM
Spectrum MPI 30
Using serial debuggers with IBM Spectrum MPI . . 30
Dynamic MPI profiling interface with layering . . 30

Defining consistent layering 31
Implementation notes 33
Using the MPE performance visualization tool. . 33

Chapter 9. Managing processor affinity 35
Understanding MPI process placement and affinity 35

Mapping options and modifiers 35
Helper options 41
IBM Spectrum MPI affinity shortcuts 42
IBM PE Runtime Edition affinity equivalents . . 43
OpenMP (and similar APIs) 48

Chapter 10. Tuning the runtime
environment 49
Tuning with MCA parameters 49
Frameworks, components, and MCA parameters . . 49
Displaying a list of MCA parameters 49

Displaying the MCA parameters for a framework 50
Displaying the MCA parameters for a component 50
Displaying the MCA parameters for an entire
installation 50
Controlling the level of MCA parameters that are
displayed 50

Setting MCA parameters 51
Setting MCA parameters with the mpirun
command 51
Setting MCA parameters as environment
variables 51
Setting MCA parameters by way of a text file . . 52

Accessibility features for IBM
Spectrum MPI. 53

Notices 55
Programming interface information 57

MPI support statement 57

© Copyright IBM Corp. 2016 iii

Open MPI license 57
Trademarks 58
Terms and conditions for product documentation. . 59
IBM Online Privacy Statement 60

Index 61

iv IBM Spectrum MPI: User's Guide

Tables

1. Conventions viii
2. List of MCA parameters for skipping

libcollectives 2
3. IBM PE Runtime Edition tasks and IBM

Spectrum MPI equivalents 3

4. IBM Spectrum MPI wrapper compiler scripts 17
5. IBM Spectrum MPI -aff shortcuts 43

© Copyright IBM Corp. 2016 v

vi IBM Spectrum MPI: User's Guide

About this information
Disclaimer:

The functions or features found herein may not be available on all operating systems or
platforms and do not indicate the availability of these functions or features within the
IBM® product or future versions of the IBM product. The development, release, and timing
of any future features or functionality is at IBM's sole discretion. IBM's plans, directions,
and intent are subject to change or withdrawal without notice at IBM's sole discretion. The
information mentioned is not a commitment, promise, or legal obligation to deliver any
material, code or functionality. The information may not be incorporated into any contract
and it should not be relied on in making a purchasing decision.

This information explains parallel programming as it relates to IBM Spectrum™

IBM, IBM's implementation of Open MPI 2.0. It includes information about
developing, running, and optimizing parallel applications for use in a distributed
memory environment.

IBM Spectrum MPI is a complete MPI implementation, based on the Open MPI
open source project, and is designed to comply with all the requirements of the
Message Passing Interface standard, MPI: A Message-Passing Interface Standard,
Version 3.1, University of Tennessee, Knoxville, Tennessee, June 4, 2015.

For information about Open MPI, and to obtain official Open MPI documentation,
refer to the Open MPI web site (www.open-mpi.org).

This information assumes that one of the currently-supported Linux distributions
is already installed. It also assumes that you have already installed IBM Spectrum
MPI. For information about the supported Linux distributions and installing IBM
Spectrum MPI see IBM Spectrum MPI: Installation.

Note: This document borrows heavily from the information that is provided on the
Open MPI web site (www.open-mpi.org). In many cases, this document explains a
topic at a high level, and then points users to the Open MPI web site for more
detailed information.

Who should use this information
This information is intended for experienced programmers who want to develop
parallel applications using the C or FORTRAN programming language. It is also
intended for end users who need to run parallel programs. Some of the
information covered here should also interest system administrators.

Readers of this information should know C or FORTRAN and should be familiar
with Linux commands, file formats, and special files. They should also be familiar
with MPI (Message Passing Interface) and Open MPI concepts. In addition, readers
should be familiar with distributed-memory machines. Where necessary,
background information relating to these areas is provided. More commonly, you
are referred to the appropriate documentation.

© Copyright IBM Corp. 2016 vii

http://www.open-mpi.org
http://www.open-mpi.org

Conventions and terminology used in this information
Table 1 shows the conventions used in this information:

Table 1. Conventions

Convention Usage

bold Environment variables.

monospace Examples and information that the system displays, command line
options, file names, pathnames.

bold monospace Command names and parameter names.

italic Italic words or characters represent variable values that you must
supply.

Italics are also used for unit titles, the first use of a term, and
general emphasis in text.

<key> Angle brackets (less-than and greater-than) enclose the name of a
key on the keyboard. For example, <Enter> refers to the key on
your terminal or workstation that is labeled with the word Enter.

\ In command examples, a backslash indicates that the command or
coding example continues on the next line. For example:

mkcondition -r IBM.FileSystem -e “PercentTotUsed > 90” \
-E “PercentTotUsed < 85” -m d “FileSystem space used”

{item} Braces enclose a list from which you must choose an item in format
and syntax descriptions.

[item] Brackets enclose optional items in format and syntax descriptions.

<Ctrl-x> The notation <Ctrl-x> indicates a control character sequence. For
example, <Ctrl-c> means that you hold down the control key while
pressing <c>.

item... Ellipses indicate that you can repeat the preceding item one or more
times.

| v In synopsis statements, vertical lines separate a list of choices. In
other words, a vertical line means Or.

v In the margin of the document, vertical lines indicate technical
changes to the information.

Prerequisite and related information
IBM Spectrum MPI is a member of the IBM Spectrum Computing family
(www.ibm.com/systems/spectrum-computing/).

The IBM Spectrum MPI library consists of:
v IBM Spectrum MPI: Installation, GC27-8264-00
v IBM Spectrum MPI: User's Guide, GC27-8265-00

To access the most recent IBM Spectrum MPI documentation in PDF and HTML
format, refer to IBM Knowledge Center (www.ibm.com/support/
knowledgecenter), on the web.

The IBM Spectrum MPI books are also available in PDF format from the IBM
Publication Center (www.ibm.com/e-business/linkweb/publications/servlet/
pbi.wss), on the web.

viii IBM Spectrum MPI: User's Guide

http://www.ibm.com/systems/spectrum-computing/
http://www.ibm.com/support/knowledgecenter/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

It is easiest to locate a book in the IBM Publications Center by supplying the
book's publication number. The publication number for each of the IBM Spectrum
MPI books is listed after the book title in the preceding list.

IBM Platform LSF® (Load Sharing Facility) also works in conjunction with IBM
Spectrum MPI. The LSF publications can be found in IBM Knowledge Center
(www.ibm.com/support/knowledgecenter) and the IBM Publication Center
(www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss).

Terminology

For terms and definitions related to IBM Spectrum MPI, see IBM Terminology
(www.ibm.com/software/globalization/terminology/).

How to send your comments
Your feedback is important in helping to provide the most accurate, high-quality
information. If you have comments about this information or other IBM Spectrum
MPI documentation, go to the IBM Knowledge Center (www.ibm.com/support/
knowledgecenter) and use the Provide feedback links.

About this information ix

http://www.ibm.com/support/knowledgecenter/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/software/globalization/terminology/
http://www.ibm.com/support/knowledgecenter/

x IBM Spectrum MPI: User's Guide

Chapter 1. Getting started

Before using IBM Spectrum MPI, it is important to understand the environment in
which you will be creating and running your applications, as well as its
requirements and limitations.

This information assumes that one of the currently-supported Linux distributions
is already installed. It also assumes that you have already installed IBM Spectrum
MPI. For information about installing IBM Spectrum MPI, refer to IBM Spectrum
MPI: Installation.

For information about the hardware and the operating systems that are supported
by IBM Spectrum MPI, refer to the current announcement letter at IBM Offering
Information (http://www.ibm.com/common/ssi/index.wss?request_locale=en).

Introduction
IBM Spectrum MPI is a high-performance implementation of the MPI (Message
Passing Interface) Standard. It is widely used in the high-performance computing
(HPC) industry for developing scalable, parallel applications.

IBM Spectrum MPI supports a broad range of industry-standard platforms,
interconnects, and operating systems, helping ensure that parallel applications can
run almost anywhere.

IBM Spectrum MPI offers:

Portability
IBM Spectrum MPI allows a developer to build a single executable that can
take advantage of the performance features of a wide variety of
interconnects. As a result, applications have optimal latency and
bandwidth for each protocol. This reduces development effort and enables
applications to use the latest technologies on Linux without the need to
recompile and relink applications. Application developers can confidently
build and test applications on small clusters of machines, and deploy that
same application to a larger cluster.

Network optimization
IBM Spectrum MPI supports a wide variety of networks and interconnects.
This enables developers to build applications that run on more platforms,
thereby reducing testing, maintenance, and support costs.

Collective optimization
IBM Spectrum MPI offers a library of collectives called libcollectives, which:
v Supports the seamless use of GPU memory buffers
v Offers a range of algorithms that provide enhanced performance,

scalability, and stability for collective operations
v Provides advanced logic to determine the fastest algorithm for any given

collective operation.

© Copyright IBM Corp. 2016 1

http://www.ibm.com/common/ssi/index.wss?request_locale=en
http://www.ibm.com/common/ssi/index.wss?request_locale=en

Limitations
Some IBM Spectrum MPI product features are subject to certain limitations, as
explained in this section.
v IBM Spectrum MPI is not ABI compatible with any other MPI implementations

such as Open MPI, Platform MPI, or IBM PE Runtime Edition.
v Support for GPU-accelerated applications is provided only if you are using the

IBM Spectrum MPI PAMI backend and the IBM collective library (libcollectives).
These are the default options for IBM Spectrum MPI, but if you choose to use a
different messaging protocol or collective component, note that it will not
support GPUs.

v If an application is built using the NVIDIA CUDA Toolkit, the NVIDIA CUDA
Toolkit (version 7.5) must be installed on the node from which it is launched, as
well as each compute node.

v Data striping is not supported for non-homogeneous environments
(environments in which nodes have different numbers of active InfiniBand cards
and ports).

v IBM Spectrum MPI assumes that IBdevice0 on node A is on the same network as
IBdevice0 on node B.

v By default, IBM Spectrum MPI uses its own implementation of the Open MPI
collectives (libcollectives). However, a small number of the IBM Spectrum MPI
collectives might not perform as well as the Open MPI collectives. If you prefer
not to use libcollectives for any of the collectives listed in the following table,
and instead fall back to the Open MPI version, set the related MCA parameter:

Table 2. List of MCA parameters for skipping libcollectives

If you want to use the Open MPI
version of this collective: Set this parameter:

MPI_Allgatherv -mca coll_ibm_skip_allgatherv true

MPI_Iallgatherv -mca coll_ibm_skip_iallgatherv true

MPI_Alltoall -mca coll_ibm_skip_alltoall true

MPI_Ialltoall -mca coll_ibm_skip_ialltoall true

MPI_Alltoallv -mca coll_ibm_skip_alltoallv true

MPI_Ialltoallv -mca coll_ibm_skip_ialltoallv true

MPI_Gather -mca coll_ibm_skip_gather true

MPI_Igather -mca coll_ibm_skip_igather true

MPI_Gatherv -mca coll_ibm_skip_gatherv true

MPI_Igatherv -mca coll_ibm_skip_igatherv true

MPI_Reduce_scatter -mca coll_ibm_skip_reduce_scatter true

MPI_Ireduce_scatter -mca coll_ibm_skip_ireduce_scatter true

v Multithreaded I/O is not supported.
v IBM Spectrum MPI will fail at runtime if an InfiniBand adapter card is not

installed on the node.
v For installations that use the InfiniBand interconnect, use of the Mellanox Fabric

Collective Accelerator (FCA) (also known as hcoll), is not supported.
v The use of CUDA-aware MPI for non-blocking collectives is not supported. A

warning message is displayed and the application aborts when it encounters a
GPU buffer in a non-blocking collective.

2 IBM Spectrum MPI: User's Guide

v The use of CUDA-Aware MPI with MPI-IO is restricted. The use of CUDA
buffers with IO operations is not supported at this time.

v IBM Spectrum MPI's collectives component (libcollectives) does not support
user-defined operations.

v If an InfiniBand card is not installed on the node, IBM Spectrum MPI fails at
runtime when the PAMI interconnect is requested.

v The IBM Spectrum MPI collectives component (libcollectives) does not support
intercommunicators. For intercommunicator collective support, IBM Spectrum
MPI relies on Open MPI collective components.

v The Open MPI collectives components that are included with IBM Spectrum
MPI do not support GPU buffers. For GPU buffer collective support, you must
use libcollectives (the default).

Migrating from IBM Parallel Environment Runtime Edition to IBM
Spectrum MPI

The following table contains a list of basic end-user tasks, describes the method for
completing those tasks with IBM PE Runtime Edition, and then shows you the
equivalent method for carrying out the same tasks using IBM Spectrum MPI.

Table 3. IBM PE Runtime Edition tasks and IBM Spectrum MPI equivalents

Task IBM PE Runtime Edition method IBM Spectrum MPI method

Executing
programs

poe program [args] [options] mpirun [options] program [args]

Compiling
programs

The following compiler commands:

v mpfort, mpic77, mpif90

v mpcc, mpicc

v mpCC, mpic++, mpicxx

or the following environment variable
settings:

v MP_COMPILER=xl | gcc | nvcc

The following compiler commands:

v mpfort

v mpicc

v mpiCC, mpic++, mpicxx

or the following environment variable settings:

v OMPI_CC=xl | gcc

v OMPI_FC=xlf | gfortran

v OMPI_CXX=xlC | g++

Determining
rank before
MPI_Init

The MP_CHILD environment variable The OMPI_COMM_WORLD_RANK environment
variable

Specifying the
local rank

The
MPI_COMM_WORLD_LOCAL_RANK
environment variable

The OMPI_COMM_WORLD_LOCAL_RANK
environment variable

Setting affinity The environment variables:

v MP_TASK_AFFINITY=cpu

v MP_TASK_AFFINITY=core

v MP_TASK_AFFINITY=mcm

v MP_TASK_AFFINITY=cpu:n

v MP_TASK_AFFINITY=core:n

v MP_TASK_AFFINITY=1

mpirun options:

v -aff width:hwthread

v -aff width:core

v -aff width:numa

v --map-by ppr:$MP_TASKS_PER_NODE:node:pe=N
--bind-to hwthread

v --map-by ppr:$MP_TASKS_PER_NODE:node:pe=N
--bind-to core

v -aff none

Setting
CUDA-aware

The MP_CUDA_AWARE environment
variable

The mpirun -gpu option

Chapter 1. Getting started 3

Table 3. IBM PE Runtime Edition tasks and IBM Spectrum MPI equivalents (continued)

Task IBM PE Runtime Edition method IBM Spectrum MPI method

Setting FCA The MP_COLLECTIVE_OFFLOAD
environment variable

The mpirun -FCA and -fca options

Setting RDMA v MP_USE_BULK_XFER

v The MP_BULK_MIN_MSG_SIZE
environment variable

v FIFO: OMPI_MCA_pml_pami_use_get=1

v RDMA default, when MSG_SIZE is greater than 64k

Controlling level
of debug
messages

The MP_INFOLEVEL environment
variable

The mpirun -d option

Setting STDIO The environment variables:

v MP_STDINMODE

v MP_STOUTMODE

v MP_LABELIO

The mpirun -stdio * option

Specifying the
number of tasks

The MP_PROCS environment variable The mpirun -np * option

Specifying a host
list file

The MP_HOSTFILE environment
variable

The mpirun -hostfile * option

For information about the processor affinity options and settings that you used for
IBM PE Runtime Edition and how to achieve the same affinity settings with IBM
Spectrum MPI, see “IBM PE Runtime Edition affinity equivalents” on page 43.

