
Redbooks

Front cover

Implementing an
IBM High-Performance
Computing Solution on IBM
Power System S822LC
Dino Quintero

Luis Carlos Cruz Huertas

Tsuyoshi Kamenoue

Wainer dos Santos Moschetta

Mauricio Faria de Oliveira

Georgy E Pavlov

Alexander Pozdneev

International Technical Support Organization

Implementing an IBM High-Performance Computing
Solution on IBM Power System S822LC

July 2016

SG24-8280-00

© Copyright International Business Machines Corporation 2016. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (July 2016)

This edition applies to the following products:
� Red Hat Enterprise Linux (RHEL) Server 7.2 (little-endian)
� Linux kernel version 3.10.0-327
� Extreme Cluster/Cloud Administration Toolkit (xCAT) 2.11
� Compute Unified Device Architecture (CUDA) Toolkit 7.5 (7.5-23)
� Mellanox OpenFabrics Enterprise Distribution (OFED) for Linux 3.2 (3.2-1.0.1.1)
� XL C/C++ Compiler for Linux V13.1.2
� XL Fortran Compiler for Linux V15.1.2
� Advance Toolchain 8.0 (8.0-5)
� GNU Compiler Collection (GCC) 4.8.5 (RHEL)
� IBM Parallel Environment Runtime Edition (PE RTE) 2.3
� IBM Parallel Environment Developer Edition (PE DE) 2.2
� IBM Engineering and Scientific Subroutine Library (ESSL) 5.4
� IBM Parallel ESSL (PESSL) 5.2
� IBM Spectrum Scale (formerly IBM GPFS) 4.1.1.3
� IBM Spectrum LSF (formerly IBM Platform LSF) 9.1.3
� OpenPower Abstraction Layer (OPAL) firmware OP810.10 (OP8_v1.7_1.13)
� NAS Parallel Benchmarks version 3.3.1

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

IBM Redbooks promotions . ix

Preface . xi
Authors. xi
Now you can become a published author, too! . xiii
Comments welcome. xiii
Stay connected to IBM Redbooks . xiii

Chapter 1. Introduction to the IBM Power System S822LC for high performance
computing workloads. 1

1.1 IBM POWER8 technology. 2
1.2 OpenPOWER . 2
1.3 IBM Power System S822LC . 3

1.3.1 Differences between 8335-GCA and 8335-GTA models . 4

Chapter 2. Reference architecture . 7
2.1 Hardware components of an HPC system . 8

2.1.1 Login nodes . 9
2.1.2 Management nodes . 9
2.1.3 Compute nodes. 9
2.1.4 High performance interconnect . 10
2.1.5 Management, service, and site (public) networks . 10
2.1.6 Parallel file system . 12

2.2 Software components of an HPC system . 13
2.2.1 System software . 13
2.2.2 Application development software . 17
2.2.3 Application software . 20

2.3 HPC system solution. 20
2.3.1 Compute nodes. 20
2.3.2 Management node . 21
2.3.3 Login node . 21
2.3.4 Combining the management and the login node . 21
2.3.5 Parallel file system . 21
2.3.6 High performance interconnect switch . 21

Chapter 3. Hardware components . 23
3.1 IBM Power System S822LC . 24

3.1.1 IBM POWER8 processor . 24
3.1.2 Memory subsystem. 30
3.1.3 Input and output . 32
3.1.4 NVIDIA GPU . 38
3.1.5 BMC . 40

3.2 Mellanox InfiniBand. 40
3.3 IBM System Storage . 41

3.3.1 IBM Storwize family. 41
3.3.2 IBM FlashSystem family . 41
© Copyright IBM Corp. 2016. All rights reserved. iii

3.3.3 IBM XIV Storage System . 41

Chapter 4. Software stack . 43
4.1 System management . 44
4.2 OPAL firmware . 44
4.3 xCAT . 44
4.4 RHEL server . 45
4.5 NVIDIA CUDA Toolkit . 45
4.6 Mellanox OFED for Linux . 46
4.7 IBM XL compilers, GCC, and Advance Toolchain . 46

4.7.1 XL compilers . 46
4.7.2 GCC and Advance Toolchain . 47

4.8 IBM Parallel Environment . 48
4.8.1 IBM PE Runtime Edition . 48
4.8.2 IBM PE Developer Edition . 48

4.9 IBM Engineering and Scientific Subroutine Library and Parallel ESSL. 49
4.10 IBM Spectrum Scale (formerly IBM GPFS). 50
4.11 IBM Spectrum LSF (formerly IBM Platform LSF) . 50

Chapter 5. Software deployment . 53
5.1 Software stack. 54
5.2 System management . 54

5.2.1 Build instructions for IPMItool . 54
5.2.2 Frequently used commands with the IPMItool . 55
5.2.3 Boot order configuration . 57
5.2.4 System firmware upgrade . 59

5.3 xCAT overview . 61
5.3.1 xCAT cluster: Nodes and networks. 62
5.3.2 xCAT database: Objects and tables . 63
5.3.3 xCAT node booting . 64
5.3.4 xCAT node discovery . 64
5.3.5 xCAT BMC discovery . 65
5.3.6 xCAT operating system installation types: Disks and state. 66
5.3.7 xCAT network interfaces: Primary and additional . 66
5.3.8 xCAT software kits . 66
5.3.9 xCAT version . 67
5.3.10 xCAT scenario . 67

5.4 xCAT Management Node . 68
5.4.1 RHEL server . 69
5.4.2 xCAT packages. 80
5.4.3 Static IP network configuration . 83
5.4.4 Hostname and aliases . 85
5.4.5 xCAT networks . 86
5.4.6 DNS server . 88
5.4.7 DHCP server . 89
5.4.8 IPMI authentication credentials . 91

5.5 xCAT Node Discovery. 91
5.5.1 Verification of network boot configuration and Genesis image files 92
5.5.2 Configuration of the DHCP dynamic range. 93
5.5.3 Configuration of BMCs to DHCP mode. 94
5.5.4 Definition of temporary BMC objects. 96
5.5.5 Definition of node objects . 98
5.5.6 Configuration of host table, DNS, and DHCP servers. 100
iv Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

5.5.7 Boot into Node discovery . 101
5.6 xCAT Compute Nodes . 104

5.6.1 Network interfaces . 104
5.6.2 RHEL Server . 111
5.6.3 CUDA Toolkit . 113
5.6.4 Mellanox OFED for Linux . 117
5.6.5 XL C/C++ Compiler . 119
5.6.6 XL Fortran Compiler . 120
5.6.7 Advance Toolchain . 121
5.6.8 PE RTE . 122
5.6.9 PE DE . 126
5.6.10 ESSL. 127
5.6.11 PESSL . 128
5.6.12 Spectrum Scale (formerly GPFS) . 129
5.6.13 IBM Spectrum LSF . 134
5.6.14 Node provisioning . 147
5.6.15 Post-installation verification. 148

5.7 xCAT Login Nodes . 153

Chapter 6. Application development and tuning . 155
6.1 Compiler options . 156

6.1.1 XL compiler options . 156
6.1.2 GCC compiler options. 159

6.2 Engineering and Scientific Subroutine Library . 160
6.2.1 Compilation and run . 160
6.2.2 Run different SMT modes . 164
6.2.3 ESSL SMP CUDA library options . 165

6.3 Parallel ESSL . 167
6.3.1 Program development. 168
6.3.2 Using GPUs with Parallel ESSL . 170
6.3.3 Compilation . 174

6.4 Using POWER8 vectorization . 175
6.4.1 Implementation with GNU GCC . 175
6.4.2 Implementation with IBM XL . 177

6.5 Development models . 180
6.5.1 MPI programs with IBM Parallel Environment. 180
6.5.2 CUDA C programs with the NVIDIA CUDA Toolkit . 186
6.5.3 Hybrid MPI and CUDA programs with IBM Parallel Environment 190
6.5.4 OpenMP programs with the IBM Parallel Environment. 193
6.5.5 OpenSHMEM programs with the IBM Parallel Environment. 193
6.5.6 Parallel Active Messaging Interface programs . 195

6.6 GPU tuning . 196
6.6.1 Power Cap Limit . 196
6.6.2 CUDA Multi-Process Service . 197

6.7 Tools for development and tuning of applications. 199
6.7.1 The Parallel Environment Developer Edition . 200
6.7.2 IBM PE Parallel Debugger . 216
6.7.3 Eclipse for Parallel Application Developers. 218
6.7.4 NVIDIA Nsight Eclipse Edition for CUDA C/C++. 220
6.7.5 Command-line tools for CUDA C/C++ . 226

Chapter 7. Running applications . 229
7.1 Controlling the execution of multithreaded applications . 230
 Contents v

7.1.1 Running OpenMP applications . 230
7.1.2 Setting and retrieving process affinity at run time . 232
7.1.3 Controlling NUMA policy for processes and shared memory 232