4 IBM Spectrum MPI: User's Guide

Chapter 2. Understanding IBM Spectrum MPI

Because IBM Spectrum MPI is an implementation of Open MPI, its basic
architecture and functionality is similar. IBM Spectrum MPI supports many, but not
all of the features offered by Open MPI, and adds some unique features of its own.

IBM Spectrum MPI code structure

IBM Spectrum MPI uses the same basic code structure as Open MPI, and is made
up of the following sections:
v OMPI - The Open MPI API
v ORTE - The Open Run-Time Environment, which provides support for back-end

runtime systems
v OPAL - The Open Portable Access Layer, which provides utility code that is used

by OMPI and ORTE

These sections are compiled into three separate libraries, respectively;
libmpi_ibm.so, liborte, and libopal. An order of dependency is imposed on these
libraries; OMPI depends on ORTE and OPAL, and ORTE depends on OPAL.
However, OMPI, ORTE, and OPAL are not software layers, as one might expect. So,
despite this dependency order, each of these sections of code can reach the
operating system or a network interface without going through the other sections.

IBM Spectrum MPI works in conjunction with the ORTE to launch jobs. The mpirun
and mpiexec commands, which are used to run IBM Spectrum MPI jobs, are
symbolic links to the orterun command.

For more information about the organization of the Open MPI code, refer to the
Open MPI web site (www.open-mpi.org).

MPI library support

To create a parallel program with IBM Spectrum MPI, use the API that is provided
on the Open MPI web site (www.open-mpi.org). Information about the Open MPI
subroutines and commands, including the various compiler script commands, is
also available at this location.

Note that if your application was built using Open MPI, you must relink it before
you can run it with IBM Spectrum MPI.

© Copyright IBM Corp. 2016 5

http://www.open-mpi.org
http://www.open-mpi.org

6 IBM Spectrum MPI: User's Guide

Chapter 3. IBM Spectrum MPI supported features

IBM Spectrum MPI supports the following functional features.

64-bit support

IBM Spectrum MPI can be used on 64-bit architectures and operating systems in
Little Endian mode (for x86) and for IBM Power Systems™ servers (8335-GCA and
8335-GTA), with and without GPUs.

Thread safety

Support for MPI_THREAD_MULTIPLE (multiple threads executing within the
MPI library) is provided by IBM Spectrum MPI. However, note that multithreaded
I/O is not supported.

Portable Hardware Locality (hwloc)

IBM Spectrum MPI uses the Portable Hardware Locality (hwloc), which is an API
that navigates the hardware topology of your server. An abbreviated picture of the
server's hardware can be seen by using the --report-bindings option. For
example:

% mpirun -np 1 --report-bindings
./any_mpi_program.x[ibmgpu01:27613] MCW rank 0 bound to socket 0[core 0[hwt 0-1]], socket
0[core 1[hwt 0-1]], socket 0[core 2[hwt 0-1]], socket 0[core 3[hwt 0-1]], socket
0[core 4[hwt 0-1]], socket 0[core 5[hwt 0-1]], socket 0[core 6[hwt 0-1]], socket
0[core 7[hwt 0-1]]: [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]

In this example, the end of the output line:
[BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]

indicates that the server has two sockets, each with eight cores, and that each core
has two hyper-threads. This output also shows that the launched MPI process is
bound to the first socket.

hwloc provides IBM Spectrum MPI with details about NUMA memory nodes,
sockets, shared caches, cores and simultaneous multithreading, as well as system
attributes and the locality of I/O devices. Using this information allows you to
place processes, and the memory associated with them, most efficiently, and for
best performance.

IBM Spectrum MPI includes hwloc version 1.11.2. For more information about
hwloc, refer to the Open MPI web site (www.open-mpi.org).

© Copyright IBM Corp. 2016 7

http://www.open-mpi.org

GPU support

For Power Systems servers, IBM Spectrum MPI supports running GPU-accelerated
applications over CUDA-aware MPI. For x86 servers, IBM Spectrum MPI also
supports running GPU-accelerated applications with NVIDIA GPUDirect RDMA.
For both Power Systems servers and x86 servers, the NVIDIA CUDA Toolkit 7.5 is
required.

By default, GPU support is turned off. To turn it on, use the mpirun -gpu flag:
mpirun -gpu

The restrictions that apply to GPU support under IBM Spectrum MPI are:
v The following collectives cannot be used in GPU-accelerated applications:

– MPI_Alltoallw
– MPI_Ialltoallw
– MPI_Reduce_local

v One-sided communication is restricted.
v When -gpu is specified on the mpirun command line, libcollectives must be the

preferred collective component. This is because libcollectives is the only
collective component that is able to support CUDA buffers. Therefore, you
cannot specify mpirun -gpu with any of the following options:
– -mxm/-MXM
– -mxmc/-MXMC
– -tcp/-TCP
– -ibv/-IBV
– -ib/-IB
– -openib/-OPENIB
– -fca/-FCA
– -hcoll\-HCOLL

FCA (hcoll) support

For installations that use the InfiniBand interconnect, the Mellanox Fabric
Collective Accelerator (FCA), which uses Core-Direct technology, can be used to
accelerate collective operations. FCA is also known as hcoll. FCA 3.0 is required.

FCA is installed into the /opt/mellanox/fca directory, by default. To verify that the
FCA support was built correctly, use the ompi_info --param command, as follows:
ompi_info--param coll fca --level9|grep fca_enable

If FCA support has been established, a list of FCA parameters is displayed.

Note: In order for end users to be able to use FCA 3.0 (or later), the system
administrator must set /opt/mellanox/hcoll/lib in /etc/ld.so.conf after MOFED
has been installed.

8 IBM Spectrum MPI: User's Guide

MPI-IO

MPI has a number of subroutines that enable your application program to perform
efficient parallel input-output operations. These subroutines (collectively referred to
as MPI-IO) allow efficient file I/O on a data structure that is distributed across
several tasks for computation, but is organized in a unified way in a single
underlying file. MPI-IO presupposes a single parallel file system underlying all the
tasks in the parallel job. For IBM Spectrum MPI, this parallel file system is IBM
Spectrum Scale™ version 4.2.1.

For parallel I/O, IBM Spectrum MPI supports only ROMIO version 3.1.4. To
understand how ROMIO was built, use the ompi_info command, with the highest
level of verbosity. For example:
$ MPI_ROOT/bin/ompi_info -l 9 --param io romio314

MCA io: romio314 (MCA v2.1.0, API v2.0.0, Component
v10.1.0)

MCA io romio314: ---
MCA io romio314: parameter "io_romio314_priority" (current value:

"40", data source: default, level: 9 dev/all, type:
int)
Priority of the io romio component

MCA io romio314: parameter "io_romio314_delete_priority" (current
value: "40", data source: default, level: 9
dev/all, type: int)
Delete priority of the io romio component

MCA io romio314: informational "io_romio314_version" (current value:
"from MPICH v3.1.4", data source: default, level: 9
dev/all, type: string)
Version of ROMIO

MCA io romio314: informational "io_romio314_user_configure_params"
(current value: "", data source: default, level: 9
dev/all, type: string)
User-specified command line parameters passed to
ROMIO’s configure script

MCA io romio314: informational
"io_romio314_complete_configure_params" (current
value: " FROM_OMPI=yes CC=’gcc -std=gnu99’
CFLAGS=’-DNDEBUG -m64 -O3 -Wall -Wundef
-Wno-long-long -Wsign-compare -Wmissing-prototypes
-Wstrict-prototypes -Wcomment -pedantic
-Werror-implicit-function-declaration
-finline-functions -fno-strict-aliasing -pthread

--disable-aio --disable-weak-symbols
--enable-strict", data source: default, level: 9
dev/all, type: string)
Complete set of command line parameters passed to
ROMIO’s configure scrip

IBM Platform LSF

IBM Spectrum MPI supports the IBM Platform Load Sharing Facility (LSF) version
9.1.3 for launching jobs. For more information, see “Running applications with IBM
Platform LSF” on page 25.

Debugger support

IBM Spectrum MPI supports the Allinea DDT and TotalView debuggers. For more
information, see Chapter 8, “Debugging and profiling applications,” on page 29.

Chapter 3. IBM Spectrum MPI supported features 9

PMIx

IBM Spectrum MPI supports the extended version of the Process Management
Interface (PMI), called PMI Exascale (PMIx) version 1.1.2. PMIx extends the PMI
standard, including the existing PMI-1 and PMI-2 APIs, to support clusters of
exascale size. For more information about PMIx, and to obtain the PMIx library
and documentation, refer to the PMIx Programmer's Manual (http://
pmix.github.io/master/)

10 IBM Spectrum MPI: User's Guide

http://pmix.github.io/master/

Chapter 4. Understanding IBM Spectrum MPI's collective
library (libcollectives)

IBM Spectrum MPI provides a library of collectives called libcollectives.
libcollectives provides seamless use of GPU memory buffers and includes a
number of algorithms that offer excellent performance, scalability, and stability for
collective operations. The libcollectives library also provides advanced logic to
determine the fastest algorithm for any given collective operation.

MCA parameters for collective communication

This section describes the MCA parameters that can be used for managing
collective communications for IBM Spectrum MPI.

By default, libcollectives is the collective algorithm that will be used with IBM
Spectrum MPI.

To see the complete list of MCA parameters that pertain to libcollectives, use the
ompi_info command. For example:
ompi_info --param coll ibm -1 9 --internal

MCA parameters for general use
-mca coll_ibm_priority number

Changes the priority of the libcollectives component. By default, the
libcollectives component has the highest priority (a value of 95).

Possible Values: A number less than or equal to 100. If a negative value is
specified, the component is deselected.

Default: 95

-mca coll_ibm_verbose number
Changes the verbosity of the collective component. This can be useful for
debugging.

Possible Values:

-1 Silence

0 Error messages only (the default)

10 Component level messages

20 Warnings. For example, when libcollectives is skipped and the
algorithm with the next highest priority should be used instead.

40 Informational messages about algorithm availability and selection.

60 Tracing messages related to the call stack. A message is displayed
before every collection operation.

80 Detailed debugging information.

Default: 0

-mca coll_ibm_display_table value
Displays a table of the algorithms that are available for each communicator
(printed at the rank 0 of that communicator).

© Copyright IBM Corp. 2016 11

Possible Values:

The value is boolean, and can be any one of the following:
v 0 | f | false | disabled | no
v 1 | t | true | enabled | yes

Default: 0 | f | false | disabled | no

-mca coll_ibm_tune_results path
Specifies the path to the XML libcollectives tuning file that should be used. The
file must be called libcoll_tune_results.xml.

Possible Values: Any path name.

Default: The path name of the version that was included with IBM Spectrum
MPI (etc/libcoll_tune_results.xlm).

12 IBM Spectrum MPI: User's Guide

Chapter 5. Interconnect selection

This section describes a number of options that you can use for selecting
interconnects. In addition to this article, which provides options for specifying a
communication method, these additional options might also be helpful:
v “Using the PAMI verbs bypass” on page 14
v “Specifying use of the FCA (hcoll) library” on page 14
v “Managing on-host communication” on page 15
v “Specifying an IP network” on page 15
v “Displaying communication methods between hosts” on page 15

IBM Spectrum MPI includes shortcuts for specifying the communication method
that is to be used between the ranks. At the Open MPI level, point-to-point
communication is handled by a PML (point-to-point message layer), which can
perform communications directly, or use an MTL (matching transport layer) or BTL
(byte transfer layer) to accomplish its work.

The types of PMLs that can be specified include:

pami IBM Spectrum MPI PAMI (Parallel Active Messaging Interface)

yalla Mellanox MXM (Mellanox Messaging Accelerator)

cm Uses an MTL layer

ob1 Uses a BTL layer

The types of MTLs that can be specified include:

psm Intel PSM (Performance Scaled Messaging)

mxm An altnerate Mellanox MXM. However, yalla is preferred.

The types of BTLs that can be specified include:

tcp TCP/IP

openib
OpenFabrics InfiniBand

usnic Cisco usNIC (x86_64 only)

IBM Spectrum MPI provides the following shortcuts (mpirun options) that allow
you to specify which PML, MTL, or BTL layer should be used. Specifying an
option in uppercase letters (for example -MXM) forces the related PML, MTL, or
BTL layer. Note that the lowercase options are equivalent to the uppercase options.

-PAMI | -pami
Specifies that IBM Spectrum MPI's PAMI should be used by way of the
PML pami layer.

-MXM | -mxm
Specifies that Mellanox MXM should be used by way of the PML yalla
layer. This is the preferred method.

-MXMC | -mxmc
Specifies that Mellanox MXM should be used by way of the PML cm and
MTL mxm layers.

© Copyright IBM Corp. 2016 13

-PSM | -psm
Specifies that Intel PSM (formerly from QLogic) should be used by way of
the PML cm and MTL psm layers.

-TCP | -tcp
Specifies that TCP/IP should be used by way of the PML ob1 and BTL tcp
layers.

-UNIC | -unic | -USNIC | -usnic
Specifies that Cisco usNIC should be used by way of the PML ob1 and
BTL usnic layers.

-IB | -ib | -IBV | -ibv | -OPENIB | -openib
Specifies that OpenFabrics InfiniBand should be used by way of the PNL
ob1 and BTL openib layers.

Using the PAMI verbs bypass

By default, PAMI uses a portable interface to the underlying libibverbs.so library.
However, you can use a faster interface called the PAMI verbs bypass if you know
the version of libibverbs that was installed on your system. To take advantage of
the PAMI verbs bypass interface, you need to use the mpirun -verbsbypass option
and specify the version of libibverbs that is currently installed.

For example, you could query the libibverbs RPM package, as follows:
% rpm -q libibverbs

If the RPM query returned libibverbs-1.1.8mlnx1-OFED.3.2.1.5.0.32200.x86_64,
then you would determine that you are using libibverbs version 3.2. The PAMI
verbs bypass option accepts libibverbs versions 3.1, 3.2, or 3.3.

Next, you would use the -verbsbypass option, as follows:
% mpirun -verbsbypass 3.2

Specifying use of the FCA (hcoll) library

The IBM Spectrum MPI libcollectives collectives library is used by default.
However, you can enable the Mellanox hcoll library (also known as FCA 3.x) using
one of the following mpirun command line options:

-HCOLL | -FCA
Specifies that the hcoll collective library should be used universally.

-hcoll | -fca
Specifies that the IBM Spectrum MPI libcollectives collectives library
retains the highest priority, but that it is able to fall back to any of the hcoll
collectives.

For more information about libcollectives and controlling the priority of collective
algorithms, see Chapter 4, “Understanding IBM Spectrum MPI's collective library
(libcollectives),” on page 11.

14 IBM Spectrum MPI: User's Guide

Managing on-host communication

If a BTL is used for point-to-point traffic, the most commonly-used on-host
communication method is the shared memory BTL called vader. However, there is
an alternate BTL called sm, and it is always possible to use an off-host BTL for
on-host traffic, as well. The vader BTL is likely to provide the best on-host
performance, but it is possible for InfiniBand, for example, to provide higher
on-host bandwidth than shared memory.

You can use the following options to specify how on-host communication should
be performed. Note that these options only apply if a BTL is being used. They are
not available for MXM, PSM, or PAMI.