7.2 Using the IBM Parallel Environment runtime . 233
7.2.1 Running applications. 233
7.2.2 Managing application . 239
7.2.3 Running OpenSHMEM programs . 239

7.3 Using the IBM Spectrum LSF . 240
7.3.1 Submit jobs . 240
7.3.2 Manage jobs . 245

Chapter 8. Cluster monitoring . 247
8.1 IBM Spectrum LSF tools for monitoring . 248

8.1.1 General information about clusters . 248
8.1.2 Getting information about hosts . 249
8.1.3 Getting information about jobs and queues . 251
8.1.4 Administering the cluster. 253

8.2 nvidia-smi tool for monitoring GPU . 256
8.2.1 Information about jobs on GPU. 256
8.2.2 All GPU details . 257
8.2.3 Compute modes . 261
8.2.4 Persistence mode . 261

Appendix A. Applications and performance. 263
Application software . 264

Bioinformatics . 264
OpenFOAM. 265
NAMD program . 273

Effects of basic performance tuning techniques . 278
The performance impact of a rational choice of an SMT mode 279
The impact of optimization options on performance . 290
Summary of favorable modes and options for applications from the NPB suite 300
The importance of binding threads to logical processors . 300

General methodology of performance benchmarking . 301
Defining the purpose of performance benchmarking . 302
Plan for benchmarking . 303
Defining the performance metric and constraints . 303
Defining the success criteria . 304
Correctness and determinacy . 304
Keeping the log of benchmarking . 305
Probing the scalability . 306
Evaluation of performance on a favorable number of cores . 307
Evaluation of scalability. 308
Conclusions . 309
Summary. 309

Sample code for the construction of thread affinity strings . 309
ESSL performance results . 313

Related publications . 319
IBM Redbooks . 319
Online resources . 319
Help from IBM . 320
vi Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2016. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

developerWorks®
Easy Tier®
EnergyScale™
GPFS™
IBM®
IBM Blue™
IBM Elastic Storage™
IBM FlashSystem®
IBM Spectrum™

IBM Spectrum Scale™
IBM Watson™
LSF®
POWER®
Power Systems™
POWER7®
POWER7+™
POWER8®
PowerHA®

PowerPC®
Real-time Compression™
Redbooks®
Redbooks (logo) ®
Storwize®
System Storage®
Tivoli®
XIV®

The following terms are trademarks of other companies:

Inc., and Inc. device are trademarks or registered trademarks of Kenexa, an IBM Company.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Other company, product, or service names may be trademarks or service marks of others.
viii Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/legal/copytrade.shtml

IBM REDBOOKS PROMOTIONS
Find and read thousands of
IBM Redbooks publications

Search, bookmark, save and organize favorites

Get personalized notifications of new content

Link to the latest Redbooks blogs and videos

Download
Now

Get the latest version of the Redbooks Mobile App

iO
S

Android

Place a Sponsorship Promotion in an IBM
Redbooks publication, featuring your business
or solution with a link to your web site.

Qualified IBM Business Partners may place a full page
promotion in the most popular Redbooks publications.
Imagine the power of being seen by users who download
millions of Redbooks publications each year!

®

®

Promote your business
in an IBM Redbooks
publication

ibm.com/Redbooks
About Redbooks Business Partner Programs

IBM Redbooks promotions

http://bit.ly/redbooksapp
http://bit.ly/1bvYuMM
http://bit.ly/1lCxuBG
http://ibm.co/1maZVrw

THIS PAGE INTENTIONALLY LEFT BLANK

Preface

This IBM® Redbooks® publication demonstrates and documents that IBM Power Systems™
high-performance computing and technical computing solutions deliver faster time to value
with powerful solutions. Configurable into highly scalable Linux clusters, Power Systems offer
extreme performance for demanding workloads such as genomics, finance, computational
chemistry, oil and gas exploration, and high-performance data analytics.

This book delivers a high-performance computing solution implemented on the IBM Power
System S822LC. The solution delivers high application performance and throughput based
on its built-for-big-data architecture that incorporates IBM POWER8® processors, tightly
coupled Field Programmable Gate Arrays (FPGAs) and accelerators, and faster I/O by using
Coherent Accelerator Processor Interface (CAPI). This solution is ideal for clients that need
more processing power while simultaneously increasing workload density and reducing
datacenter floor space requirements. The Power S822LC offers a modular design to scale
from a single rack to hundreds, simplicity of ordering, and a strong innovation roadmap for
graphics processing units (GPUs).

This publication is targeted toward technical professionals (consultants, technical support
staff, IT Architects, and IT Specialists) responsible for delivering cost effective
high-performance computing (HPC) solutions that help uncover insights from their data so
they can optimize business results, product development, and scientific discoveries.

Authors

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Poughkeepsie Center.

Dino Quintero is a Complex Solutions Project Leader and an IBM Level 3 Certified Senior IT
Specialist with the ITSO in Poughkeepsie, New York. His areas of knowledge include
enterprise continuous availability, enterprise systems management, system virtualization,
technical computing, and clustering solutions. He is an Open Group Distinguished IT
Specialist. Dino holds a Master of Computing Information Systems degree and a Bachelor of
Science degree in Computer Science from Marist College.

Luis Carlos Cruz Huertas is an Executive Technology Architect with a specialization in
transition and transformation solution architectecture with IBM GTS Delivery. During his over
three years with IBM, he has performed research in BigData analytics, mobility, and cloud,
also has held several positions with Midrange and Storage Technical Solution Architecture.
Before Luis came to IBM, he worked at GBM, a strategic IBM Alliance company in Latin
America where he held positions in strategy, IBM Tivoli® Architecture, and project
management. He primarily workied with Tivoli Service Management capabilities,
management systems, data warehouse infrastructure, information integration, database
administration, performance management, and database development technology. He has
been a prominent speaker at industry events such as IBM Edge, Interconnect, and customer
briefings and a frequent contributor to industry articles, analyst research, and other
publications.

Tsuyoshi Kamenoue is a Senior IT specialist in IBM Power Systems Technical Sales in IBM
Japan. He has over 10 years of experience of working on pSeries, System p, and Power
Systems products. He has led numerous HPC business opportunities in Japan with his
© Copyright IBM Corp. 2016. All rights reserved. xi

technical expertise of this area. He also participated in the development of IBM publications
about the Power Systems 775 cluster solution. He holds a Bachelor’s degree in System
Information from the University of Tokyo.

Wainer dos Santos Moschetta is a Staff Software Engineer in the IBM Linux Technology
Center, Brazil. He initiated and formerly led the IBM Software Development Kit (SDK) project
for the IBM PowerLinuxTM project. He has more than seven years of experience with
designing and implementing software development tools for Linux on IBM Power Systems.
Wainer holds a Bachelor’s degree in Computer Science from the University of São Paulo. He
co-authored the IBM publications, IBM Parallel Environment (PE) Developer Edition,
SG24-8075, Performance Optimization and Tuning Techniques for IBM Power Systems
Processors Including IBM POWER8, SG24-8171, and Implementing an IBM
High-Performance Computing Solution on IBM POWER8, SG24-8264. He has published
articles and videos for the IBM developerWorks® website, and contributes to the IBM Linux
on Power technical community blog.

Mauricio Faria de Oliveira is an Advisory Software Engineer at the Linux Technology Center
at IBM Brazil. His areas of expertise include Linux performance analysis and optimization,
Debian, and Ubuntu for IBM PowerPC® 64-bit Little-Endian, and Multipath I/O on IBM Power
and OpenPower Systems. He also worked with official benchmark publications for Linux on
IBM Power Systems and early development (bootstrap) of Debian on PowerPC 64-bit
Little-Endian. Mauricio holds a Master of Computer Science and Technology degree and a
Bachelor of Engineering degree in Computer Engineering from Federal University of Itajuba,
Brazil.

Georgy E Pavlov is a Staff Software Engineer in ESSL development team at Science and
Technology center in IBM Russia. He has about 5 years of experience in development and
optimization of mathematical code for IBM Power Systems. He holds a Master’s degree in
Computer Science and Mathematics from Lomonosov Moscow State University.

Alexander Pozdneev is a Research Software Engineer at IBM Science and Technology
Center, Moscow, Russia. He has 12 years of experience in HPC. He holds a Ph.D. degree in
Mathematical Modeling, Numerical Methods, and Software from Lomonosov Moscow State
University. His areas of expertise include parallel computing and application performance
optimization.

Thanks to the following people for their contributions to this project:

Ella Bushlovic
Richard Conway
International Technical Support Organization, Poughkeepsie Center

John Dunham
Victor Hu
John Lemek
Serban Maerean
Joan McComb
Mark Perez
Mike Schiffer
Bob Sciortino
Donna Upright
Duane Witherspoon
IBM Poughkeepsie

James Woodbury
IBM Rochester
xii Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Sameh S Sharkawi
IBM Austin

Wei Li
IBM Canada

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806
 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xiv Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Chapter 1. Introduction to the IBM Power
System S822LC for high
performance computing
workloads

Built on industry standards and incorporating community innovation from the OpenPOWER
Foundation, the IBM Power System S822LC delivers high application performance and
throughput based on its built-for-big-data architecture. This architecture incorporates
POWER8 processors, tightly coupled Field Programmable Gate Array (FPGA) and
accelerators, and faster input/output (I/O) by using the Coherent Accelerator Processor
Interface (CAPI).

The Power System S822LC is ideal for clients that need more processing power while
simultaneously increasing workload density and reducing data center floor space
requirements. It offers a modular design to scale from a single rack to hundreds, simplicity of
ordering, and a strong innovation road map for graphics processing units (GPUs).

This chapter provides an overview of the IBM POWER8 technology, OpenPOWER
Foundation, and Power System S822LC as the solution targeted for the next generation of
high-performance computing (HPC) workloads.

The following sections are presented in this chapter:

� IBM POWER8 technology
� OpenPOWER
� IBM Power System S822LC

1

© Copyright IBM Corp. 2016. All rights reserved. 1

1.1 IBM POWER8 technology

It is no secret that disruptive trends in technology are rapidly changing how organizations do
business. Technology is advancing so rapidly, in fact, that dynamic communities of
collaboration are forming just to harness it all. The growing torrent of data from within and
outside your organization, mobile employees, customers, and prospects present an
unprecedented opportunity to gain valuable insights and apply these insights to improve your
business results.

Making the transition to advanced capabilities requires an integrated infrastructure that
supports your key IT initiatives. IBM investments to bring new optimized solutions in the area
of advanced analytics, cloud, and mobile access are designed to simplify and accelerate your
journey to address today’s market opportunities.

The next generation of IBM Power Systems, with IBM POWER8 technology, is the first family
of systems built with innovations that transform the power of big data and analytics, mobile,
and cloud into competitive advantages in ways never before possible. New scale-out systems
offered by IBM provide a powerful, scalable, and economical means of putting data to work for
you.

IBM Power Systems are designed for big data and deliver the performance and throughput of
POWER8 combined with the cost optimization of industry standardization, all without the wait.

Businesses are collecting a wealth of data and IBM Power Systems solutions can help store
it, help secure it, and most importantly extract actionable insight from it in a short time frame.
Power Systems and POWER8 processor, in particular, are designed for big data. From
predictive analytics and data warehouses to unstructured big data processing and cognitive
IBM Watson™ solutions, Power Systems servers are optimized for the compute-intensive
performance demands of database and analytics applications, and can flexibly scale to
support the demands of rapidly growing data.

1.2 OpenPOWER

The IBM Power System S822LC is manufactured as OpenPOWER system. The
OpenPOWER Foundation is an open technical community based on the IBM POWER®
architecture. It was incorporated in December 2013.

The main goal of the OpenPOWER Foundation is to create an open ecosystem to build
customized servers, networking, and storage hardware for future data centers and cloud
computing. IBM has opened the POWER architecture specifications such as processor,
firmware, and software to its partners. To become a partner, a company needs to contribute
intellectual property to the OpenPOWER Foundation and pay an annual fee.

There is some differentiation by members level:

1. The highest level of membership is the Platinum Level. IBM, NVIDIA, Mellanox, Google,
Samsung, and Ubuntu are among platinum members.

2. The next level of membership is the Gold Level. The following companies are among the
gold level members: Hitachi, Avnet, ZTE, and Wistron.

3. The other level of corporate membership is the Silver Level. Among others, silver level
members are QLogic, Memblaze, IDT, and Asetek.

4. An additional level is not available for corporations and its members that are not paying an
annual fee, called Associate and Academic Level. Many universities and laboratories have
2 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

these levels and participate in the OpenPOWER Foundation. Some examples include Oak
Ridge National Laboratory, Louisiana State University, Bauman Moscow State Technical
University, and FreeBSD project.

The word open within the name of the Foundation has the following meaning:

� IBM is openly sharing blueprints about software and hardware with their partners. After
that the partners can hire IBM or other manufacturing companies to produce their own
chips or processors.

� Members benefit from open licensing of processors.

� Members collaborate openly and share contributed intellectual properties and innovations
between each other.

For more information about the OpenPOWER Foundation, see the following website:

http://openpowerfoundation.org

1.3 IBM Power System S822LC

The Power System S822LC computing server is designed to deliver superior performance
and throughput for high-value Linux workloads such as industry applications, big data, and
LAMP (Linux, Apache, MariaDB and PHP) workloads.

Power System S822LC is ideal for clients that need more processing power while
simultaneously increasing workload density and reducing data center floor space. It offers a
modular design to scale from single racks to hundreds, simplicity of ordering, and a strong
innovation road map for GPUs.

Built on industry standards and incorporating community innovation from the OpenPOWER
Foundation, the Power System S822LC computing server delivers higher application
performance and throughput based on its built-for-big-data architecture. It incorporates
POWER8 processors, tightly coupled FPGAs and accelerators, and faster I/O by using CAPI.

The Power System S822LC server is co-designed by OpenPOWER Foundation members
IBM and Wistron Corporation, and it is commercialized in two different models:

� The Power System S822LC (8335-GCA) commercial computing server supports two
POWER8 processor sockets offering 16-core 3.32 GHz or 20-core 2.92 GHz
configurations in a 19-inch rack-mount, 2U (EIA units) drawer configuration. All the cores
are activated.

� The Power System S822LC (8335-GTA) technical computing server supports two
POWER8 processor sockets offering 16-core 3.32 GHz or 20-core 2.92 GHz
configurations in a 19-inch rack-mount, 2U (EIA units) drawer configuration. All the cores
are activated. It includes two NVIDIA K80 GPUs.
Chapter 1. Introduction to the IBM Power System S822LC for high performance computing workloads 3

http://openpowerfoundation.org

Figure 1-1 shows the front, rear, and top view of a Power System S822LC server.

Figure 1-1 IBM Power System S822LC server

1.3.1 Differences between 8335-GCA and 8335-GTA models

The following are the detailed differences between the 8335-GCA and the 8335-GTA:

� Power System S822LC server model 8355-GCA features

This summary describes the standard features of the Power System S822LC model
8355-GCA:

– Rack-mount (2U) chassis

– Two processor modules:

• 8-core 3.32 GHz processor module

• 10-core 2.92 GHz processor module

– Up to 1024 GB of 1333 MHz DDR3 error-correcting code (ECC) memory

– Two small form-factor (SFF) bays for two hard disk drives (HDDs) or two solid-state
drives (SSDs)

– Integrated SATA controller

– Five PCIe Gen 3 slots:

• One PCIe x8 Gen3 Low Profile slot, CAPI enabled
• One PCIe x16 Gen3 Low Profile slot, CAPI enabled
• One PCIe x8 Gen3 Low Profile slot
• Two PCIe x16 Gen3, CAPI enabled and supports GPUs or PCIe adapters

– Integrated features:

• IBM EnergyScale™ technology
• Hot-swap and redundant cooling
• One front USB 2.0 port for general usage
• One rear USB 3.0 port for general usage
• One system port with RJ45 connector

– Two hot-plug, redundant power supplies

� Power System S822LC server model 8355-GTA features

This summary describes the standard features of the Power System S822LC model
8355-GTA:

– Rack-mount (2U) chassis

– Two POWER8 processor modules:

• 8-core 3.32 GHz processor module

• 10-core 2.92 GHz processor module

– Up to 1024 GB of 1333 MHz DDR3 ECC memory
4 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

– Two SFF bays for two HDDs or two SSDs

– Integrated SATA controller

– Five PCIe Gen 3 slots:

• One PCIe x8 Gen3 Low Profile slot, CAPI enabled

• One PCIe x16 Gen3 Low Profile slot, CAPI enabled

• One PCIe x8 Gen3 Low Profile slot

• Two PCIe x16 Gen3, CAPI enabled and dedicated to NVIDIA K80 GPU

– Two Compute Intensive Accelerator GPU K80

– Integrated features:

• EnergyScale technology

• Hot-swap and redundant cooling

• One front USB 2.0 port for general usage

• One rear USB 3.0 port for general usage

• One system port with RJ45 connector

– Two power supplies

These servers support NVIDIA GPU accelerators, which are optional for model 8335-GCA
and included for model 8355-GTA. This book focuses on Model 8355-GTA.

For more information, see the Model 8355-GTA page in the IBM Knowledge Center, with the
following navigation:

IBM Knowledge Center → Power Systems → POWER8 → 8335-GTA (Power System
S822LC)

http://www.ibm.com/support/knowledgecenter/HW4M4/p8hdx/8335_gta_landing.htm
Chapter 1. Introduction to the IBM Power System S822LC for high performance computing workloads 5

http://www.ibm.com/support/knowledgecenter/HW4M4/p8hdx/8335_gta_landing.htm

6 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Chapter 2. Reference architecture

This chapter provides information about the reference architecture of a high-performance
computing (HPC) solution. The architecture addresses the most common cases. This
reference architecture can serve as a basis for solutions targeted to more specific usage
scenarios.