-intra vader | -intra shm
Specifies that BTL=vader (shared memory) should be used for on-host
traffic (only applies if the PML is already ob1).

-intra nic
Specifies that the off-host BTL for on-host traffic should be used.

-intra sm
Specifies that BTL=sm (older shared memory component) on-host should
be used (only applies if the PML is already ob1).

Specifying an IP network

If you are using TCP/IP, you can use the mpirun -netaddr option to specify the
network over which traffic should be sent.

-netaddr spec,spec,..
Specifies the network to use for TCP/IP traffic. This option applies to
control messages as well as the regular MPI rank traffic.

-netaddr type:spec,spec,..
Specifies the networks for particular types of traffic.

The type variable can be one of the following:

rank Specifies the network for regular MPI rank-to-rank traffic.

control | mpirun
Specifies the network for control messages (for example,
launching).

The spec variables can be one of the following:
v An interface name. For example, eth0.
v CIDR notation. For example, 10.10.1.0/24.

Displaying communication methods between hosts

With IBM Spectrum MPI, you can print a two-dimensional table that shows the
method that is used by each host to communicate with each of the other hosts. The
following options allow you to do this:

-prot Displays the interconnect type that is used by each host. The first rank on
each host connects to all peer hosts in order to establish connections that
might otherwise be on-demand.

Chapter 5. Interconnect selection 15

-protlazy
Similar to -prot. Displays the interconnect type that is used by each host at
MPI_Finalize. Connections to peer hosts are not established, so it is
possible that many peers are unconnected.

The output from either the -prot or -protlazy options looks similar to this:
Host 0 [mpi01] ranks 0 - 3
Host 1 [mpi02] ranks 4 - 7
Host 2 [mpi03] ranks 8 - 11
Host 3 [mpi04] ranks 12 - 15

host | 0 1 2 3
======|=====================

0 : shm tcp tcp tcp
1 : tcp shm tcp tcp
2 : tcp tcp shm tcp
3 : tcp tcp tcp shm

Connection summary:
on-host: all connections are shm
off-host: all connections are tcp

By default, the table only displays information for a maximum of 16 hosts
(although the connection summary, which appears after the table, is not limited by
size). If you have a larger cluster, you can use the MPI_PROT_MAX environment
variable to increase the number of hosts that are displayed in the table. Note,
however, that the larger this table becomes, the more difficult it is to use.

16 IBM Spectrum MPI: User's Guide

Chapter 6. Compiling applications

For x86 users, IBM Spectrum MPI supports the following compilers:
v GNU compilers for C and FORTRAN, version 4.4.7 or 4.8.x (the default)
v Intel Compiler Suite, version 12.5 or later

For Power Systems users, IBM Spectrum MPI supports the following compilers:
v IBM XL C, version 13.1.4 and IBM XL Fortran, version 15.1.4 (the default)
v GNU GCC compilers for C and FORTRAN, version 4.8.x

The compiler that will be used to build your programs is selected automatically by
IBM Spectrum MPI. For x86 users, GNU compilers have first priority, Intel
compilers have second priority, followed by other compilers. For Power® users, XL
compilers have first priority, GNU compilers have second priority, and other
compilers have lower priority.

Note that if your application was built using Open MPI, you must relink it before
you can run it with IBM Spectrum MPI.

Using the wrapper compiler scripts

IBM Spectrum MPI includes a set of wrapper compiler scripts that read the
configuration script and then build the command line options that are supplied to
the underlying compiler. The wrapper scripts do not actually compile your
applications; they simply invoke the compiler that is specified in the configure
script. The wrapper scripts provide an easy and reliable way to specify options
when you compile. As a result, it is strongly recommended that you use one of the
wrapper compiler scripts instead of trying to compile your applications manually.

Note: Although you are strongly encouraged to use the wrapper compiler scripts,
there might be a few circumstances in which doing so is not feasible. In this case,
consult the Open MPI web site (www.open-mpi.org) FAQ for information about
how to compile your application without using the wrappers.

The wrapper compiler scripts that are provided by IBM Spectrum MPI include:

Table 4. IBM Spectrum MPI wrapper compiler scripts

Language Wrapper compiler name

C mpicc

Fortran mpifort (v1.7 or later), mpif77 and mpif90
(for earlier versions)

In the following example, the mpicc wrapper script is used to compile a C program
called hello_world_smpi.c.
shell$ mpicc hello_world_smpi.c -o hello_world_smpi -g

To understand how the underlying compilers are invoked, you can use the various
--showme options, which are available with all of the IBM Spectrum MPI wrapper
scripts. The --showme options are:

© Copyright IBM Corp. 2016 17

http://www.open-mpi.org

--showme
Displays all of the command line options that will be used to compile the
program.

--showme:command
Displays the underlying compiler command.

--showme:compile
Displays the compiler flags that will be passed to the underlying compiler.

--showme:help
Displays a usage message.

--showme:incdirs
Displays a list of directories that the wrapper script will pass to the
underlying compiler. These directories indicate the location of relevant
header files. It is a space-delimited list.

--showme:libdirs
Displays a list of directories that the wrapper script will pass to the
underlying linker. These directories indicate the location of relevant
libraries. It is a space-delimited list.

--showme:libs
Displays a list of library names that the wrapper script will use to link an
application. For example:
mpi open-rte open-pal util

It is a space-delimited list.

--showme:link
Displays the linker flags that will be passed to the underlying compiler.

--showme:version
Displays the current Open MPI version number.

Refer to the Open MPI web site (www.open-mpi.org) for additional information
about compiling applications, such as:
v Compiling programs without using the wrapper compiler scripts
v Overriding the wrapper compiler flags
v Determining the default values of the wrapper compiler flags
v Adding flags to the wrapper compiler scripts.

18 IBM Spectrum MPI: User's Guide

http://www.open-mpi.org

Chapter 7. Running applications

IBM Spectrum MPI provides support for running your applications using:
v The mpirun (and mpiexec) commands. see “Running programs with mpirun.”
v The ssh or rsh command line. See “Running jobs with ssh or rsh” on page 26.
v IBM Platform LSF (LSF). See “Running applications with IBM Platform LSF” on

page 25.

For troubleshooting information related to running jobs, refer to the Open MPI
web site (www.open-mpi.org).

Establishing a path to the IBM Spectrum MPI executables and libraries
IBM Spectrum MPI needs to be able to locate its executables and libraries on every
node on which applications will run. It can be installed locally, on each node that
will be a part of the MPI job, or in a location that is accessible to the network. IBM
Spectrum MPI installations are relocatable.

Multiple versions of IBM Spectrum MPI can be installed on a cluster, or made
available over a network shared file system.

The full path to the installed IBM Spectrum MPI must be the same on all the nodes
that are participating in an MPI job.

To establish a path to your executables and libraries, do the following:
1. Set the MPI_ROOT environment variable to the installed root of the version of

IBM Spectrum MPI that you want to use.
2. Add $MPI_ROOT/share/man to the MANPATH environment variable.

No other environmental setup is needed to run jobs with IBM Spectrum MPI.

Note: It is not recommended that users add any of the directories under
MPI_ROOT to the PATH or LD_LIBRARY_PATH statements. Doing so can
interfere with the normal functioning of some IBM Spectrum MPI features.

Running programs with mpirun

The mpirun (as well as mpiexec and orterun) command can be used with IBM
Spectrum MPI to run SPMD or MPMD jobs.

The mpirun and mpiexec commands are identical in their functionality, and are both
symbolic links to orterun, which is the job launching command of IBM Spectrum
MPI's underlying Open Runtime Environment. Therefore, although this material
refers only to the mpirun command, all references to it are considered synonymous
with the mpiexec and orterun commands.

Specifying the hosts on which your application runs
In order to execute your program, IBM Spectrum MPI needs to know the hosts in
your network on which it will run.

© Copyright IBM Corp. 2016 19

http://www.open-mpi.org
http://www.open-mpi.org

In general, when using the mpirun command, there are two ways that you can do
this. You can either:
v Enter the names of the hosts individually on the command line.
v Create a text file containing the names of the hosts, and then specify the list on

the command line at runtime. This is called a host list file. A host list file is useful
when the number of hosts is large, and entering them individually on the
command line would be too cumbersome and error-prone.

Specifying hosts individually

To specify individual hosts on the mpirun command line, use the --host option. In
the following example, the --host option is used with mpirun to start one instance
of prog01 on the h1 node and another instance of prog01 on the h2 node.
mpirun -host h1,h2 prog1

Note that if you wanted to start two instances of prog01 on the h1 node, and one
instance of prog01on the h2 node, you could do the following:
mpirun -host h1,h1,h2 prog01

See “Running programs with mpirun” on page 19 for additional information and
examples of running jobs with mpirun.

Specifying hosts using a host list file

The host list file is a flat text file that contains the names of the hosts on which
your applications will run. Each host is included on a separate line. For example,
here are the contents of a very simple host list file called myhosts:
node1.mydomain.com
node2.mydomain.com
node3.mydomain.com
node4.mydomain.com

After you have created the host list file, you can specify it on the command line
using the --hostfile (also known as --machinefile) option of the mpirun
command. For example, using the simple myhosts host list file, you could run your
application, prog01, as follows:
mpirun -np 4 --hostfile myhosts prog01

For more information about running jobs with the mpirun command, see “Running
programs with mpirun” on page 19.

For each host, the host list file can also specify:
v The number of slots (the number of available processors on that host). The

number of slots can be determined by the number of cores on the node or the
number of processor sockets. If no slots are specified for a host, then the number
of slots defaults to one. In this example, a host list file called myhosts specifies
three nodes, and each node has two slots:
cat myhosts
node1 slots=2
node2 slots=2
node3 slots=2

Specifying the following command launches six instances of prog01; two on
node1, two on node2, and two on node3:
mpirun -hostfile myhosts prog01

20 IBM Spectrum MPI: User's Guide

v The maximum number of slots. Note that the maximum slot count on a host
defaults to infinite, thereby allowing IBM Spectrum MPI to oversubscribe to it.
To avoid oversubscribing, you can provide a maximum slot value for the host
(max-slots=*).

The host list file can also contain comments, which are prefixed by a pound sign
(#). Blank lines are ignored.

For example:

This is a single processor node:
node1.mydomain.com

This is a dual-processor node:
node2.mydomain.com slots=2

This is a quad-processor node. Oversubscribing
to it is prevented by setting max-slots=4:
node3.mydomain.com slots=4 max-slots=4

For more information about host list files and oversubscribing hosts, see the Open
MPI web site (www.open-mpi.org).

Starting a SPMD (Single Program, Multiple Data) application

In general, for SPMD jobs, the mpirun command can be used in the following
format:
mpirun -np num --hostfile filename program

In this command syntax:
v -np num specifies the number of processes
v --hostfile filename specifies the name of the host list file
v program specifies the name of your application.

In other words, mpirun starts num instances of program on the hosts designated by
a host list file called filename.

Consider the following example. You have a program called prog1 and a host list
file called hosts that contains the following lines:
host1.mydomain.com
host2.mydomain.com
host3.mydomain.com

You could run prog1 using the following mpirun command syntax:
mpirun -np 3 --hostfile hosts prog1

Starting an MPMD (multiple program, multiple data)
application

For MPMD applications, the basic syntax of the mpirun command is as follows:
mpirun -np num1 prog1 : -np num2 prog2

In this command syntax:
v -np num1 specifies the number of processes for prog1

v -np num2 specifies the number of processes for prog2

Chapter 7. Running applications 21

http://www.open-mpi.org
http://www.open-mpi.org

v prog1 specifies the name of an application
v prog2 specifies the name of a second application.

In other words, mpirun starts num1 copies (instances) of prog1 and also starts num2
instances of prog2.

Consider the following example. You have two programs; one called prog3 and
another called prog4. You want to run two instances of prog3, and also four
instances of prog4. In this scenario, you could use the mpirun command, as follows:
mpirun -np 2 prog3 : -np 4 prog4

mpirun options

mpirun supports a large number of command line options. The best way to see a
complete list of these options is to issue mpirun --help. The --help option provides
usage information and a summary of all of the currently-supported options for
mpirun.

mpirun options for general use

Some of the more commonly-used options for starting applications with mpirun
include:

-np | -n number_of_processes
Specifies the number of instances of a program to start.

If -np number_of_processes:
v Is not specified, mpirun launches the application on the number of slots

that it can discover.
v Is specified, mpirun launches the given number of processes, as long as

it will not oversubscribe a node.

-nooversubscribe | --nooversubscribe
Indicates that the nodes must not be oversubscribed, even if the system
supports such an operation. This is the default.

-oversubscribe | –-oversubscribe
Indicates that more processes should be assigned to any node in an
allocation than that node has slots for. Nodes can be oversubscribed, even
on a managed system. For more information about mapping, binding, and
ordering behavior for mpirun jobs, see Chapter 9, “Managing processor
affinity,” on page 35.

-display-allocation | --display-allocation
Displays the Allocated Nodes table. This option is useful for verifying that
mpirun has read in the correct node and slot combinations.

For example:
shell$ mpirun -np 2 -host c712f5n07:4,c712f5n08:8 --display-allocation hostname

====================== ALLOCATED NODES ======================
c712f5n07: slots=4 max_slots=0 slots_inuse=0 state=UP
c712f5n08: slots=8 max_slots=0 slots_inuse=0 state=UP
===
c712f5n07
c712f5n07

-do-not-launch | --do-not-launch
Performs all necessary operations to prepare to launch the application, but

22 IBM Spectrum MPI: User's Guide

without actually launching it. This option is useful for checking the
allocation (with --display-allocation) without actually launching the
daemons and processes.

For example:
shell$ mpirun -np 2 -host c712f5n07:4,c712f5n08:8 --display-allocation --do-not-launch hostname

====================== ALLOCATED NODES ======================
c712f5n07: slots=4 max_slots=0 slots_inuse=0 state=UP
c712f5n08: slots=8 max_slots=0 slots_inuse=0 state=UP

===

-hostfile | --hostfile hostfile, -machinefile | --machinefile machinefile
Specifies a hostfile for launching the application.

-H | -host | --host hosts
Specifies a list of hosts on which to invoke processes.

-rf | --rankfile file_names
Specifies a rankfile file.

IBM Spectrum MPI mpirun options

IBM Spectrum MPI includes a number of its own mpirun command line options, as
follows.

mpirun options for on-host communication method:

The IBM Spectrum MPI PAMI component supports on-host shared memory. When
running with -PAMI (the default), no additional parameters are required for on-host
communication.

-intra=nic
Specifies that the off-host BTL should also be used for on-host traffic.

-intra=vader
Specifies that BTL=vader (shared memory) should be used for on-host
traffic. This only applies if the PML (point-to-point messaging layer) is
already ob1.

-intra=shm
Specifies that BTL=vader (shared memory) should be used for on-host
traffic. This only applies if the PML (point-to-point messaging layer) is
already ob1.

-intra=sm
Specifies that BTL=sm (an older shared memory component) should be
used for on-host traffic. This only applies if the PML is already ob1.

Note: The -intra flag is incompatible with GPU buffers because it does not allow
you to specify PAMI.

mpirun options for display interconnect:

-prot Displays the interconnect type that is used by each host. The first rank on
each host connects to all peer hosts in order to establish connections that
might otherwise be on-demand.

-protlazy
Similar to -prot. Displays the interconnect type that is used by each host at
MPI_Finalize. Connections to peer hosts are not established, so it is
possible that many peers are unconnected.