This chapter covers the following topics:

� Hardware components of an HPC system

This section describes a high-level logical structure of the hardware components of an
HPC system.

� Software components of an HPC system

This section focuses on a high-level logical structure of an HPC system . It also explains
the layout of the HPC cluster software components on the hardware.

� HPC system solution

This section provides the names of specific hardware offerings.

This chapter includes the following sections:

� Hardware components of an HPC system
� Software components of an HPC system
� HPC system solution

2

© Copyright IBM Corp. 2016. All rights reserved. 7

2.1 Hardware components of an HPC system

An HPC system is a computer system that includes multiple servers and is able to execute
parallel programs on these machines. In this context, a parallel program is a piece of
software that is specifically designed to take advantage of running simultaneously on multiple
servers. For more details about the nature of parallel programs, see 6.5, “Development
models” on page 180.

An HPC system typically consists of the following server components1:

� Login nodes
� Management nodes
� Compute nodes
� Parallel file system

Server components of an HPC system are coupled together with the following networks:

� High performance interconnect
� Management network

A simplified logical overview of an HPC system is presented in Figure 2-1.

Figure 2-1 A simplified view of an HPC system

The following sections describe each of these components in detail. For examples of specific
hardware offerings, see Chapter 3, “Hardware components” on page 23.

1 In IBM Blue™ Gene solution, login nodes were known as frontend nodes, and management nodes were known as
service nodes.

Note: A storage area network (SAN) is not an intrinsic component of an HPC system.
Typically, the SAN is hidden at the level of the parallel file system.
8 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

2.1.1 Login nodes

The login node is a point of entry for users of an HPC system. Login nodes are typically made
accessible from external networks (see Figure 2-1 on page 8). However, for security reasons,
login nodes are typically hidden behind a firewall. Sometimes login nodes are made available
only through virtual private network (VPN) connection. Other components of an HPC system
are typically made inaccessible from external networks.

The login node is the only component of an HPC system that is directly accessible by a user.
Only system administrators have direct access to other components of an HPC system.

The file system that contains user data is typically kept physically separated from the login
node hardware. Usually, this file system is mounted to the login node as the /home directory.

A user interacts with a login node according to the following typical scenario:

1. Copies data from some other system (local workstation, another remote system) to an
HPC system.

2. Logs in to the HPC system.

3. Works with the HPC system in an interactive mode:

– Edit source code files

– Build, debug, and profile applications

– Prepare input data for applications

– Submit computing jobs (see “Workload management software” on page 16)

– Postprocess results of computations of previously completed jobs

4. Logs out of the HPC system.

5. Copies data from the HPC system to some other system (local workstation, another
remote system).

2.1.2 Management nodes

Often, application users and application developers are not aware of the existence of
management nodes. These nodes are for use by system administrators only (see Figure 2-1
on page 8). The following system software components are typically on management nodes:

� System management software (see “System management software” on page 14)
� Workload management software (see “Workload management software” on page 16)

Thus, management nodes are mainly used for the following purposes:

� Deployment of compute nodes
� Managing resources and scheduling jobs

2.1.3 Compute nodes

Compute nodes constitute most of the server components of an HPC system (see Figure 2-1
on page 8). The purpose of compute nodes is to run parallel compute intensive user tasks.
Typically, all compute nodes of an HPC system have identical hardware and software
configuration. This configuration is used to ensure that the execution of a computation with
some specific data takes the same amount of time regardless of a compute node that it is
executed on.
Chapter 2. Reference architecture 9

Usually, compute nodes are not directly accessible by a user, and the user puts the compute
tasks for execution through a job scheduler (see “Workload management software” on
page 16).

Compute node of an HPC system typically has the following features:

� A processor is installed in each socket of a server.

� All memory slots of a server are populated with memory modules.

� The server has at least one compute accelerator (for example, graphics processing unit
(GPU)).

� The server has a high-performance network adapter (see 2.1.4, “High performance
interconnect” on page 10).

2.1.4 High performance interconnect

Technical computing workloads that involve interprocess communication are usually
characterized by a large volume of data that is transferred between processes. A delay
between the request for data transfer and the actual data transfer affects the performance of
applications that frequently send and receive small chunks of data. This delay means that the
network interconnect between compute nodes of an HPC system needs to have the following
features:

� High bandwidth
� Low latency

Modern high performance interconnects typically implement the Remote Direct Memory
Access (RDMA) feature. RDMA helps to minimize the processor overhead by allowing remote
processor to directly access system memory with no operating system (OS) involvement.

In addition to connecting compute nodes with each other, the high performance interconnect
also provides access to the parallel file system (see Figure 2-1 on page 8 and 2.1.6, “Parallel
file system” on page 12). This configuration allows high throughput operations on files.

High performance interconnect includes the following hardware components:

� Host channel adapters (HCA)
� Network switches
� Cables

The high performance interconnect network is also known as application network because
application processes that run on compute nodes use this network to communicate with each
other.

2.1.5 Management, service, and site (public) networks

The following networks are used for hardware control, OS deployment, and system
management:

� Service network
� Management network

Note: If you need to choose between a hardware configuration with higher memory
bandwidth and a server option with higher volume of memory, the choice is typically made
in favor of higher memory bandwidth.
10 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

In addition to these networks, the site (public) network is used to provide external access to
the servers (see Figure 2-1 on page 8).

The hardware infrastructure for these networks includes the following components:

� Local network area (LAN) adapters built-in into servers
� LAN adapters attached to PCI slots
� Network switches
� Cables

Service network
The service network provides access to the service processors of the hardware (see
Figure 2-1 on page 8). The management node uses this network to control the network
attached devices in an out-of-band manner. For example, the IBM Power System S822LC
server can be controlled through a baseboard management controller (BMC). The service
network allows you to perform the following actions remotely:

� Access to firmware
� Boot process troubleshooting
� Installation of operating system

Management network
The management network is used by the management node to support all management
activities that do not involve service processors of the hardware (see Figure 2-1 on page 8).
This network has network interface controllers (NICs) as endpoints of the management node,
login node, and compute nodes. The management node uses this network to control the
network attached devices in an in-band manner. For example, servers can be managed
through Secure Shell (SSH) or Virtual Network Computing (VNC). This configuration means
that the remote end first needs connectivity software installed.

The management network allows management node (see 2.1.2, “Management nodes” on
page 9) to perform the following activities:

� Deployment of compute nodes
– Installation of the OS to the nodes
– Managing the OS of the nodes
– Installation and configuration of drivers and applications

� Managing resources and scheduling jobs

The following network services are usually set up in the management network2:

� Domain Name Servers (DNS)
� Hypertext Transfer Protocol (HTTP)
� Dynamic Host Configuration Protocol (DHCP)
� Trivial File Transfer Protocol (TFTP)
� Network File System (NFS)
� Network Time Protocol (NTP)

Networking technology considerations
The most common type of interconnect for management and service networks is the Gigabit
Ethernet (1 GigE). This choice is dictated by the type of network supported by managed
devices. For instance, the typical network interface that is provided by a service processor of
a server is 1 GigE.

2 This list originates from the list of network services that are needed by xCAT.
Chapter 2. Reference architecture 11

If you plan large data transfer between an HPC system and external world, you can consider
a 10 Gigabit Ethernet (10 GigE) option for the site (public) network. However, 1 GigE is
usually enough for the site (public) network too.

Security considerations
Typically, the access to an HPC system is guarded externally by the following security
technologies:

� Firewalls
� VPNs

Generally, keep the login node (see 2.1.1, “Login nodes” on page 9) as a single point of entry
to an HPC system. In this scenario, all the networks (application, management, service) are
configured only within an HPC system and are not visible from the outside. Particularly, the
management node (see 2.1.2, “Management nodes” on page 9) becomes accessible only
through a login node.

One option to isolate networks is to use dedicated network switches and dedicated network
interfaces for each network. However, a server built-in network port is often shared between
the service processor network interface and the in-band server network interface3. This
configuration means that the separation of networks can be achieved within one network
switch by the use of virtual local area network (VLAN) technology.

2.1.6 Parallel file system

A shared file system accessible from the compute nodes and from a login node is an
essential component of an HPC system (see Figure 2-1 on page 8). It is challenging to
access the data that needs to be available for every node if there is no shared file system
within an HPC system. For more information about the implications, see “Distributed
execution environment” on page 15.

Technical computing workloads often require multiple processes of a distributed application to
operate simultaneously on the same file. The parallel file system middleware hides the
complexity of such operations and implements it in a performance efficient way.

When multiple processes access a file system at the same time, the file system performance
can become a bottleneck. Parallel file systems are designed in a such way to take advantage
of distributed storage servers and a high performance interconnect. Therefore, parallel file
systems help to minimize the performance implications of parallel input/output operations.

To summarize, a parallel file system is simultaneously mounted on multiple nodes and
provides the following features for an HPC system:

� Shared file system with common space of file names
� Simultaneous access to a file from different processes
� High bandwidth of input/output operations

Most portions of the following software components can be located in a parallel file system:

� Distributed execution environment (see “Distributed execution environment” on page 15)

� Application development software (see 2.2.2, “Application development software” on
page 17)

� Application software (see 2.2.3, “Application software” on page 20)

3 Power S822LC servers have service processor network interface and in-band server network interface separated.
12 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

2.2 Software components of an HPC system

There are three main groups of software components of an HPC system solution:

� System software
� Application development software
� Application software

Figure 2-2 provides a simple extension of Figure 2-1 on page 8 with the mapping of software
components to hardware.

Figure 2-2 Software components of an HPC system mapped to the hardware

The following sections describe each of these components in detail. For examples of specific
software offerings, see Chapter 4, “Software stack” on page 43.

2.2.1 System software

The system software lies at the lowest level of software stack. It consists of the components
that are responsible for the system deployment, basic system functionality, operation of the
high performance computing pieces of hardware, access to parallel file system, execution
environment that supports distributed programs, workload management, and system
monitoring.
Chapter 2. Reference architecture 13

System management software
The system management software (see “Management node” in Figure 2-2 on page 13) is a
cornerstone of the system software stack. It helps to automate the process of deployment and
maintenance of an HPC system. Usually, this is the first piece of software that is deployed
when installing an HPC system. All the other software components are installed at a later
stage.

The following are typical tasks performed with the system management software4:

� Discovery of the hardware servers
� Remote system management against the discovered server:

– Remote power control
– Remote console support
– Remote inventory information query

� Provisioning OS on physical (bare-metal) or virtual machines
� Installation and configuration of software

– During OS installation
– After the OS installation

� System management in a parallel manner
– Parallel shell (that is, running shell command against nodes in parallel)
– Parallel copy

That means that the system management software is crucial for the automation of the
following routine tasks:

� Provisioning and deployment of multiple identical compute servers
� Maintenance of multiple identical system images:

– Applying OS updates
– System-wide software settings change

� Replacement of a failing node with a new one

The following are typical examples of system management software:

� xCAT (Extreme Cloud/Cluster Administration Toolkit)

http://xcat.org

Chapter 5, “Software deployment” on page 53 shows how to use xCAT as a tool for an
HPC system deployment.

� IBM Platform Cluster Manager

http://www.ibm.com/support/knowledgecenter/SSDV85/product_welcome_pcm.html

For the overview of the IBM Spectrum™ Computing products family, visit the following link:

http://www.ibm.com/systems/spectrum-computing/

Operating system
The OS of choice in an HPC cluster is typically Linux. Also, typically all servers of an HPC
system run the same Linux version. In rare cases, some components of an HPC system are
required to run a specific version of Linux.

Note: The choice of system management software product is an important architectural
decision. After chosen and implemented, it can be quite time consuming to switch to
another product.

4 This list of tasks partially originates from the list of xCAT features, but does not cover all of them.
14 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/support/knowledgecenter/SSDV85/product_welcome_pcm.html
http://www.ibm.com/systems/spectrum-computing/
http://xcat.org

The HPC solution described in this book is based on Red Hat Enterprise Linux (RHEL)
Server OS. For information about how to install RHEL with xCAT, see 5.6.2, “RHEL Server” on
page 111.

Device drivers
Most of the hardware components of a server commonly have built-in support in an OS and
do not require special handling. However, the device drivers that operate the high
performance computing pieces of hardware are not typically shipped with the OS and must be
installed separately.

A modern HPC solution usually needs drivers for the following devices:

� Hardware accelerator, such as a GPU.

For example, drivers for the NVIDIA Tesla GPU of the IBM Power System S822LC server
are installed as part of NVIDIA CUDA Toolkit (see 5.6.3, “CUDA Toolkit” on page 113).

� High performance interconnect host channel adapter that supports RDMA technology.

5.6.4, “Mellanox OFED for Linux” on page 117 demonstrates how to install the Mellanox
Open Fabrics Enterprise Distribution (OFED) package that enables the Mellanox
InfiniBand adapter.

Parallel file system
Unlike compute accelerators and network adapters, a parallel file system is not a piece of
hardware that is directly installed in a machine. You can think of a parallel file system as a
software service that is external to the machine (see Figure 2-2 on page 13). Typically, the
interaction between machines and a parallel file system is organized in a client-server
manner:

� A parallel file system exports its services by running server software components
� The machines that need access to a parallel file system run a client software component

Therefore, parallel file system client software needs to be installed and configured on all
machines that use a parallel file system. A parallel file system client software helps an
operating system to make a parallel file system available for a user by mounting it to a
directory tree. As a result, from the user perspective, the interaction with the parallel file
system does not differ from the interaction with any other file system mounted to a machine.

This book shows how to couple an HPC system with a parallel file system: IBM Spectrum
Scale™ product. IBM Spectrum Scale is a proven, scalable, high-performance data and file
management solution. IBM Spectrum Scale is based on the IBM General Parallel File System
(GPFS™) technology. For the technical details about the deployment, see 5.6.12, “Spectrum
Scale (formerly GPFS)” on page 129.

Distributed execution environment
The need for a distributed execution environment emerges when an application developer
wants to use multiple compute nodes within a single application. HPC systems are used
exactly for this purpose (running parallel programs). Therefore, multiple frameworks are
available that facilitate the development and execution of this sort of computer codes.

The following sections elaborate on the view of a distributed execution environment purely
from a perspective of application development (see “Message passing interface” on page 18).
This section outlines how the distributed execution environment removes the burden of
distributed application loading and execution from application users and application
developers.
Chapter 2. Reference architecture 15

Typically, a distributed execution environment (see Figure 2-2 on page 13) facilitates the
following routine tasks related to the execution of parallel applications:

� Runs an executable file on specific multiple compute nodes simultaneously

� Monitors the runtime status of a parallel program

� Terminates a parallel program and cleans up compute nodes

� Exports the OS environment variables to compute nodes before executing a program

� Manages standard input, output, and error streams (stdin, stdout, and stderr)

� Controls the binding and affinity of parallel processes and threads to logical processors

� Selects a type of interconnect to use and tunes its parameters

� Provides distributed debugging tools

� Interacts with workload management software (see “Workload management software” on
page 16)

Additionally, if a shared file system is not available in an HPC system, some distributed
execution environments provide help with the following routine file operations:

� Copy a specified executable to compute nodes before starting remote processes and
delete it upon completion of a job

� Preinstall files to compute nodes where processes will be executed just before launching
those processes

The following are examples of distributed execution environments:

� IBM Parallel Environment Runtime Edition (for more information, see “PE RTE” on
page 122)

� Open the message passing interface (MPI) project

Workload management software
Usually, an HPC system is shared by many users and multiple computing tasks running at the
same time. A workload management software automates the task of handling system
resources and user jobs in such circumstances.

The following case provides an insight into a typical scenario where a workload management
software becomes useful:

� An HPC system has limited number of compute nodes
� Application user needs to run parallel applications that require several compute nodes
� User has several computing jobs to be executed
� Many users work with an HPC system at the same time

Workload management software (see Figure 2-2 on page 13) utilizes the following two logical
components to cope with that scenario:

� Resource manager monitors and controls compute nodes. A resource manager is aware of
compute nodes that are idle or busy with user applications.

� Job scheduler maintains a queue of tasks from application users. Job scheduler uses
information from resource manager to schedule the tasks for execution.
16 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

The interaction between application user, workload management software, and its
components is based on the following scenario:

1. User submits a task to a job of the scheduler. The minimal specification of a task typically
includes the following information:

– Application name (path to an executable file)
– Number of compute nodes to be utilized
– Maximum time that is expected to be taken by a program to run

2. Job scheduler places the task into a job queue.

3. Workload management software schedules computing resources for the task and
arranges a time slot for the execution.

4. At some moment in time, the workload management software sends the task for
execution.

5. When the task completes, it is removed from the job queue, and the user can collect the
results.

The job scheduler uses multiple criteria to arrange jobs. Modern workload management
software provides flexible options for tuning the configuration of a job queue and a scheduler
to adhere to local site policies.

Application users can also do the following actions with the workload management software:

� Request the status of a job queue
� Inquire the status of a particular job from a job queue
� Change the specification of a task submitted to a job queue
� Cancel a task submitted to a job queue

At the core, the workload management software provides the following basic advantages for
application users, system administrators, and HPC systems owners:

� Automation of task management
� Better system utilization

This book focuses on the IBM Spectrum LSF® workload management software. The
overview of this product is available at the following web page:

http://www.ibm.com/systems/spectrum-computing/products/lsf/

For the details of the IBM Spectrum LSF deployment, see 5.6.13, “IBM Spectrum LSF” on
page 134.