Chapter 7. Running applications 23

-gpu Enables GPU awareness in PAMI by one MCA option and an -x
LD_PRELOAD of libpami_cudahook.so.

Note: Using the -gpu option causes additional runtime checking of every buffer
that is passed to MPI. -gpu is only required for applications that pass pointers to
GPU buffers to MPI API calls. Applications that use GPUs, but do not pass
pointers that refer to memory that is managed by the GPU, are not required to
pass the -gpu option.

mpirun options for standard I/O:

-stdio=p
Specifies that each rank's output should be prefixed with [job,rank].

-stdio=t
Specifies that a timestamp should be included with the output.

-stdio=i[=|all|-|none|rank]
Specifies that stdin should be sent to all ranks (+), no ranks (-), or a single,
specific rank (rank).

-stdio=file:prefix
Specifies that output should be sent to files that are named prefix.rank.

-stdio=option,option,...
Specifies a comma-separated list of the standard I/O options.

mpirun options for IP network selection:

-netaddr=spec,spec,...
Specifies the networks that should be used for TCP/IP traffic. This option
applies to control messages as well as regular MPI rank traffic.

-netaddr=type:spec,spec,...
Specifies the networks that should be used for different types of traffic.

In this syntax, type can be one of the following:

rank Specifies the network for regular MPI rank-to-rank traffic.

control | mpirun
Specifies the network for control messages (for example, launching
mpirun).

In this syntax, spec can be one of the following:

interface name
The interface name. For example, eth0.

CIDR notation
The CIDR (Classless Inter-Domain Routing) notation. For example,
10.10.1.0/24.

mpirun options for affinity:

-aff Enables affinity, with the default option of bandwidth.

-aff=[option,option,...]
Enables affinity, with any of the following options.

v / vv Displays output in verbose mode.

24 IBM Spectrum MPI: User's Guide

cycle:unit
Interleaves the binding over the specified element. The values that
can be specified for unit are hwthread, core, socket (the default),
numa, or board.

bandwidth | default
Interleaves sockets but reorders them.

latency
Pack.

width:unit
Binds each rank to an element of the size that is specified by unit.
The values that can be specified for unit are hwthread, core, socket
(the default), numa, or board.

mpirun options for PMPI layering:

-entry lib,...
Specifies a list of PMPI wrapping libraries. Each library can be specified in
one of the following forms:
v libfoo.so
v /path/to/libfoo.so
v foo (which is automatically expanded to libfoo.so for simple strings that

contain only characters of a - z, A - Z, or 0 - 9. Expansion is not
applicable for the strings fort, fortran, v, and vv.

-entry fort | fortran
Specifies the layer into which the base MPI product's Fortran calls (which
minimally wrap the C calls) should be installed.

-entrybase | -baseentry lib
Optionally specifies the libraries from which to get the bottom level MPI
calls. The default value is RTLD_NEXT, which is the libmpi to which the
executable is linked.

-entry v | -entry vv
Displays the layering of the MPI entry points in verbose mode.

Specifying a value of v prints verbose output that shows the layering
levels of the MPI entry points.

Specifying a value of vv prints more detailed verbose output than the
-entry v option. The -entry vv option shows the levels that are intended
to be used, and confirms the libraries that are being opened. The output
from -entry vv is less readable, but it allows you to confirm, more visibly,
that interception is taking place.

Running applications with IBM Platform LSF

IBM Spectrum MPI supports IBM Platform LSF version 9.1.3 for launching jobs.
When a job is launched, the mpirun command searches for the LSF_ENVDIR and
LSB_JOBID environment variables. If they are found, and mpirun can successfully
use the LSB library, then it determines that it is in an LSF environment.

If LSB_AFFINITY_HOSTFILE is set, then the file that is specified by this
environment variable determines the mapping, binding, and ordering for the
processes that will be launched later. LSF generates LSB_AFFINITY_HOSTFILE
during the setup of the allocation.

Chapter 7. Running applications 25

After the list of hosts is known, the PLM framework of mpirun launches an Open
RTE daemon (orted) on each node in a linear manner.

Note that a limitation exists regarding the use of short and long host names with
LSF. Short names (for example, nodeA) cannot be mixed with long names (for
example, nodeA.mycluster.org) by LSF because Open MPI interprets them as two
different nodes and then fails to launch. As a result, LSF is limited to using short
names only.

Running jobs with ssh or rsh

IBM Spectrum MPI supports running jobs under the secure shell (ssh) or the
remote shell (rsh).

mpirun first looks for allocation information from a resource manager. If none is
found, it uses the values provided for the -hostfile, -machinefile, -host, and
-rankfile options, and then uses ssh or rsh to launch the Open RTE daemons on
the remote nodes.

By default, jobs are launched using ssh, however, you can force the use of rsh by
using the -mca plm_rsh_force_rsh parameter. The following list describes -mca
plm_rsh_force_rsh, as well as other MCA parameters that are useful when running
jobs under ssh or rsh.

-mca plm_rsh_agent
Specifies the agent that will launch executables on remote nodes. The value
is a colon-delimited list of agents, in order of precedence.

Default: ssh : rsh

-mca plm_rsh_args
Specifies arguments that should be added to ssh or rsh.

Default: Not set

-mca plm_rsh_assume_same_shell
Specifies whether or not to assume that the shell on the remote node is the
same as the shell on the local node. Valid values are 0 | f | false |
disabled | no or 1 |t | true | enabled | yes.

Default: true (assume that the shell on the remote node is the same as the
shell on the local node)

-mca plm_rsh_num_concurrent
Specifies the number of plm_rsh_agent instances to invoke concurrently.
You must specify a value that is greater than 0.

Default: 128

-mca plm_rsh_pass_environ_mca_params
Specifies whether or not to include MCA parameters from the environment
on the Open RTE (orted) command line. Valid values are 0 | f | false |
disabled | no or 1 | t | true | enabled | yes.

Default: true (MCA parameters from the environment will be included on
the orted command line)

-mca plm_rsh_force_rsh
Specifies whether or not to force the launcher to always use rsh. Valid
values are 0 | f | false | disabled | no or 1 | t | true | enabled | yes.

26 IBM Spectrum MPI: User's Guide

Default: false (the launcher will not use rsh)

-mca plm_rsh_no_tree_spawn
Specifies whether or not to launch applications using a tree-based topology.
Valid values are 0 | f | false | disabled | no or 1 | t | true | enabled |
yes.

Default: false (applications are launched using a tree-based topology)

-mca plm_rsh_pass_libpath
Specifies the library path to prepend to the remote shell's
LD_LIBRARY_PATH.

Default: Not set

Note: If you are using ssh to connect to a remote host, in order for mpirun to
operate properly, it is recommended that you set up a passphrase for passwordless
login. For more information, see the Open MPI FAQ (www.open-mpi.org/faq/
?category=rsh).

Chapter 7. Running applications 27

https://www.open-mpi.org/faq/?category=rsh

28 IBM Spectrum MPI: User's Guide

Chapter 8. Debugging and profiling applications

IBM Spectrum MPI supports a number of tools for debugging and profiling
parallel applications, including:
v Totalview debugger. See “Using the TotalView debugger with IBM Spectrum

MPI.”
v Allinea DDT debugger. See “Using the Allinea DDT debugger with IBM

Spectrum MPI” on page 30.
v Dynamic MPI standard profiling interface. See “Dynamic MPI profiling interface

with layering” on page 30.

Note: The mpirun --debug option is currently not enabled for IBM Spectrum MPI.
However, debuggers can still be launched directly and attach to ranks.

Using the TotalView debugger with IBM Spectrum MPI
The RogueWave TotalView debugger can be used with IBM Spectrum MPI for
viewing message queues and attaching to running parallel jobs.

In general, if TotalView is the first debugger in your path, you can use the
following mpirun command to debug an IBM Spectrum MPI application:
mpirun --debug mpirun_arguments

When it encounters the mpirun command, IBM Spectrum MPI invokes the correct
underlying command to run your application with the TotalView debugger. In this
case, the underlying command is:
totalview mpirun -a mpirun_arguments

If you want to run a two-process job of executable a.out, the underlying command
would be:
totalview mpirun -a -np 2 a.out

The mpirun command also provides the -tv option, which specifies that a job
should be launched under the TotalView debugger. This provides the same
function as TotalView's -a option. So, the two-process job from the preceding
example could be run as follows:
mpirun -tv -np 2 a.out

By default, TotalView tries to debug the mpirun code itself, which, at the very least,
is probably not useful to you. To avoid this, IBM Spectrum MPI provides
instructions in a sample TotalView startup file called etc/openmpi-totalview.tcl.
This file can be used to cause TotalView to ignore the mpirun code and instead,
debug only the application code. By default, etc/openmpi-totalview.tcl is
installed to $prefix/etc/openmpi-totalview.tcl in the IBM Spectrum MPI
installation.

To use the TotalView startup file, you can either copy it into the file called
$HOME/.tvdrc or source it directly from $HOME/.tvdrc. For example, you can place
the following line in $HOME/.tvdrc (replacing /path/to/spectrum_mpi/installation with
the proper directory name), which causes IBM Spectrum MPI to use the TotalView
startup file:

© Copyright IBM Corp. 2016 29

source /path/to/spectrum_mpi/installation/etc/openmpi-totalview.tcl

For more information about using TotalView, refer to the Open MPI web site
(www.open-mpi.org).

Using the Allinea DDT debugger with IBM Spectrum MPI

The Allinea DDT debugger provides built-in support for MPI applications.

In general, if Allinea DDT is the first debugger in your path, you can use the
following mpirun command to debug an IBM Spectrum MPI application:
mpirun --debug mpirun_arguments

When it encounters the mpirun --debug command, IBM Spectrum MPI invokes the
correct underlying command to run your application with the Allinea debugger. In
this case, the underlying command is:
ddt -n {number_of_processes} -start {excutable_name}

Note: The Allinea DDT debugger does not support passing arbitrary arguments to
the mpirun command.

With Allinea DDT, you can also attach to processes that are already running. For
example:
ddt -attach {hostname1:pid} [{hostname2:pid} ...] {executable_name}

You can also attach using the following syntax:
ddt -attach-file {filename of newline separated hostname:pid pairs} {executable_name}

Using serial debuggers with IBM Spectrum MPI

It is possible to debug an IBM Spectrum MPI application with a serial debugger
such as GDB. Two methods that are often used by Open MPI developers are:
v Attach to individual MPI processes after they are running
v Use the mpirun command to launch multiple xterm windows, each running a

serial debugger.

For information see Open MPI web site (www.open-mpi.org).

Dynamic MPI profiling interface with layering

The MPI standard defines a profiling interface (PMPI) that allows you to create
profiling libraries by wrapping any of the standard MPI routines. A profiling
wrapper library contains a subset of redefined MPI_* entry points, and inside those
redefinitions, a combination of both MPI_* and PMPI_* symbols are called.

This means that you can write functions with the MPI_* prefix that call the
equivalent PMPI_* function. Functions that are written in this manner behave like
the standard MPI function, but can also exhibit any other behavior that you add.

For example:
int
MPI_Allgather(void *sbuf, int scount, MPI_Datatype sdt,

void *rbuf, int rcount, MPI_Datatype rdt, MPI_Comm comm)
{

30 IBM Spectrum MPI: User's Guide

http://www.open-mpi.org
http://www.open-mpi.org

int rval;
double t1, t2, t3;
t1 = MPI_Wtime();
MPI_Barrier(comm);
t2 = MPI_Wtime();
rval = PMPI_Allgather(sbuf, scount, sdt, rbuf, rcount, rdt, comm);
t3 = MPI_Wtime();
// record time waiting vs time spent in allgather..
return(rval);

}
double MPI_Wtime() {

// insert hypothetical high-resolution replacement here, for example
}

Using two unrelated wrapper libraries is problematic because, in general, it is
impossible to link them so that proper layering occurs.

For example, you could have two libraries:

libJobLog.so
In this library, MPI_Init and MPI_Finalize are wrapped, so that a log of
every MPI job is generated, which lists hosts, run times, and CPU times.

libCollPerf.so
In this library, MPI_Init, MPI_Finalize and all the MPI collectives are
wrapped, in order to gather statistics about how evenly the ranks enter the
collectives.

With ordinary linking, each MPI_* call would resolve into one of the wrapper
libraries, and from there, the wrapper library's call to PMPI_* would resolve into
the bottom level library (libmpi.so). As a result, only one of the libraries would
have its MPI_Init and MPI_Finalize routines called.

Defining consistent layering

You can define a consistent approach to layering, with dynamically loaded
symbols, for any number of wrapper libraries.

If you have a wrapper library named libwrap.so, which redefines an MPI_ symbol,
it can either call another MPI_* entry, or it can call a PMPI_* entry. In the case of
ordinary single-level wrapping, the calls into MPI_* would resolve into libwrap.so
first, and then libmpi.so if not found. And the calls into PMPI_* would resolve
into libmpi.so.

If multi-level layering were used, MPI_* would resolve to the current level and
PMPI_* would resolve to the next level down in the hierarchy of libraries.

One way to achieve consistent layering is to establish a list of logical levels, where
each level consists of MPI_* entry points from a given library. The bottom level
would consist of MPI_* entry points from the base MPI library (libmpi.so). For
example:
Level 0: libJobLog.so
Level 1: libCollPerf.so
Level 2: libmpi.so

When an application makes an MPI call, a depth counter would start at level 0 and
search down the list until it finds a level that defines that MPI call. From there, if

Chapter 8. Debugging and profiling applications 31

that routine calls another MPI or PMPI function, the depth counter would remain
the same or be incremented respectively, to control the level from which the next
function is called.

Using the mpirun -entry option to define consistent layering

You can establish this layering scheme by using the mpirun command line option
-entry. With -entry, you can specify a library in the form libfoo.so,
/path/to/libfoo.so, or simply foo (which will be automatically expanded into
libfoo.so for simple strings). For example, the following specification:
% mpirun -entry JobLog,CollPerf -np 2 ./example.x

is automatically expanded to:
% mpirun -entry libJobLog.so,libCollPerf.so -np 2 ./example.x

Note that the order in which you specify a list of libraries dictates each library's
placement in the hierarchy of levels. By default, the base product's MPI library,
libmpi.so, is placed at the bottom of the list, so it does not need to be specified
with -entry. However, the -entrybase (or -baseentry) option enables you to
specify a different library from which to get the bottom level MPI calls.

Note:

v A profiling wrapper library cannot be specified with the mpirun -entry unless it
is implemented as a shared library.

v In order for the libraries to be found, you must either set LD_LIBRARY_PATH
or specify full paths to the libraries.

The syntax of the mpirun -entry option is:

mpirun -entry library
Specifies a list of PMPI wrapper libraries.

mpirun -entry fort
Specifies the level at which to install the base MPI product's Fortran calls,
which, at a minimum, wrap the C calls. The Fortran calls are placed at the
top level, by default.

mpirun -entrybase library
Specifies an alternate library from which to get the bottom level calls.

mpirun -baseentry library
Synonym for mpirun -baseentry library.

mpirun -entry v
Prints verbose output that shows the layering levels of the MPI entry
points. For example:
> Entrypoint MPI wrapper levels:
> 1. (fortran from base product)
> 2. libJobLog.so
> 3. libCollPerf.so
> 4. base product
> Entrypoint MPI base product:
> (base MPI product as linked)

mpirun -entry vv
Prints more detailed verbose output than the -entry v option. The -entry
vv option shows the levels that are intended to be used, and confirms the
libraries that are being opened. The output from -entry vv is less readable,
but it allows you to confirm, more visibly, that interception is taking place.

32 IBM Spectrum MPI: User's Guide

By default, the top layer is always the Fortran calls from the base MPI product.
The Fortran calls are wrappers over corresponding C routines. As a result, if a
profiling library intercepts the C call MPI_Send, and an application makes the
Fortran call mpi_send, the profiling library's MPI_Send gets called, essentially
wrapping Fortran for free. If this is not the behavior you want, you can include the
fort string with the -entry option to specify where the base product's Fortran
symbols should go. Specifying fort last is equivalent to not treating the Fortran
symbols as special, and so wrapping C functions is unconnected to wrapping
Fortran functions.

Implementation notes

Layered profiling is implemented by always linking MPI applications against a
library called libmpiprofilesupport.so. For performance, the default
libmpiprofilesupport.so library is an empty stub and is, therefore, inactive in
ordinary runs. When you specify -entry with a list of libraries,
LD_LIBRARY_PATH is modified to include an alternate libmpiprofilesupport.so
that redefines all MPI symbols, thereby allowing the layered profiling scheme.

When -entry is not used, there is no performance impact from being linked
against the empty stub library. When -entry is used, the performance impact
varies, depending on the machine. However, -entry has been seen to impact ping
pong latency by approximately 15 nanoseconds.

Using the MPE performance visualization tool
IBM Spectrum MPI includes version mpe2-2.4.9b of the MPE logging library from
Argonne National Laboratory. MPE uses the PMPI (standard MPI profiling)
interface to provide graphical profiles of MPI traffic for performance analysis. The
MPE library is packaged with IBM Spectrum MPI as libmpe.so and can be
accessed dynamically with the mpirun -entry command without requiring the
application to be recompiled or relinked.

For example:
% mpirun -np 2 -entry mpe ./program.x

The preceding command turns on MPE tracing and produces a logfile as output in
the working directory of rank 0 (for example, program.x.clog2). The jumpshot
command can be used to convert this log file to different formats and to view the
results.

Using the MPE Jumpshot viewer

Jumpshot, which includes the jumpshot command, is a performance visualization
tool that is distributed by Argonne National Laboratory with MPE. The jumpshot
command is also included with IBM Spectrum MPI (in the bin\ directory). The
jumpshot command can be used to view the MPE tracing output file, as follows:
% jumpshot program.x.clog2

Note that Jumpshot requires Java™. If Java is not in the path, you can set the JVM
environment variable to the full path of the Java executable on your system.

The first time you run the jumpshot command, it might issue a prompt that asks
you if you want to create a setup file with the default settings. Click OK and Yes.
After that, for regular runs on a .clog2 file, Jumpshot issues another prompt that

Chapter 8. Debugging and profiling applications 33

asks if you want to convert to the SLOG2 format. Click Yes, and then, on the next
window, click Convert and then OK. The main window is then displayed with the
MPE profiling data.

When using Jumpshot to view the MPE timings, several pop-up windows appear.
The most important windows are the main window and a window that indicates
the MPI calls by color. Time spent in the various MPI calls is displayed in different
colors, and messages are shown as arrows. Right-click on the calls and the message
arrows for more information.

For more information about MPE, refer to the performance visualization
information at Argonne National Laboratory's website (http://www.mcs.anl.gov/
research/projects/perfvis/download/index.htm#MPE).

34 IBM Spectrum MPI: User's Guide

http://www.mcs.anl.gov/research/projects/perfvis/download/index.htm#MPE
http://www.mcs.anl.gov/research/projects/perfvis/download/index.htm#MPE

Chapter 9. Managing processor affinity

IBM Spectrum MPI follows Open MPI's support of processor affinity for improving
performance. With processor affinity, MPI processes and their threads are bound to
specific hardware resources such as cores, sockets, and so on.

Understanding MPI process placement and affinity

Open MPI's mpirun affinity options are based on the notions of mapping, ranking,
and binding as separate steps, as follows:

Mapping
Mapping determines the number of processes that are launched, and on
which hosts. Mapping can also be used to associate the hardware
resources, such as sockets and cores, with each process.

Ranking
Ranking determines an MPI rank index for each process in the mapping. If
options are not used to specify ranking behavior, a default granularity is
chosen. The ranks are interleaved over the chosen granularity element to
produce an ordering.

Binding
Binding is the final step and can deviate from the hardware associations
that were made at the mapping stage. The binding unit can be larger or
smaller than specified by the mapper, and is expanded or round-robined to
achieve the final binding.

Mapping options and modifiers

This section explains some of the options that are available for mapping and
includes examples. Note that ranking and binding options are sometimes shown in
the mapping examples for more complete explanations.

--map-by unit option

When using the --map-by unit option, unit can be any of the following values:
v hwthread
v core
v L1cache
v L2cache
v L3cache
v socket
v numa
v board
v node

--map-by unit is the most basic of the mapping policies, and makes process
assignments by iterating over the specified unit until the process count reaches the
number of available slots.

© Copyright IBM Corp. 2016 35

The following example shows the output (in verbose mode) of the --map-by unit
option, where core is the specified unit.
% mpirun -host hostA:4,hostB:2 -map-by core ...
R0 hostA [BB/../../../../../../..][../../../../../../../..]
R1 hostA [../BB/../../../../../..][../../../../../../../..]
R2 hostA [../../BB/../../../../..][../../../../../../../..]
R3 hostA [../../../BB/../../../..][../../../../../../../..]
R4 hostB [BB/../../../../../../..][../../../../../../../..]
R5 hostB [../BB/../../../../../..][../../../../../../../..]

This is sometimes called a packed or latency binding because it tends to produce the
fastest communication between ranks.

The following example shows the output (in verbose mode) of using the --map-by
unit option, where slot is the specified unit.
% mpirun -host hostA:4,hostB:2 -map-by socket ...
R0 hostA [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]
R1 hostA [../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB]
R2 hostA [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]
R3 hostA [../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB]
R4 hostB [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]
R5 hostB [../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB]

In the preceding examples, -host hostA:4,hostB:2 indicates that the cluster has six
slots (spaces in which a process can run). Each rank consumes one slot, and
processes are assigned hardware elements by iterating over the specified unit until
the available slots are consumed.

The ordering of these examples, is implicitly core and socket, respectively, so core
and socket are iterated for each rank assignment. The binding is also implicitly
core and socket, respectively, so the final binding is to the same element that was
chosen by the mapping.

When options, such as the ranking unit and binding unit, are not explicitly
specified, the -display-devel-map option can be used to display the implicit
selections. In the preceding examples, the -display-devel-map includes the
following, respectively:
Mapping policy:

BYCORE Ranking policy: CORE Binding policy: CORE:IF-SUPPORTED

Mapping policy:
BYSOCKET Ranking policy: SOCKET Binding policy: SOCKET:IF-SUPPORTED

If no binding options are specified, by default, Open MPI assumes
--map-by-socket for jobs with more than two ranks. This produces the interleaved
ordering in the preceding examples.

A natural hardware ordering can be created by specifying a smaller unit over
which to iterate for ranking. For example:
% mpirun -host hostA:4,hostB:2 -map-by socket -rank-by core ...
R0 hostA [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]
R1 hostA [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]
R2 hostA [../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB]
R3 hostA [../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB]
R4 hostB [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]
R5 hostB [../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB]

A common binding pattern involves binding to cores, but spanning those core
assignments over all of the available sockets. For example:

36 IBM Spectrum MPI: User's Guide

% mpirun -host hostA:4,hostB:2 -map-by socket -rank-by core -bind-to core ...
R0 hostA [BB/../../../../../../..][../../../../../../../..]
R1 hostA [../BB/../../../../../..][../../../../../../../..]
R2 hostA [../../../../../../../..][BB/../../../../../../..]
R3 hostA [../../../../../../../..][../BB/../../../../../..]
R4 hostB [BB/../../../../../../..][../../../../../../../..]
R5 hostB [../../../../../../../..][BB/../../../../../../..]

In this example, the final binding unit is smaller than the hardware selection that
was made in the mapping step. As a result, the cores within the socket are iterated
over for the ranks on the same socket. When the mapping unit and the binding
unit differ, the -display-devel-map output can be used to display the mapping
output from which the binding was taken. For example, at rank 0, the
-display-devel-map output includes:
Locale: [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]
Binding: [BB/../../../../../../..][../../../../../../../..]

A possible purpose for this binding is to use all the available hardware resources
such as cache and memory bandwidth. This is sometimes called a bandwidth
binding, and is a good starting point for overall application performance. The
amount of cache and memory bandwidth is maximized, and the ranks are ordered
so that close ranks by index are near each other in the hardware as much as
possible while still spanning the available sockets.

On the hardware used in these examples, socket and numa are the same. On some
hardware it may be desirable to iterate the process placement over the NUMA
nodes instead of over the sockets. In this case, -map-by numa can be used. For
example:
% mpirun -host hostA:4,hostB:2 -map-by numa -rank-by core -bind-to core ...
R0 hostA [BB/../../../../../../..][../../../../../../../..]
R1 hostA [../BB/../../../../../..][../../../../../../../..]
R2 hostA [../../../../../../../..][BB/../../../../../../..]
R3 hostA [../../../../../../../..][../BB/../../../../../..]
R4 hostB [BB/../../../../../../..][../../../../../../../..]
R5 hostB [../../../../../../../..][BB/../../../../../../..]

Note: In Open MPI's terminology, numa refers to a NUMA node within a host,
while node refers to the whole host.

In the following example, the host (node) is iterated for process assignments. The
ranking unit is also implicitly node, so the ordering of the ranks alternates
between the hosts as well. However, the binding unit defaults to the smaller socket
element and, similar to the preceding bandwidth example, iterates over sockets for
subsequent ranks that have the same node binding at the mapping step. For
example:
% mpirun -host hostA:4,hostB:2 -map-by node ...
R0 hostA [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]
R1 hostB [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]
R2 hostA [../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB]
R3 hostB [../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB]
R4 hostA [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]
R5 hostA [../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB]

--map-by slot option

Mapping by slot resembles mapping by an actual hardware unit within the hosts,
but each slot is associated with the whole host. The slot is essentially an imaginary
hardware unit that exists in a certain number on each host.

Chapter 9. Managing processor affinity 37

Because the slot does not represent a specific subset of cores within a host, slots
can be useful in separating the assignment of processes to hosts from the
assignment of processes to specific sockets or cores within the host.

--map-by unit:PE=n and --map-by slot:PE=n options

This option is used to bind n cores to each process. This option requires that the
specified unit contains at least n cores (or that slot is used). Otherwise, process
assignments are iterated, as in the examples for --map-by unit and --map by slot,
with the caveat that each process assignment also consumes n slots. For example:
% mpirun -host hostA:4,hostB:2 -map-by socket:pe=2 ...
R0 hostA [BB/BB/../../../../../..][../../../../../../../..]
R1 hostA [../../../../../../../..][BB/BB/../../../../../..]
R2 hostB [BB/BB/../../../../../..][../../../../../../../..]

The most immediate point of interest in this example is that the rank count is only
three, not six. This is because each process is consuming n=2 slots. In launching
modes, where the slot count represents the number of cores, this is probably
desirable because it results in bindings that consume the available number of cores.
However, if a specific rank count is desired, the -host launching method becomes
inconvenient. For example:
% mpirun -host hostA:8,hostB:4 -map-by socket:pe=2 ...
R0 hostA [BB/BB/../../../../../..][../../../../../../../..]
R1 hostA [../../../../../../../..][BB/BB/../../../../../..]
R2 hostA [../../BB/BB/../../../..][../../../../../../../..]
R3 hostA [../../../../../../../..][../../BB/BB/../../../..]
R4 hostB [BB/BB/../../../../../..][../../../../../../../..]
R5 hostB [../../../../../../../..][BB/BB/../../../../../..]

This example shows that the sockets are still iterated over and that the binding
width becomes two cores.

If alternating sockets are not desired, a similar mapping can be accomplished by
using slots. For example:
% mpirun -host hostA:8,hostB:4 -map-by slot:pe=2 ...
R0 hostA [BB/BB/../../../../../..][../../../../../../../..]
R1 hostA [../../BB/BB/../../../..][../../../../../../../..]
R2 hostA [../../../../BB/BB/../..][../../../../../../../..]
R3 hostA [../../../../../../BB/BB][../../../../../../../..]
R4 hostB [BB/BB/../../../../../..][../../../../../../../..]
R5 hostB [../../BB/BB/../../../..][../../../../../../../..]

The preceding example resembles a packed binding. It also illustrates how iterating
over slots for the mapping causes processes to be assigned to the same host, while
leaving the assignment to cores within the host to the binding step.

Because the slot is an imaginary, largest-possible hardware unit inside the host that
maps to the entire host, iterating rank placements over the slots causes processes to
be assigned to the same host, until that host is full, and then moved to the next
host. At the mapping stage, each process is assigned to the whole host because that
is what a slot is. This can be seen in the output of --display-devel-map, which
shows that the binding is not made more specific until the binding stage:
Locale: NODE

Binding: [BB/../../../../../../..][../../../../../../../..]

A similar bandwidth style binding can be produced by adding a -rank-by core to
the socket mapping:

38 IBM Spectrum MPI: User's Guide

% mpirun -host hostA:8,hostB:4 -map-by socket:pe=2 -rank-by core ...
R0 hostA [BB/BB/../../../../../..][../../../../../../../..]
R1 hostA [../../BB/BB/../../../..][../../../../../../../..]
R2 hostA [../../../../../../../..][BB/BB/../../../../../..]
R3 hostA [../../../../../../../..][../../BB/BB/../../../..]
R4 hostB [BB/BB/../../../../../..][../../../../../../../..]
R5 hostB [../../../../../../../..][BB/BB/../../../../../..]

In the preceding examples, the slot counts in -host were modified to produce a
desired rank count. A host file, with the special sequential option for the mapper,
can be used to force any mapping of processes to hosts: --mca rmaps seq
-hostfile file.
% cat hostfile
hostA
hostA
hostA
hostA
hostB
hostB
hostA

% mpirun -hostfile hostfile --mca rmaps seq -map-by socket:pe=2 ...
% mpirun -hostfile hostfile --mca rmaps seq -map-by slot:pe=2 ...

R0 hostA [BB/BB/../../../../../..][../../../../../../../..]
R1 hostA [../../BB/BB/../../../..][../../../../../../../..]
R2 hostA [../../../../BB/BB/../..][../../../../../../../..]
R3 hostA [../../../../../../BB/BB][../../../../../../../..]
R4 hostB [BB/BB/../../../../../..][../../../../../../../..]
R5 hostB [../../BB/BB/../../../..][../../../../../../../..]
R6 hostA [../../../../../../../..][BB/BB/../../../../../..]

The sequential mapper with a host file allows very flexible rank layouts to be
made, but a side effect is that the mapping step only outputs host mapping
information. Normally the two preceding examples would differ, with the -map-by
socket alternating between the sockets to produce a more bandwidth style result.
But the sequential mapper's output is more coarse and the preceding core
mappings occur at the binding step.

The tradeoff here is minor, especially if you are launching fully-subscribed jobs, in
which case, latency and bandwidth bindings are identical. Also, the sequential
mapper requires that either a -map-by or -bind-to option be specified, otherwise, it
is incomplete and will fail to launch.