2.2.2 Application development software

As its name implies, application development software (see Figure 2-2 on page 13) is used to
develop software. However, application development software is needed by all categories of
users:

� Application developers
� Application users
� System administrators

If application software or system software is distributed in source code package form,
application users and system administrators utilize application development tools to create
ready-to-use binary packages. Nevertheless, the main target audience of application
development software is application developers.
Chapter 2. Reference architecture 17

http://www.ibm.com/systems/spectrum-computing/products/lsf/

This chapter only provides a brief overview of the application development software stack.
You can find more details in the following sections.

Compilers
A compiler is a tool that converts source code into a binary executable. The most popular
languages in the area of HPC are C, C++, and Fortran. Most major distributions of Linux
provide compilers from these languages. System vendors provide state-of-the-art compilers
that can take full advantage of the underlying hardware. The following C, C++, and Fortran
compilers are relevant for HPC systems based on IBM POWER processors:

� GNU Compiler Collection (GCC)
� IBM Advance Toolchain for Linux on Power
� IBM XL compiler products
� NVIDIA compiler for GPU

For a detailed overview of these compilers, see 4.7, “IBM XL compilers, GCC, and Advance
Toolchain” on page 46. 5.6.5, “XL C/C++ Compiler” on page 119, 5.6.6, “XL Fortran Compiler”
on page 120, and 5.6.7, “Advance Toolchain” on page 121 show how to deploy compilers.
Chapter 6, “Application development and tuning” on page 155 demonstrates how to utilize
them for application development.

Parallel computing application interfaces
To take advantage of an HPC system, an application needs to be able to run in parallel mode.
It is a responsibility of an application developer to write the program in such a way to make it
possible to utilize the HPC system. If a program has not been designed to run in an HPC
system, the program cannot be easily parallelized.

You can make a program run in parallel by using three different methods, although these
methods can be intermixed with each other. For a deeper description, see 6.5, “Development
models” on page 180.

OpenMP
OpenMP is perhaps the simplest way to enable parallelism in an application. The OpenMP
standard defines a set of directives to be embedded into source code. However, the
application developer still needs substantial efforts to identify parallelism in an application
domain, and design algorithms and data structures to fit OpenMP parallel programming
model.

OpenMP can be used to utilize the parallel capabilities of a single server. Parallel threads
created by OpenMP require shared address space. Pool of OpenMP threads spawned by a
process cannot span multiple compute nodes.

GCC and IBM compilers enable support of OpenMP through a compiler option.

NVIDIA CUDA
CUDA is a parallel computing platform and programming model by NVIDIA. CUDA is a way to
utilize GPUs by NVIDIA. GPUs are especially efficient in solving data parallel problems.
CUDA programs run within a single machine. A compiler that is a part of CUDA Toolkit is
needed to produce binary files that utilize GPUs.

Message passing interface
MPI is probably the most widespread parallel programming interface to develop applications
that span execution across multiple compute nodes.
18 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Application written with MPI runs multiple threads on different compute nodes. Processes of
an application coordinate their execution by sending messages to each other or by utilizing
remote memory access techniques.

6.5.1, “MPI programs with IBM Parallel Environment” on page 180 shows how to develop MPI
programs with IBM Parallel Environment Runtime Edition.

Mathematical libraries
Software libraries of mathematical routines are essential part of an HPC system. A
mathematical library is a software package that implements some numerical algorithms.
Application developers access the algorithms through a programming interface exposed by a
library. Hardware vendors often supply libraries optimized for a particular architecture. Many
libraries also implement parallel algorithms.

By using mathematical libraries, application developer receives the following benefits:

� Saves time on implementing standard mathematical routines
� Takes advantage of optimized implementation supplied by a hardware vendor
� Utilizes parallelism hidden inside a library

This book focuses on the IBM Engineering and Scientific Subroutine Library (ESSL) offering.
For more details, see the following sections:

� For an overview, see “IBM Engineering and Scientific Subroutine Library and Parallel
ESSL” on page 49.

� For information about deployment, see “ESSL” on page 127 and “PESSL” on page 128.
� For details about usage, see “Engineering and Scientific Subroutine Library” on page 160

and “Parallel ESSL” on page 167.

Integrated development environments
Integrated development environment (IDE) provides a convenient graphical user interface for
application developer. IDE typically features the following tools:

� Code editor with syntax highlighting and code completion
� Building tools
� Remote application launcher
� Debugger
� Code analyzer
� Profiler

For more details about IDE options, see 6.7, “Tools for development and tuning of
applications” on page 199.

Debuggers
A code debugger is an application development tool that facilitates the process of eliminating
programming errors from a source code. Parallel applications provide more challenges for
debugging compared to serial applications. To learn about the tools for debugging MPI and
CUDA programs, see 6.7, “Tools for development and tuning of applications” on page 199.

Note: In contrast to problems that can be solved with widely accepted map-reduce type
programming model, HPC problems typically are highly sensitive to the latency of
individual operations. Ideally, processes of an HPC application need to run in sync with
each other and communicate with minimal latency and maximum bandwidth. MPI
facilitates the development in this programming model and also takes advantage of the
underlying high performance interconnect.
Chapter 2. Reference architecture 19

Performance analysis tools
Profilers, or performance analysis tools, automate the process of finding hotspots in a code.
These tools help to evaluate the following metrics:

� Stalls of processor core units
� Effective memory bandwidth
� Cache hits and misses
� Graphical processing unit performance
� Network performance

The section 6.7, “Tools for development and tuning of applications” on page 199 provides a
brief overview of performance analysis tools. For more information about performance
optimization with the help of performance analysis tools, see the following publications:

� Performance Optimization and Tuning Techniques for IBM Power Systems Processors
Including IBM POWER8, SG24-8171

� Implementing an IBM High-Performance Computing Solution on IBM POWER8,
SG24-8263

2.2.3 Application software

Running application software is essentially the ultimate purpose of an HPC system’s
existence. Application software (see Figure 2-2 on page 13) is a tool that users employ to
solve problems from application domains.

However, this book generally targets system administrators and application developers. So it
does not cover application software in detail. Nevertheless, for the purpose of completeness,
Appendix A, “Applications and performance” on page 263 provides some examples of
application software.

2.3 HPC system solution

The previous sections presented a generic overview of the hardware and the software
components of an HPC system. This section revisits the schemes presented in Figure 2-1 on
page 8 and Figure 2-2 on page 13 and provides the specific names of the IBM products.

For more information about HPC system solution implementation, see Chapter 5, “Software
deployment” on page 53.

2.3.1 Compute nodes

Generally, use the IBM Power System S822LC (model 8335-GTA) server offering for
high-performance computing as compute nodes. Consider the option to augment the server
with the following devices:

� Two NVIDIA Tesla K80 GPUs (see “NVIDIA GPU” on page 38)
� One 100Gb EDR InfiniBand Adapter (see “Mellanox InfiniBand” on page 40)

Processor options and system memory
This IBM Power System S822LC model has two sockets, and all memory slots are populated
with memory modules. When choosing the processor option and the amount of system
memory, take into account the anticipated workloads.
20 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Disk features
Generally, a compute node does not need large and fast disks because it only stores the
operating system, drivers, and minor pieces of system software (see Figure 2-2 on page 13).
However, if you plan to extensively utilize local disk space during computations, consider the
option of larger and faster disks.

2.3.2 Management node

A management node does not need GPUs and high memory bandwidth because it does not
consume many processor cycles. Therefore, even an entry-level server option has enough
resources to satisfy the needs of a management node. Consider the IBM Power System
S812LC or the IBM Power System S812L offerings as a possible management node.

2.3.3 Login node

Generally, a login node is not used as a computing resource. Therefore, the most basic
solution can be built based on the IBM Power System S812LC or the IBM Power System
S812L offerings as well. However, if the GPU is required in a login node, consider using an
IBM Power System S822LC or an IBM Power System S824L for it.

2.3.4 Combining the management and the login node

Consider the following scenario:

� No large workload expected on the management and login nodes
� Login node does not need GPU

In this case, consider using only one physical machine (IBM Power System S812LC or IBM
Power System S812L). In such scenario, the management and login node can coexist as
PowerKVM guests.