--map-by ppr:n:unit and --map-by ppr:n:unit:pe=n options

The ppr (processes per resource) mode is a convenient shortcut for specifying the
number of processes to run on each resource (a socket, for example).

The purpose of ppr:n:socket option is to launch n ranks on each socket. The
purpose of the ppr:n:socket:pe=m option is to launch n ranks per socket, with each
rank using m cores.

This following restrictions apply to ppr mode:
v It will only launch if the slot count is high enough to satisfy the ppr instruction.

For example, if enough processes are being started to put n on each socket.
v The cluster must be fairly homogeneous in order to be able to meaningfully

specify a single number as the ranks per socket.

Chapter 9. Managing processor affinity 39

In “--map-by unit:PE=n and --map-by slot:PE=n options” on page 38, special
considerations were given to the launching method because the number of slots
used was not one-per-process. However with ppr, slots are not taken into account
other than the requirement that enough slots exist to satisfy the specified processes
per resource instruction.
% mpirun -host hostA:4,hostB:4 --map-by ppr:2:socket:pe=2 ...

R0 hostA [BB/BB/../../../../../..][../../../../../../../..]
R1 hostA [../../BB/BB/../../../..][../../../../../../../..]
R2 hostA [../../../../../../../..][BB/BB/../../../../../..]
R3 hostA [../../../../../../../..][../../BB/BB/../../../..]
R4 hostB [BB/BB/../../../../../..][../../../../../../../..]
R5 hostB [../../BB/BB/../../../..][../../../../../../../..]
R6 hostB [../../../../../../../..][BB/BB/../../../../../..]
R7 hostB [../../../../../../../..][../../BB/BB/../../../..]

--map-by dist:span option (adapter affinity)

This option, along with --mca rmaps_dist_device device name (for example, ib0)
can be used to enable adapter affinity in Open MPI.

With --mca rmaps_dist_device, Open MPI must be allowed to choose the rank
layout, so an explicit host file should not be used with this mode. For example:
% mpirun -host hostA,hostB -np 18 -bind-to core -map-by dist:span

-map-by dist:span --mca rmaps_dist_device mthca0 ...
R0 hostA [../../../../../../../..][BB/../../../../../../..]
R1 hostA [../../../../../../../..][../BB/../../../../../..]
R2 hostA [../../../../../../../..][../../BB/../../../../..]
R3 hostA [../../../../../../../..][../../../BB/../../../..]
R4 hostA [../../../../../../../..][../../../../BB/../../..]
R5 hostA [../../../../../../../..][../../../../../BB/../..]
R6 hostA [../../../../../../../..][../../../../../../BB/..]
R7 hostA [../../../../../../../..][../../../../../../../BB]
R8 hostA [BB/../../../../../../..][../../../../../../../..]
R9 hostB [../../../../../../../..][BB/../../../../../../..]
R10 hostB [../../../../../../../..][../BB/../../../../../..]
R11 hostB [../../../../../../../..][../../BB/../../../../..]
R12 hostB [../../../../../../../..][../../../BB/../../../..]
R13 hostB [../../../../../../../..][../../../../BB/../../..]
R14 hostB [../../../../../../../..][../../../../../BB/../..]
R15 hostB [../../../../../../../..][../../../../../../BB/..]
R16 hostB [../../../../../../../..][../../../../../../../BB]
R17 hostB [BB/../../../../../../..][../../../../../../../..]

% mpirun -host hostA,hostB -np 10 -bind-to core
-map-by dist:span,pe=2 --mca rmaps_dist_device mthca0 ...

R0 hostA [../../../../../../../..][BB/BB/../../../../../..]
R1 hostA [../../../../../../../..][../../BB/BB/../../../..]
R2 hostA [../../../../../../../..][../../../../BB/BB/../..]
R3 hostA [../../../../../../../..][../../../../../../BB/BB]
R4 hostA [BB/BB/../../../../../..][../../../../../../../..]
R5 hostB [../../../../../../../..][BB/BB/../../../../../..]
R6 hostB [../../../../../../../..][../../BB/BB/../../../..]
R7 hostB [../../../../../../../..][../../../../BB/BB/../..]
R8 hostB [../../../../../../../..][../../../../../../BB/BB]
R9 hostB [BB/BB/../../../../../..][../../../../../../../..]

The -map-by dist option without span is less useful, as it fills each host before
moving to the next:
% mpirun -host hostA,hostB -np 17 -bind-to core -map-by dist

--mca rmaps_dist_device mthca0 ...
R0 hostA [../../../../../../../..][BB/../../../../../../..]
R1 hostA [../../../../../../../..][../BB/../../../../../..]
R2 hostA [../../../../../../../..][../../BB/../../../../..]

40 IBM Spectrum MPI: User's Guide

R3 hostA [../../../../../../../..][../../../BB/../../../..]
R4 hostA [../../../../../../../..][../../../../BB/../../..]
R5 hostA [../../../../../../../..][../../../../../BB/../..]
R6 hostA [../../../../../../../..][../../../../../../BB/..]
R7 hostA [../../../../../../../..][../../../../../../../BB]
R8 hostA [BB/../../../../../../..][../../../../../../../..]
R9 hostA [../BB/../../../../../..][../../../../../../../..]
R10 hostA [../../BB/../../../../..][../../../../../../../..]
R11 hostA [../../../BB/../../../..][../../../../../../../..]
R12 hostA [../../../../BB/../../..][../../../../../../../..]
R13 hostA [../../../../../BB/../..][../../../../../../../..]
R14 hostA [../../../../../../BB/..][../../../../../../../..]
R15 hostA [../../../../../../../BB][../../../../../../../..]
R16 hostB [../../../../../../../..][BB/../../../../../../..]

Helper options

-report-bindings option

This option displays the binding for each rank similarly to the preceding examples,
but in a slightly more expanded format:

% mpirun -host hostA:4,hostB:2 --report-bindings -map-by core ...

[hostA:ppid] MCW rank 0 bound to socket 0[core 0[hwt 0-1]]: [BB/../../../../../../..][../../../../../../../..]

[hostA:ppid] MCW rank 1 bound to socket 0[core 1[hwt 0-1]]: [../BB/../../../../../..][../../../../../../../..]

[hostA:ppid] MCW rank 2 bound to socket 0[core 2[hwt 0-1]]: [../../BB/../../../../..][../../../../../../../..]
[hostA:ppid] MCW rank 3 bound to socket 0[core 3[hwt 0-1]]: [../../../BB/../../../..][../../../../../../../..]

[hostB:ppid] MCW rank 4 bound to socket 0[core 0[hwt 0-1]]: [BB/../../../../../../..][../../../../../../../..]
[hostB:ppid] MCW rank 5 bound to socket 0[core 1[hwt 0-1]]: [../BB/../../../../../..][../../../../../../../..]

-display-devel-map option

Much of the information displayed with this option is internal, but various parts of
the output can be helpful in diagnosing why a certain affinity option is behaving
the way it is. The output names that the policy used for mapping, ranking, and
binding are particularly useful. The -display-devel-map option displays the
number of slots that are used. Also, under the Locale: output, it shows the
hardware associates that were made in the mapping stage.
% mpirun -host hostA:4,hostB:2 --display-devel-map -map-by core ...

Mapper requested: NULL Last mapper: round_robin Mapping policy: BYCORE
Ranking policy: CORE Binding policy: CORE:IF-SUPPORTED Cpu set: NULL
PPR: NULL Cpus-per-rank: 1

Num new daemons: 0 New daemon starting vpid INVALID
Num nodes: 2

Data for node: hostA State: 3
Daemon: [[11988,0],1] Daemon launched: True
Num slots: 4 Slots in use: 4 Oversubscribed: FALSE
Num slots allocated: 4 Max slots: 0
Num procs: 4 Next node_rank: 4
Data for proc: [[11988,1],0]

Pid: 0 Local rank: 0 Node rank: 0 App rank: 0
State: INITIALIZED App_context: 0
Locale: [BB/../../../../../../..][../../../../../../../..]
Binding: [BB/../../../../../../..][../../../../../../../..]

Data for proc: [[11988,1],1]
Pid: 0 Local rank: 1 Node rank: 1 App rank: 1
State: INITIALIZED App_context: 0
Locale: [../BB/../../../../../..][../../../../../../../..]
Binding: [../BB/../../../../../..][../../../../../../../..]

Chapter 9. Managing processor affinity 41

Data for proc: [[11988,1],2]
Pid: 0 Local rank: 2 Node rank: 2 App rank: 2
State: INITIALIZED App_context: 0
Locale: [../../BB/../../../../..][../../../../../../../..]
Binding: [../../BB/../../../../..][../../../../../../../..]

Data for proc: [[11988,1],3]
Pid: 0 Local rank: 3 Node rank: 3 App rank: 3
State: INITIALIZED App_context: 0
Locale: [../../../BB/../../../..][../../../../../../../..]
Binding: [../../../BB/../../../..][../../../../../../../..]

Data for node: hostB State: 3
Daemon: [[11988,0],2] Daemon launched: True
Num slots: 2 Slots in use: 2 Oversubscribed: FALSE
Num slots allocated: 2 Max slots: 0
Num procs: 2 Next node_rank: 2
Data for proc: [[11988,1],4]

Pid: 0 Local rank: 0 Node rank: 0 App rank: 4
State: INITIALIZED App_context: 0
Locale: [BB/../../../../../../..][../../../../../../../..]
Binding: [BB/../../../../../../..][../../../../../../../..]

Data for proc: [[11988,1],5]
Pid: 0 Local rank: 1 Node rank: 1 App rank: 5
State: INITIALIZED App_context: 0
Locale: [../BB/../../../../../..][../../../../../../../..]
Binding: [../BB/../../../../../..][../../../../../../../..]

IBM Spectrum MPI affinity shortcuts

Spectrum MPI provides shortcuts by way of the -aff command line option for
some of the underlying Open MPI affinity options. The shortcuts are for bandwidth
bindings, latency bindings, and cyclic bindings.

Here is an example of a bandwidth binding:
% mpirun -host hostA:4,hostB:2 -map-by socket -rank-by core -bind-to core ...
R0 hostA [BB/../../../../../../..][../../../../../../../..]
R1 hostA [../BB/../../../../../..][../../../../../../../..]
R2 hostA [../../../../../../../..][BB/../../../../../../..]
R3 hostA [../../../../../../../..][../BB/../../../../../..]
R4 hostB [BB/../../../../../../..][../../../../../../../..]
R5 hostB [../../../../../../../..][BB/../../../../../../..]

The shortcut for this bandwidth binding example is -aff bandwidth (would
become -map-by socket -rank-by core -bind-to core).

Here is a latency binding:
% mpirun -host hostA:4,hostB:2 -map-by core ...
R0 hostA [BB/../../../../../../..][../../../../../../../..]
R1 hostA [../BB/../../../../../..][../../../../../../../..]
R2 hostA [../../BB/../../../../..][../../../../../../../..]
R3 hostA [../../../BB/../../../..][../../../../../../../..]
R4 hostB [BB/../../../../../../..][../../../../../../../..]
R5 hostB [../BB/../../../../../..][../../../../../../../..]

The shortcut for this latency binding example is -aff latency (would become
-map-by core -rank-by core -bind-to core).

Here is a cyclic binding, which is similar to a bandwidth binding, but without the
-rank-by core option reordering the output:
% mpirun -host hostA:4,hostB:2 -map-by socket -bind-to core ...
R0 hostA [BB/../../../../../../..][../../../../../../../..]

42 IBM Spectrum MPI: User's Guide

R1 hostA [../../../../../../../..][BB/../../../../../../..]
R2 hostA [../BB/../../../../../..][../../../../../../../..]
R3 hostA [../../../../../../../..][../BB/../../../../../..]
R4 hostB [BB/../../../../../../..][../../../../../../../..]
R5 hostB [../../../../../../../..][BB/../../../../../../..]

The shortcut for this cyclic binding example is -aff cycle:unit (would become
-map-by unit -rank-by unit -bind-to core).

IBM Spectrum MPI provides the following -aff shortcuts:

Table 5. IBM Spectrum MPI -aff shortcuts

Shortcut Description

-aff auto Same as -aff bandwidth

-aff bandwidth Emulates -map-by socket -rank-by core -bind-to core

-aff cycle:unit Emulates -map-by unit -rank-by unit -bind-to core

-aff default Same as -aff bandwidth

-aff latency Emulates -map-by core -rank-by core -bind-to core

-aff none Same as -aff off

-aff off Disables affinity (unbind)

-aff on Enables affinity with the default option (bandwidth)

-aff option,option,.. Comma-separated list of options (--map-by unit, --rank-by
unit, -bind-to unit)

-aff v / -aff vv Specifies verbose output (--report-bindings)

-aff width:unit Specifies an alternate -bind-to unit value. The value
specified for unit can be slot, hwthread, core, socket, numa,
board, or node.

IBM PE Runtime Edition affinity equivalents

For users who are migrating from IBM Parallel Environment Runtime Edition, the
IBM Spectrum MPI affinity options can be used to create nearly the same
functionality that is provided by the following MP_TASK_AFFINITY and
MP_CPU_BINDLIST environment variable settings:
v “MP_TASK_AFFINITY=core”
v “MP_TASK_AFFINITY=core:n” on page 44
v “MP_TASK_AFFINITY=cpu” on page 45
v “MP_TASK_AFFINITY=cpu:n” on page 45
v “MP_TASK_AFFINITY=mcm” on page 46
v “MP_CPU_BIND_LIST=list_of_hyper-threads” on page 47

MP_TASK_AFFINITY=core

The options -map-by core, -map-by socket, -rank-by core, and -bind-to core
offer similar functionality to the MP_TASK_AFFINITY=core environment variable
setting. For example:
% mpirun -host hostA:4,hostB:2 -map-by core ...
R0 hostA [BB/../../../../../../..][../../../../../../../..]
R1 hostA [../BB/../../../../../..][../../../../../../../..]
R2 hostA [../../BB/../../../../..][../../../../../../../..]

Chapter 9. Managing processor affinity 43

R3 hostA [../../../BB/../../../..][../../../../../../../..]
R4 hostB [BB/../../../../../../..][../../../../../../../..]
R5 hostB [../BB/../../../../../..][../../../../../../../..]

% mpirun -host hostA:4,hostB:2 -map-by socket -rank-by core -bind-to core ...
R0 hostA [BB/../../../../../../..][../../../../../../../..]
R1 hostA [../BB/../../../../../..][../../../../../../../..]
R2 hostA [../../../../../../../..][BB/../../../../../../..]
R3 hostA [../../../../../../../..][../BB/../../../../../..]
R4 hostB [BB/../../../../../../..][../../../../../../../..]
R5 hostB [../../../../../../../..][BB/../../../../../../..]

MP_TASK_AFFINITY=core:n

The following options offer similar functionality to the
MP_TASK_AFFINITY=core:n environment variable setting:
v -map-by slot:pe=n
v -map-by socket:pe=n
v -map-by ppr:ranks-per-socket:slot:pe=n
v -map-by ppr:ranks-per-socket:socket:pe=n

Depending on the launching method, the rank count that is produced by the
-map-by unit:pe=n options might not be what you expect because each rank uses n
slots.

For example:
% mpirun -host hostA:8,hostB:4 -map-by slot:pe=2 ...
R0 hostA [BB/BB/../../../../../..][../../../../../../../..]
R1 hostA [../../BB/BB/../../../..][../../../../../../../..]
R2 hostA [../../../../BB/BB/../..][../../../../../../../..]
R3 hostA [../../../../../../BB/BB][../../../../../../../..]
R4 hostB [BB/BB/../../../../../..][../../../../../../../..]
R5 hostB [../../BB/BB/../../../..][../../../../../../../..]