2.3.5 Parallel file system

To implement the parallel file system, consider one of the following options:

� IBM Elastic Storage™ Server

http://www.ibm.com/systems/storage/spectrum/ess/index.html

� IBM Spectrum Scale (built on the IBM GPFS)

http://www.ibm.com/systems/storage/spectrum/scale/

2.3.6 High performance interconnect switch

The implementation of the high performance interconnect is built around an InfiniBand switch.
You can consider an offering from Mellanox. Check the hardware compatibility matrix for a
suitable product.
Chapter 2. Reference architecture 21

http://www.ibm.com/systems/storage/spectrum/ess/index.html
http://www.ibm.com/systems/storage/spectrum/scale/

22 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Chapter 3. Hardware components

This chapter describes the hardware components and related technologies adopted in the
implementation of an IBM high-performance computing (HPC) solution in an IBM POWER8
cluster with the IBM Power System S822LC server.

The following topics are described in this chapter:

� IBM Power System S822LC
� Mellanox InfiniBand
� IBM System Storage

3

© Copyright IBM Corp. 2016. All rights reserved. 23

3.1 IBM Power System S822LC

This section describes the overall system architecture for the IBM Power System S822LC
computing servers, focusing on the topics that are closely related to HPC.

The bandwidths that are provided throughout the section are theoretical maximums that are
only used for reference. The speeds that are shown are at an individual component level.
Multiple components and application implementation are key to achieving the best
performance. Always do performance sizing at the application workload environment level
and evaluate performance by using real-world performance measurements and production
workloads. For more information about the IBM Power System S822LC, see IBM Power
System S822LC Technical Overview and Introduction, REDP-5283-01.

3.1.1 IBM POWER8 processor

This section introduces the latest processor in the IBM Power Systems product family and
describes its main characteristics and features in general.

Processor chip overview
The POWER8 processor is manufactured by using the IBM 22 nm Silicon-On-Insulator (SOI)
technology. Each chip is 649 mm2 and contains 4.2 billion transistors. As shown in Figure 3-1,
the chip contains up to 12 cores1, two memory controllers, Peripheral Component
Interconnect Express (PCIe) Gen3 I/O controllers, and an interconnection system that
connects all components within the chip. Each core has 512 KB of L2 cache, and all 12 cores
share 96 MB of L3 embedded DRAM (eDRAM). The interconnect also extends through
module and board technology to other POWER8 processors in addition to DDR3 memory and
various I/O devices.

Figure 3-1 The POWER8 processor chip

1 Power S822LC servers have 8 or 10 cores activated per processor.
24 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

POWER8 processor-based systems use memory buffer chips to interface between the
POWER8 processor and DDR3 or DDR4 memory2. Each buffer chip also includes an L4
cache to reduce the latency of local memory accesses.

The POWER8 processor is for system offerings from single-socket servers to multi-socket
enterprise servers. The processor incorporates a triple-scope broadcast coherence protocol
over local and global Symmetric Multiprocessing (SMP) links to provide superior scaling
attributes. Multiple-scope coherence protocols reduce the amount of SMP link bandwidth that
is required by attempting operations on a limited scope (single chip or multi-chip group) when
possible. If the operation cannot complete coherently, the operation is reissued by using a
larger scope to complete the operation.

The following are additional features that can help augment the performance of the POWER8
processor:

� Support for DDR3 and DDR4 memory through memory buffer chips that offload the
memory support from the POWER8 memory controller.

� An L4 cache within the memory buffer chip that reduces the memory latency for local
access to memory behind the buffer chip. The operation of the L4 cache is not apparent to
applications that run on the POWER8 processor. A full-featured POWER8 processor with
four memory channels per memory controller can have 16 MB of L4 cache per memory
channel and up to 128 MB of L4 cache in total3.

� Hardware transactional memory.

� On-chip accelerators, including on-chip encryption, compression, and random number
generation accelerators.

� Coherent Accelerator Processor Interface (CAPI), which allows accelerators plugged into
a PCIe slot to access the processor bus by using a low latency, high-speed protocol
interface.

� Adaptive power management.

Table 3-1 summarizes the technology characteristics of the POWER8 processor.

Table 3-1 Summary of POWER8 processor technology4

2 At the time of writing, the available POWER8 processor-based systems use DDR3 memory.
3 Processors of Power S822LC servers have two memory channels activated per memory controller and up to 64 MB

of L4 cache is available for each POWER8 processor.

Technology POWER8 processor

Die size 649 mm2

Fabrication technology � 22 nm lithography
� Copper interconnect
� SOI
� eDRAM

Maximum number of processor cores 12

Maximum number of execution threads per core/chip 8 / 96

Maximum volume of L2 cache per core/chip 512 KB / 6 MB

Maximum volume of on-chip L3 cache per core/chip 8 MB / 96 MB

Maximum volume of L4 cache per channel/chip 16 MB / 128 MB

4 Information in the table is provided for a general full-featured 12-core POWER8 processor with four memory
channels per memory controller. For Power S822LC servers, adjust for a 8- or 10-core POWER8 processor with
two memory channels per memory controller.
Chapter 3. Hardware components 25

Processor core overview
The POWER8 processor core is a 64-bit implementation of the IBM Power Instruction Set
Architecture (ISA) Version 2.07 and has the following features:

� Multi-threaded design, capable of up to eight-way simultaneous multithreading (SMT)

� 32 KB, eight-way set-associative L1 instruction cache

� 64 KB, eight-way set-associative L1 data cache

� Enhanced prefetch, with instruction speculation awareness and data prefetch depth
awareness

� Enhanced branch prediction, using both local and global prediction tables with a selector
table to choose the best predictor

� Improved out-of-order execution

� Two symmetric fixed-point execution units

� Two symmetric load and store units and two load units, all four of which can also run
simple fixed-point instructions

� Two integrated, multi-pipeline vector-scalar floating point units for running both scalar and
SIMD-type instructions, including the Vector Multimedia Extension (VMX) instruction set
and the improved Vector Scalar Extension (VSX) instruction set. Each is capable of up to
eight single precision floating point operations per cycle (four double precision floating
point operations per cycle)

� In-core Advanced Encryption Standard (AES) encryption capability

� Hardware data prefetching with 16 independent data streams and software control

� Hardware decimal floating point (DFP) capability

More information about Power ISA Version 2.07 can be found at the following websites:

http://www.power.org/wp-content/uploads/2013/05/PowerISA_V2.07_PUBLIC.pdf
http://www.power.org/documentation/power-isa-v-2-07b/

Maximum number of memory controllers 2

SMP design-point 16 sockets with IBM POWER8 processors

Compatibility With prior generation of POWER processors

Technology POWER8 processor
26 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

https://www.power.org/wp-content/uploads/2013/05/PowerISA_V2.07_PUBLIC.pdf
https://www.power.org/documentation/power-isa-v-2-07b/

Figure 3-2 shows a picture of the POWER8 core with some of the functional units highlighted.

Figure 3-2 POWER8 processor core

Simultaneous multithreading
POWER8 processor advancements in multi-core and multi-thread scaling are remarkable. A
significant performance opportunity comes from parallelizing workloads to enable the full
potential of the microprocessor, and the large memory bandwidth. Application scaling is
influenced by both multi-core and multi-thread technology.

SMT capability allows a single physical processor core to simultaneously dispatch
instructions from more than one hardware thread context. With SMT, each POWER8 core can
present eight hardware threads. Because there are multiple hardware threads per physical
processor core, multiple instructions can run at the same time. SMT is primarily beneficial in
commercial environments where the speed of an individual transaction is not as critical as the
total number of transactions that are performed. SMT typically increases the throughput of
workloads with large or frequently changing working sets, such as database servers and web
servers.

Table 3-2 shows a comparison between the different POWER processors options for IBM
Power S822LC and the number of threads that are supported by each SMT mode.

Table 3-2 SMT levels that are supported by a Power S822LC server

Cores per system SMT mode Hardware threads per system

16 Single Thread 16

16 SMT2 32

16 SMT4 64

16 SMT8 128

20 Single Thread 20

20 SMT2 40

20 SMT4 80

20 SMT8 160
Chapter 3. Hardware components 27

The architecture of the POWER8 processor, with its larger caches, larger cache bandwidth,
and faster memory, allows threads to have faster access to memory resources. This capability
translates to a more efficient usage of threads. Therfore, POWER8 allows more threads per
core to run concurrently, increasing the total throughput of the processor and the system.

Memory access
On the Power S822LC, each POWER8 module has two memory controllers, each connected
to two memory channels. Each memory channel operates at 1600 MHz and connects to a
memory riser card. Each memory riser card has a memory buffer that is responsible for many
functions that were previously on the memory controller, such as scheduling logic and energy
management. The memory buffer also has 16 MB of L4 cache. The memory riser card also
houses four industry standard RDIMMs.

At the time of writing, each memory channel can address RDIMM memory modules of up to
32 GB. Therefore, the Power S822LC can address up to 1 TB of total memory.

Figure 3-3 shows a POWER8 processor connected to four memory riser cards and its
components.