% mpirun -host hostA:8,hostB:4 -map-by socket:pe=2 -rank-by core ...
R0 hostA [BB/BB/../../../../../..][../../../../../../../..]
R1 hostA [../../BB/BB/../../../..][../../../../../../../..]
R2 hostA [../../../../../../../..][BB/BB/../../../../../..]
R3 hostA [../../../../../../../..][../../BB/BB/../../../..]
R4 hostB [BB/BB/../../../../../..][../../../../../../../..]
R5 hostB [../../../../../../../..][BB/BB/../../../../../..]

Using a host file and the -mca rmaps seq option allows specific control of host
layout, as long as a packed-style binding is acceptable:
% mpirun -hostfile hostfile --mca rmaps seq -map-by slot:pe=2 ...
R0 hostA [BB/BB/../../../../../..][../../../../../../../..]
R1 hostA [../../BB/BB/../../../..][../../../../../../../..]
R2 hostA [../../../../BB/BB/../..][../../../../../../../..]
R3 hostA [../../../../../../BB/BB][../../../../../../../..]
R4 hostB [BB/BB/../../../../../..][../../../../../../../..]
R5 hostB [../../BB/BB/../../../..][../../../../../../../..]
R6 hostA [../../../../../../../..][BB/BB/../../../../../..]

For the -map-by ppr options, the slot count must be able to satisfy the specified
processes per resource, and the resulting layout across the hosts is chosen by MPI.
For example, the following command is invalid because the two slots that are
listed as available on hostB are not enough to satisfy the instruction to put four
processes on each host.
% mpirun -host hostA:4,hostB:2 -map-by ppr:4:node:pe=2

44 IBM Spectrum MPI: User's Guide

In the next example, the instruction to put four ranks per host (node) is followed.
Even though hostA is listed as having six slots, only four processes are placed on
it.
% mpirun -host hostA:6,hostB:4 -map-by ppr:4:node:pe=2
R0 hostA [BB/BB/../../../../../..][../../../../../../../..]
R1 hostA [../../BB/BB/../../../..][../../../../../../../..]
R2 hostA [../../../../BB/BB/../..][../../../../../../../..]
R3 hostA [../../../../../../BB/BB][../../../../../../../..]
R4 hostB [BB/BB/../../../../../..][../../../../../../../..]
R5 hostB [../../BB/BB/../../../..][../../../../../../../..]
R6 hostB [../../../../BB/BB/../..][../../../../../../../..]
R7 hostB [../../../../../../BB/BB][../../../../../../../..]

MP_TASK_AFFINITY=cpu

The following options offer similar functionality to the MP_TASK_AFFINITY=cpu
environment variable setting:
v -map-by hwthread

v -map-by socket

v -rank-by hwthread

v -bind-to hwthread

For example:
% mpirun -host hostA:4,hostB:2 -map-by hwthread ...

R0 hostA [B./../../../../../../..][../../../../../../../..]
R1 hostA [.B/../../../../../../..][../../../../../../../..]
R2 hostA [../B./../../../../../..][../../../../../../../..]
R3 hostA [../.B/../../../../../..][../../../../../../../..]
R4 hostB [B./../../../../../../..][../../../../../../../..]
R5 hostB [.B/../../../../../../..][../../../../../../../..]

% mpirun -host hostA:4,hostB:2 -map-by socket -rank-by hwthread
-bind-to hwthread ...

R0 hostA [B./../../../../../../..][../../../../../../../..]
R1 hostA [.B/../../../../../../..][../../../../../../../..]
R2 hostA [../../../../../../../..][B./../../../../../../..]
R3 hostA [../../../../../../../..][.B/../../../../../../..]
R4 hostB [B./../../../../../../..][../../../../../../../..]
R5 hostB [.B/../../../../../../..][../../../../../../../..]
R6 hostB [../../../../../../../..][B./../../../../../../..]
R7 hostB [../../../../../../../..][.B/../../../../../../..]

MP_TASK_AFFINITY=cpu:n

The following options offer similar functionality to the
MP_TASK_AFFINITY=cpu:n environment variable setting:
v -map-by slot:pe=n -use-hwthread-cpus

v -map-by socket:pe=n -use-hwthread-cpus

v -map-by ppr:ranks-per-host:node:pe=n -use-hwthread-cpus

v -map-by ppr:ranks-per-socket:socket:pe=n -use-hwthread-cpus

The -use-hwthread-cpus option causes the pe=n option to refer to hyper-threads
instead of cores.

For example:
% mpirun -host hostA:16,hostB:8 -map-by slot:pe=4 -use-hwthread-cpus ...
R0 hostA [BB/BB/../../../../../..][../../../../../../../..]
R1 hostA [../../BB/BB/../../../..][../../../../../../../..]

Chapter 9. Managing processor affinity 45

R2 hostA [../../../../BB/BB/../..][../../../../../../../..]
R3 hostA [../../../../../../BB/BB][../../../../../../../..]
R4 hostB [BB/BB/../../../../../..][../../../../../../../..]
R5 hostB [../../BB/BB/../../../..][../../../../../../../..]

In the preceding example, the slot counts in the -host option are again increased to
achieve the desired rank counts, because each rank is using four slots.
% mpirun -host hostA:16,hostB:8 -map-by socket:pe=4 -use-hwthread-cpus ...

R0 hostA [BB/BB/../../../../../..][../../../../../../../..]
R1 hostA [../../../../../../../..][BB/BB/../../../../../..]
R2 hostA [../../BB/BB/../../../..][../../../../../../../..]
R3 hostA [../../../../../../../..][../../BB/BB/../../../..]
R4 hostB [BB/BB/../../../../../..][../../../../../../../..]
R5 hostB [../../../../../../../..][BB/BB/../../../../../..]

The -map-by ppr option over hyper-threads works similarly:
% mpirun -host hostA:4,hostB:4 -map-by ppr:4:node:pe=4 -use-hwthread-cpus ...

R0 hostA [BB/BB/../../../../../..][../../../../../../../..]
R1 hostA [../../BB/BB/../../../..][../../../../../../../..]
R2 hostA [../../../../BB/BB/../..][../../../../../../../..]
R3 hostA [../../../../../../BB/BB][../../../../../../../..]
R4 hostB [BB/BB/../../../../../..][../../../../../../../..]
R5 hostB [../../BB/BB/../../../..][../../../../../../../..]
R6 hostB [../../../../BB/BB/../..][../../../../../../../..]
R7 hostB [../../../../../../BB/BB][../../../../../../../..]

% mpirun -host hostA:4,hostB:4 -map-by ppr:2:socket:pe=4 -use-hwthread-cpus ...
R0 hostA [BB/BB/../../../../../..][../../../../../../../..]
R1 hostA [../../BB/BB/../../../..][../../../../../../../..]
R2 hostA [../../../../../../../..][BB/BB/../../../../../..]
R3 hostA [../../../../../../../..][../../BB/BB/../../../..]
R4 hostB [BB/BB/../../../../../..][../../../../../../../..]
R5 hostB [../../BB/BB/../../../..][../../../../../../../..]
R6 hostB [../../../../../../../..][BB/BB/../../../../../..]
R7 hostB [../../../../../../../..][../../BB/BB/../../../..]

MP_TASK_AFFINITY=mcm

The functionality of the -map-by socket or -map-by numa options is similar to the
MP_TASK_AFFINITY=mcm environment variable setting. Note that in Open MPI
terminology, node refers to a full host. The NUMA node level is referred to as numa.

In Open MPI, the levels are:
v hwthread (hyper-thread, or cpu in IBM PE Runtime Edition terminology)
v core
v L1cache
v L2cache
v L3cache
v numa (a NUMA node)
v socket
v board
v node (the full host)

In Open MPI, the mcm level would equate to either socket or numa. For example:
% mpirun -host hostA:4,hostB:4 -map-by numa ...
R0 hostA [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]
R1 hostA [../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB]

46 IBM Spectrum MPI: User's Guide

R2 hostA [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]
R3 hostA [../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB]
R4 hostB [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]
R5 hostB [../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB]

% mpirun -host hostA:4,hostB:4 -map-by socket -rank-by core ...
R0 hostA [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]
R1 hostA [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]
R2 hostA [../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB]
R3 hostA [../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB]
R4 hostB [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]
R5 hostB [../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB]

MP_CPU_BIND_LIST=list_of_hyper-threads

In Open MPI, specific bindings on a per-rank basis can be made using a rankfile.

The list of numbers that is specified in the rankfile refers to cores, and uses logical
hardware ordering. If s:a-b is given, it refers to a socket and a range of cores on
that socket. For example:
% cat rankfile

rank 0=hostA slot=0,1
rank 1=hostA slot=2-3
rank 2=hostA slot=1:4-5
rank 3=hostA slot=0:4-7
rank 4=hostB slot=0-1,8,9
rank 5=hostB slot=2-3,7,8,10-11

% mpirun -rankfile rankfile

R0 hostA [BB/BB/../../../../../..][../../../../../../../..]
R1 hostA [../../BB/BB/../../../..][../../../../../../../..]
R2 hostA [../../../../../../../..][../../../../BB/BB/../..]
R3 hostA [../../../../BB/BB/BB/BB][../../../../../../../..]
R4 hostB [BB/BB/../../../../../..][BB/BB/../../../../../..]
R5 hostB [../../BB/BB/../../../BB][BB/../BB/BB/../../../..]

When the -use-hwthread-cpus option is used, the numbers in the rank file refer to
hyper-threads (using logical hardware order):
% cat rankfile
rank 0=hostA slot=0-7
rank 1=hostA slot=4,5,6,7,8,9,10,11
rank 2=hostA slot=8-15
rank 3=hostA slot=0-23
rank 4=hostB slot=0-3,16-19
rank 5=hostB slot=4-7,20-23

% mpirun -rankfile rankfile -use-hwthread-cpus
R0 hostA [BB/BB/BB/BB/../../../..][../../../../../../../..]
R1 hostA [../../BB/BB/BB/BB/../..][../../../../../../../..]
R2 hostA [../../../../BB/BB/BB/BB][../../../../../../../..]
R3 hostA [BB/BB/BB/BB/BB/BB/BB/BB][BB/BB/BB/BB/../../../..]
R4 hostB [BB/BB/../../../../../..][BB/BB/../../../../../..]
R5 hostB [../../BB/BB/../../../..][../../BB/BB/../../../..]

If the socket:core#-core# syntax is used in a rankfile, those lines are still interpreted
as socket:core even though the -use-hwthread-cpus option is specified. For
example:
% cat rankfile
rank 0=hostA slot=2-3
rank 1=hostA slot=1:2-3

Chapter 9. Managing processor affinity 47

% mpirun -rankfile rankfile -use-hwthread-cpus
R0 hostA [../BB/../../../../../..][../../../../../../../..]
R1 hostA [../../../../../../../..][../../BB/BB/../../../..]

OpenMP (and similar APIs)

Open MPI only binds at the process level. The number of threads that are created
by a rank and the binding of those threads is not directly controlled by Open MPI.
However, by default, created threads would inherit the full mask that is given to
the rank.

OpenMP should detect the number of hyper-threads in the process' mask to
determine how many threads to create. Alternately, the number of threads to create
can be set manually using the OMP_NUM_THREADS environment variable

In general, OpenMP is also capable of binding the individual threads more
specifically than the inherited mask for the whole process. However, the
mechanism varies across versions of OpenMP (settings to explore for this option
include GOMP_CPU_AFFINITY, OMP_PROC_BIND, and KMP_AFFINITY).

48 IBM Spectrum MPI: User's Guide

Chapter 10. Tuning the runtime environment

Tuning with MCA parameters
IBM Spectrum MPI utilizes the parameters of the Modular Component
Architecture (MCA) as the primary mechanism for tuning the runtime
environment. Each MCA parameter is a simple key=value pair that controls a
specific aspect of the IBM Spectrum MPI functionality.

The MCA parameters can be set to meet your particular runtime requirements in
several ways. They can be specified on the mpirun command line, exported as
environment variables, or supplied in a separate text file.

Frameworks, components, and MCA parameters

In order to understand how to use MCA parameters, you first need to understand
their relationship to MCA's frameworks and components.

The MCA frameworks are divided into three basic types. They are:
v OMPI frameworks (in the MPI layer)
v ORTE frameworks (in the runtime layer)
v OPAL frameworks (in the operating system and platform layer)

An MCA framework uses the MCA's services to find and load components
(implementations of the framework's interface) at run time.

The frameworks within the OMPI, ORTE, and OPAL types are further divided into
subgroups according to function. For example, the OMPI framework contains a
subgroup called btl, which is used to send and receive data on different kinds of
networks. And within the btl framework, there are Byte Transfer Layer-related
components (for example, components for shared memory, TCP, Infiniband, and so
on), which can be used at runtime.

Likewise, there are many MCA parameters that allow you to control the runtime
environment, and these parameters apply to the same groups as the frameworks
and components. So, considering the example of the btl framework, there is a
corresponding collection of MCA parameters that can be used for setting
conditions for the Byte Transfer Layer.

The frameworks and their components change over time. For the most up-to-date
list of the OMPI, ORTE, and OPAL frameworks, refer to the Open MPI readme file.

Displaying a list of MCA parameters

The ompi_info command displays information about the IBM Spectrum MPI
installation. It can be used to display the MCA parameters and their values for a
specific framework, a specific component, or for the entire installation.

The ompi_info command includes many options, including --param, which you can
use to display MCA parameters. In general, when using the --param option, you

© Copyright IBM Corp. 2016 49

specify two arguments. The first argument is the component type (framework),
and the second argument is the specific component.
ompi_info --param type component

Displaying the MCA parameters for a framework

To display the parameters for a entire framework, specify all for the second
argument. This instructs ompi_info to display the MCA parameters and their
values for all components of the specified type (framework). For example:
ompi_info --param pml all

Displaying the MCA parameters for a component

To display the parameters for a particular component, specify the type (framework)
as the first argument and the component name as the second argument. For
example, to display the MCA parameters for the tcp component of the btl (Byte
Transfer Layer) framework (the component that uses TCP for MPI
communications), you could specify ompi_info as follows:
ompi_info --param pml pami

Displaying the MCA parameters for an entire installation

To display the MCA parameters for all frameworks and components in an IBM
Spectrum MPI installation, specify all for both arguments:
ompi_info --param all all

Controlling the level of MCA parameters that are displayed

Although there are many MCA parameters, only a small number are of interest to
any given user at any given time. To simplify things when listing the parameters
that are available, IBM Spectrum MPI provides the ompi_info –level option, which
allows you to limit the number and type of MCA parameters that are returned.
There are nine different levels that can be specified:
1. Basic information that is of interest to end users.
2. Detailed information that is of interest to end users.
3. All remaining information that is of interest to end users.
4. Basic information that is required for application tuners.
5. Detailed information that is required for application tuners.
6. All remaining information that is required for application tuners.
7. Basic information for Open MPI implementers.
8. Detailed information for Open MPI implementers.
9. All remaining information for Open MPI implementers.

By default, ompi_info only displays level 1 MCA parameters (basic information that
is of interest to end users). However, you can display the MCA parameters for
additional levels (there are nine) by using the ompi_info --level option. For
example:
ompi_info --param pml pami --level 9

For more information about using the ompi_info --level command to control
MCA parameter levels, refer to the ompi_info man page on the Open MPI web site
(www.open-mpi.org).

50 IBM Spectrum MPI: User's Guide

http://www.open-mpi.org

Setting MCA parameters

In general, there are three ways that you can set an MCA parameter. These include:
v Specifying it with the mpirun command
v Specifying it as an environment variable
v Providing it in a text file.

IBM Spectrum MPI gives precedence to parameter values that are set using the
mpirun command. Therefore, a given parameter's value that was set using mpirun
will override the same parameter that was previously set as an environment
variable or in a text file.

Setting MCA parameters with the mpirun command

To specify MCA parameters on the mpirun command line, use the --mca option.
The basic syntax is:
mpirun --mca param_name value

In the following example, the MCA mpi_show_handle_leaks parameter is set to a
value of 1 and the program a.out is run with four processes:
mpirun --mca mpi_show_handle_leaks 1 -np 4 a.out

Note that if you want to specify a value that includes multiple words, you must
surround the value in quotes so that the shell and IBM Spectrum MPI understand
that it is a single value. For example:
mpirun --mca param "multiple_word_value" ...

Setting MCA parameters as environment variables

The way in which you specify an MCA parameter as an environment variable
differs, depending on the shell that you are using.

For ssh style shells, the syntax of this example would be:
OMPI_MCA_mpi_show_handle_leaks=1

export OMPI_MCA_mpi_show_handle_leaks
mpirun -np 4 a.out

For csh style shells, the syntax of this example would be:
setenv OMPI_MCA_mpi_show_handle_leaks 1

mpirun -np 4 a.out

Note that if you want to specify a value that includes multiple words, you must
surround the value in quotes so that the shell and IBM Spectrum MPI understand
that it is a single value.

An ssh style example is:
OMPI_MCA_param="multiple_word_value"

A csh style example is:
setenv OMPI_MCA_param "multiple_word_value"

Chapter 10. Tuning the runtime environment 51

Setting MCA parameters by way of a text file

MCA parameter values can be provided in a text file, called mca-params.conf. At
runtime, IBM Spectrum MPI searches for the mca-params.conf file in one of the
following locations, and in the following order:
v $HOME/.openmpi/mca-params.conf: This is the user-supplied set of values, which

has the highest precedence.
v $prefix/etc/openmpi-mca-params.conf: This is the system-supplied set of values,

which has a lower precedence.

The mca_param_files parameter specifies a colon-delimited path of files to search
for MCA parameters. Files to the left have lower precedence, while files to the
right have higher precedence.

The mca-params.conf file contains multiple parameter definitions, in which each
parameter is specified on a separate line. The following example shows the
mpi_show_handle_leaks parameter, as it is specified in a file:
This is a comment

Set the same MCA parameter as in previous examples
mpi_show_handle_leaks = 1

Note that in MCA parameter files, quotes are not necessary for setting values that
contain multiple words. If you include quotes in the MCA parameter file, they will
be used as part of the value itself.

52 IBM Spectrum MPI: User's Guide

Accessibility features for IBM Spectrum MPI

Accessibility features assist users who have a disability, such as restricted mobility
or limited vision, to use information technology content successfully.

Accessibility features

IBM Spectrum MPI includes the following major accessibility features:
v Keyboard-only operation
v Operations that use a screen reader

IBM Spectrum MPI uses the latest W3C Standard, WAI-ARIA 1.0
(www.w3.org/TR/wai-aria/), to ensure compliance with US Section 508
(www.access-board.gov/guidelines-and-standards/communications-and-it/about-
the-section-508-standards/section-508-standards) and Web Content Accessibility
Guidelines (WCAG) 2.0 (www.w3.org/TR/WCAG20/). To take advantage of
accessibility features, use the latest release of your screen reader and the latest web
browser that is supported by IBM Spectrum MPI.

The IBM Spectrum MPI online product documentation in IBM Knowledge Center
is enabled for accessibility. The accessibility features of IBM Knowledge Center are
described at http://www.ibm.com/support/knowledgecenter/doc/
kc_help.html#accessibility.

Related accessibility information

In addition to standard IBM help desk and support websites, IBM has established
a TTY telephone service for use by deaf or hard of hearing customers to access
sales and support services:

TTY service 800-IBM-3383 (800-426-3383) (within North America)

IBM and accessibility

For more information about the commitment that IBM has to accessibility, see IBM
Accessibility (www.ibm.com/able).

© Copyright IBM Corp. 2016 53

http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.ibm.com/support/knowledgecenter/doc/kc_help.html#accessibility
http://www.ibm.com/support/knowledgecenter/doc/kc_help.html#accessibility
http://www.ibm.com/able
http://www.ibm.com/able
http://www.ibm.com/able

54 IBM Spectrum MPI: User's Guide

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2016 55

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBMproducts.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not

56 IBM Spectrum MPI: User's Guide

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Programming interface information

MPI support statement
The IBM Spectrum MPI product is a complete MPI implementation, based on the
Open MPI open source project, designed to comply with all the requirements of
the Message Passing Interface standard, MPI: A Message-Passing Interface
Standard, Version 3.1, University of Tennessee, Knoxville, Tennessee, June 4, 2015.
If you believe that IBM Spectrum MPI does not comply with the MPI-3.1 standard,
please contact IBM Service.

Open MPI license
Most files in this release are marked with the copyrights of the
organizations who have edited them. The copyrights below are in no
particular order and generally reflect members of the Open MPI core
team who have contributed code to this release. The copyrights for
code used under license from other parties are included in the
corresponding files.

Copyright (c) 2004-2010 The Trustees of Indiana University and Indiana
University Research and Technology
Corporation. All rights reserved.

Copyright (c) 2004-2010 The University of Tennessee and The University
of Tennessee Research Foundation. All rights
reserved.

Copyright (c) 2004-2010 High Performance Computing Center Stuttgart,
University of Stuttgart. All rights reserved.

Copyright (c) 2004-2008 The Regents of the University of California.
All rights reserved.

Copyright (c) 2006-2010 Los Alamos National Security, LLC. All rights
reserved.

Copyright (c) 2006-2010 Cisco Systems, Inc. All rights reserved.
Copyright (c) 2006-2010 Voltaire, Inc. All rights reserved.
Copyright (c) 2006-2011 Sandia National Laboratories. All rights reserved.
Copyright (c) 2006-2010 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.
Copyright (c) 2006-2010 The University of Houston. All rights reserved.
Copyright (c) 2006-2009 Myricom, Inc. All rights reserved.
Copyright (c) 2007-2008 UT-Battelle, LLC. All rights reserved.
Copyright (c) 2007-2010 IBM Corporation. All rights reserved.
Copyright (c) 1998-2005 Forschungszentrum Juelich, Juelich Supercomputing

Centre, Federal Republic of Germany
Copyright (c) 2005-2008 ZIH, TU Dresden, Federal Republic of Germany
Copyright (c) 2007 Evergrid, Inc. All rights reserved.
Copyright (c) 2008 Chelsio, Inc. All rights reserved.
Copyright (c) 2008-2009 Institut National de Recherche en

Informatique. All rights reserved.
Copyright (c) 2007 Lawrence Livermore National Security, LLC.

All rights reserved.
Copyright (c) 2007-2009 Mellanox Technologies. All rights reserved.
Copyright (c) 2006-2010 QLogic Corporation. All rights reserved.
Copyright (c) 2008-2010 Oak Ridge National Labs. All rights reserved.
Copyright (c) 2006-2010 Oracle and/or its affiliates. All rights reserved.

Notices 57

Copyright (c) 2009 Bull SAS. All rights reserved.
Copyright (c) 2010 ARM ltd. All rights reserved.
Copyright (c) 2010-2011 Alex Brick . All rights reserved.
Copyright (c) 2012 The University of Wisconsin-La Crosse. All rights

reserved.
Copyright (c) 2013-2016 Intel, Inc. All rights reserved.
Copyright (c) 2011-2014 NVIDIA Corporation. All rights reserved.

$COPYRIGHT$

Additional copyrights may follow

$HEADER$

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer listed
in this license in the documentation and/or other materials
provided with the distribution.

- Neither the name of the copyright holders nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

The copyright holders provide no reassurances that the source code
provided does not infringe any patent, copyright, or any other
intellectual property rights of third parties. The copyright holders
disclaim any liability to any recipient for claims brought against
recipient by any third party for infringement of that parties
intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries
in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

58 IBM Spectrum MPI: User's Guide

http://www.ibm.com/legal/us/en/copytrade.shtml

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 59

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies”, and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

60 IBM Spectrum MPI: User's Guide

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Index

Special characters
--map-by dist:span mapping option (adapter affinity) 40
--map-by ppr:n:unit mapping option 39
--map-by ppr:n:unit:pe=n mapping option 39
--map-by slot mapping option 37
--map-by slot:PE=n mapping option 38
--map-by unit mapping option 35
--map-by unit:PE=n mapping option 38
-display-devel-map option 41
-report-bindings option 41

Numerics
64-bit support 7

A
accessibility features for this product 53
affinity, processor 35

C
collective communication

MCA parameters 11
general options 11

collective library 11
compiling applications 17
component, displaying MCA parameters 50
conventions and terminology viii

D
debuggers 9
debugging applications, serial debuggers 30
debugging applications, with Allinea DDT 30
debugging applications, with TotalView 29
developing applications 5
displaying MCA parameters for entire installation 50
dynamic profiling interface with layering 30

defining consistent layering 31
implementation notes 33
using the MPE performance visualization tool 33
using the mpirun -entry option 32

F
FCA support 8
framework, displaying MCA parameters 50
frameworks, components, and MCA parameters 49

G
GPU support 8

H
hcoll support 8
helper options, affinity 41

I
IBM PE Runtime Edition, affinity equivalents 43
IBM Spectrum MPI affinity shortcuts 42
IBM Spectrum MPI code structure 5
interconnect selection 13

displaying communication methods between hosts 15
managing on-host communication 15
specifying an IP network 15
specifying use of FCA (hcoll) 14
verbs bypass 14

introduction 1, 2

J
jumpshot command 33

L
libcollectives 11
LSF 9

M
mapping options 35

--map-by dist:span (adapter affinity) 40
--map-by ppr:n:unit 39
--map-by ppr:n:unit:pe=n 39
--map-by slot 37
--map-by unit 35
--map-by unit:PE=n 38
-map-by slot:PE=n 38

MCA parameters
collective communication 11

general options 11
controlling level displayed 50
displaying 49

for a component 50
for a framework 50
for an entire installation 50

setting 51
as environment variables 51
by way of text file 52
with mpirun 51

migrating from IBM PE Runtime Edition 3
MP_CPU_BIND_LIST 47
MP_TASK_AFFINITY=core 43
MP_TASK_AFFINITY=core:n 44
MP_TASK_AFFINITY=cpu 45
MP_TASK_AFFINITY=cpu:n 45
MP_TASK_AFFINITY=mcm 46
MPI-IO 9
mpirun options 22

affinity 24
display interconnect 23

© Copyright IBM Corp. 2016 61

mpirun options (continued)
IBM Spectrum MPI 23
IP network selection 24
on-host communication method 23
PMPI layering 25
standard I/O 24

MPMD application, starting 21

O
OpenMP 48

P
parallel file system, IBM Spectrum Scale 9
PMIx 10
Portable Hardware Locality (hwloc) 7
process placement and affinity 35
processor affinity, managing 35

R
running applications 19

LSF 25
ssh or rsh 26

running programs
mpirun 19

S
setting your PATH statements 19
specifying hosts 20

individually 20
with host list file 20

SPMD application, starting 21
starting

MPMD application 21
SPMD application 21

supported features 7

T
thread safety 7
tuning the runtime environment 49
tuning, with MCA parameters 49

U
understanding IBM Spectrum MPI 5

W
wrapper compiler scripts, using 17

62 IBM Spectrum MPI: User's Guide

IBM®

Product Number: 5725-G83

Printed in USA

GC27-8265-00

	Contents
	Tables
	About this information
	Who should use this information
	Conventions and terminology used in this information
	Prerequisite and related information
	How to send your comments

	Chapter 1. Getting started
	Introduction
	Limitations
	Migrating from IBM Parallel Environment Runtime Edition to IBM Spectrum MPI

	Chapter 2. Understanding IBM Spectrum MPI
	IBM Spectrum MPI code structure
	MPI library support

	Chapter 3. IBM Spectrum MPI supported features
	64-bit support
	Thread safety
	Portable Hardware Locality (hwloc)
	GPU support
	FCA (hcoll) support
	MPI-IO
	IBM Platform LSF
	Debugger support
	PMIx

	Chapter 4. Understanding IBM Spectrum MPI's collective library (libcollectives)
	MCA parameters for collective communication
	MCA parameters for general use

	Chapter 5. Interconnect selection
	Using the PAMI verbs bypass
	Specifying use of the FCA (hcoll) library
	Managing on-host communication
	Specifying an IP network
	Displaying communication methods between hosts

	Chapter 6. Compiling applications
	Using the wrapper compiler scripts

	Chapter 7. Running applications
	Establishing a path to the IBM Spectrum MPI executables and libraries
	Running programs with mpirun
	Specifying the hosts on which your application runs
	Specifying hosts individually
	Specifying hosts using a host list file

	Starting a SPMD (Single Program, Multiple Data) application
	Starting an MPMD (multiple program, multiple data) application
	mpirun options
	mpirun options for general use
	IBM Spectrum MPI mpirun options

	Running applications with IBM Platform LSF
	Running jobs with ssh or rsh

	Chapter 8. Debugging and profiling applications
	Using the TotalView debugger with IBM Spectrum MPI
	Using the Allinea DDT debugger with IBM Spectrum MPI
	Using serial debuggers with IBM Spectrum MPI
	Dynamic MPI profiling interface with layering
	Defining consistent layering
	Using the mpirun -entry option to define consistent layering

	Implementation notes
	Using the MPE performance visualization tool
	Using the MPE Jumpshot viewer

	Chapter 9. Managing processor affinity
	Understanding MPI process placement and affinity
	Mapping options and modifiers
	--map-by unit option
	--map-by slot option
	--map-by unit:PE=n and --map-by slot:PE=n options
	--map-by ppr:n:unit and --map-by ppr:n:unit:pe=n options
	--map-by dist:span option (adapter affinity)

	Helper options
	-report-bindings option
	-display-devel-map option

	IBM Spectrum MPI affinity shortcuts
	IBM PE Runtime Edition affinity equivalents
	MP_TASK_AFFINITY=core
	MP_TASK_AFFINITY=core:n
	MP_TASK_AFFINITY=cpu
	MP_TASK_AFFINITY=cpu:n
	MP_TASK_AFFINITY=mcm
	MP_CPU_BIND_LIST=list_of_hyper-threads

	OpenMP (and similar APIs)

	Chapter 10. Tuning the runtime environment
	Tuning with MCA parameters
	Frameworks, components, and MCA parameters
	Displaying a list of MCA parameters
	Displaying the MCA parameters for a framework
	Displaying the MCA parameters for a component
	Displaying the MCA parameters for an entire installation
	Controlling the level of MCA parameters that are displayed

	Setting MCA parameters
	Setting MCA parameters with the mpirun command
	Setting MCA parameters as environment variables
	Setting MCA parameters by way of a text file

	Accessibility features for IBM Spectrum MPI
	Notices
	Programming interface information
	MPI support statement
	Open MPI license

	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

	Index
	Special characters
	Numerics
	A
	C
	D
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	W