Figure 3-3 Logical diagram of a POWER8 processor connected to four memory riser cards

On-chip L3 cache innovation and Intelligent Cache
The POWER8 processor uses a breakthrough in material engineering and microprocessor
fabrication to implement the L3 cache in eDRAM and place it on the processor die. L3 cache
is critical to a balanced design, as is the ability to provide good signaling between the L3
cache and other elements of the hierarchy, such as the L2 cache or SMP interconnect.

The on-chip L3 cache is organized into separate areas with differing latency characteristics.
Each processor core is associated with a fast 8 MB local region of L3 cache (FLR-L3), and
also has access to other L3 cache regions as shared L3 cache. Additionally, each core can
negotiate to use the FLR-L3 cache that is associated with another core, depending on
28 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

reference patterns. Data can also be cloned to be stored in more than one core’s FLR-L3
cache, again depending on reference patterns. This Intelligent Cache management enables
the POWER8 processor to optimize the access to L3 cache lines and minimize overall cache
latencies.

Figure 3-1 on page 24 show the on-chip L3 cache, and highlights the fast 8 MB L3 region that
is closest to a processor core.

The innovation of using eDRAM on the POWER8 processor die is significant for several
reasons:

� Latency improvement

A six-to-one latency improvement occurs by moving the L3 cache on-chip compared to L3
accesses on an external (on-ceramic) application-specific integrated circuit (ASIC).

� Bandwidth improvement

A twofold bandwidth improvement occurs with on-chip interconnect. Frequency and bus
sizes are increased to and from each core.

� No off-chip driver or receivers

Removing drivers or receivers from the L3 access path lowers interface requirements,
conserves energy, and lowers latency.

� Small physical footprint

The performance of eDRAM when implemented on-chip is similar to conventional SRAM
but requires far less physical space. IBM on-chip eDRAM uses only a third of the
components than conventional SRAM, which has a minimum of six transistors to
implement a 1-bit memory cell.

� Low energy consumption

The on-chip eDRAM uses only 20% of the standby power of SRAM.

L4 cache and memory buffer
POWER8 processor-based systems introduce an extra level in memory hierarchy. The L4
cache is implemented together with the memory buffer in the memory riser cards. Each
memory buffer contains 16 MB of L4 cache. On a Power S822LC, you can have up to 128 MB
of L4 cache by using all the eight memory riser cards.
Chapter 3. Hardware components 29

Figure 3-4 shows a picture of the memory buffer, where you can see the 16 MB L4 cache and
processor links and memory interfaces.

Figure 3-4 Memory buffer chip

Table 3-3 shows a comparison of the different levels of cache in the IBM POWER7®, IBM
POWER7+™, and POWER8 processors.

Table 3-3 POWER8 cache hierarchy

3.1.2 Memory subsystem

The Power S822LC is a two socket system that supports two POWER8 processor single chip
modules (SCMs). The server supports a maximum of 32 DDR3 RDIMMs slots that are
housed in eight memory riser cards.

Cache POWER7 POWER7+ POWER8

L1 instruction cache:
Capacity/associativity

32 KB, 4-way 32 KB, 4-way 32 KB, 8-way

L1 data cache:
Capacity/associativity

32 KB, 8-way 32 KB, 8-way 64 KB, 8-way

L2 cache:
Capacity/associativity

256 KB, 8-way
Private

256 KB, 8-way
Private

512 KB, 8-way
Private

L3 cache:
Capacity/associativity

On-Chip
4 MB/core, 8-way

On-Chip
10 MB/core, 8-way

On-Chip
8 MB/core, 8-way

L4 cache:
Capacity/associativity

N/A N/A Off-Chip
16 MB/buffer chip, 16-way
Up to eight buffer chips per
socketa

a. For Power S822LC server, up to four buffer chips per socket.
30 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Memory features equate to a riser card with four memory DIMMs. Memory feature codes that
are supported are 16 GB, 32 GB, 64 GB, and 128 GB, and run at speeds of 1333 MHz,
allowing for a maximum system memory of 1024 GB.

Memory riser cards
Memory riser cards are designed to house up to four industry-standard DRAM memory
DIMMs and include a set of components that allow for higher bandwidth and lower latency
communications:

� Memory scheduler

� Memory management (reliability, availability, and serviceability (RAS) decisions and
energy management)

� Buffer cache

By adopting this architecture, several decisions and processes about memory optimizations
are executed outside the processor, saving bandwidth and allowing for faster processor to
memory communications. It also allows for more robust RAS.

A detailed diagram of the memory riser card that is available for the Power S822LC and its
location on the server are shown in Figure 3-5.

Figure 3-5 Memory riser card components and server location

The buffer cache is an L4 cache and is built on eDRAM technology (same as the L3 cache),
which has lower latency than regular SRAM. Each memory riser card has a buffer chip with
16 MB of L4 cache. A fully populated Power S822LC server (two processors and eight
memory riser cards) has 128 MB of L4 cache. The L4 cache performs several functions that
have a direct impact on performance and brings a series of benefits for the Power S822LC:

� Reduces energy consumption by reducing the number of memory requests

� Increases memory write performance by acting as a cache and by grouping several
random writes into larger transactions
Chapter 3. Hardware components 31

� Partial write operations that target the same cache block are “gathered” within the L4
cache before written to memory, becoming a single write operation

� Reduces latency on memory access. Memory access for cached blocks has up to 55%
lower latency than non-cached blocks

Memory bandwidth
The POWER8 processor has exceptional cache, memory, and interconnect bandwidths.

For the entire Power S822LC system populated with the two processor modules, the overall
bandwidths are shown in Table 3-4.

Table 3-4 Power S822LC total bandwidth estimates

Where:

� Total memory bandwidth: Each POWER8 processor has four memory channels that run at
9.6 GTransfers per second (GTps) capable of reading 2 bytes and writing 1 byte at each
transfer. The total bandwidth is calculated as follows:

4 channels × 9.6 GTps × 3 bytes = 115.2 GBps per processor module

� SMP interconnect: Two POWER8 processors of a Power S822LC server are connected to
each other with three SMP buses, each of which is 2 bytes wide and runs at 6.4 GTps.
The combined bandwidth of SMP connection is given by the following formula:

3 buses × 2 bytes × 6.4 GTps = 38.4 GBps

� PCIe interconnect: Each POWER8 processor has 32 PCIe Gen3 lanes running at raw
bandwidth of 8 Gbps full-duplex5. The bandwidth is calculated as follows:

32 lanes × 2 processors × 8 Gbps × 2 = 128 GBps

3.1.3 Input and output

This section introduces the I/O system bus, slot configuration, and PCI adapters in an IBM
Power S822LC server.

System bus
This section provides more information about the internal buses.

The Power S822LC servers have internal I/O connectivity through PCIe Gen3 (PCI Express
Gen3 or PCIe Gen3) slots.

The internal I/O subsystem on the systems is connected to the PCIe controllers in a
POWER8 processor in the system. Each POWER8 processor has a bus that has 32 PCIe
lanes running at 8 Gbps full-duplex. Each processor provides 64 GBps of raw I/O connectivity
to the PCIe slots, SAS internal adapters, and USB ports.

Total bandwidths 8335-GCA and 8335-GTA

20 cores @ 2.92 GHz 16 cores @ 3.32 GHz

Total memory 230 GBps 230 GBps

PCIe interconnect
(raw / effective)

128 GBps / 126 GBps 128 GBps / 126 GBps

5 The effective bandwidth of a PCIe Gen3 lane is approximately 985 MBps in each direction.
32 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Some PCIe devices are connected directly to the PCIe Gen3 buses on the processors, and
other devices are connected to these buses through a PCIe Gen3 Switch. The PCIe Gen3
Switch is a high-speed device that allows for the optimal usage of the processor’s PCIe Gen3
bus by grouping slower devices that do not use the full bandwidth of the bus. Figure 3-6
shows the Power S822LC server buses and logical architecture.

Figure 3-6 Power S822LC server buses and logical architecture

Each processor has 32 PCIs lanes that are split into three channels: Two channels are PCIe
Gen3 x8 and one channel is PCIe Gen3 x16.

The PCIe Gen3 x16 channels are connected to the PCIe slots, which can support graphs
processing units (GPUs) and other high-performance adapters, such as InfiniBand.

Table 3-5 lists the total I/O bandwidth of a Power S822LC server.

Table 3-5 I/O bandwidth

I/O I/O bandwidth (maximum theoretical)

Total I/O bandwidth (raw / effective) � Simplex: 64 GBps / 63 GBps
� Duplex: 128 GBps / 126 GBps
Chapter 3. Hardware components 33

For the PCIe Gen3 interconnect, each POWER8 processor has 32 PCIe Gen3 lanes that run
at 8 Gbps full-duplex6. The raw bandwidth is calculated as follows:

32 lanes × 2 processors × 8 Gbps × 2 = 128 GBps

Internal I/O subsystem
The internal I/O subsystem is on the system board, which supports PCIe slots. PCIe adapters
on the Power S822LC server are not hot-pluggable.

Slot configuration
The Power S822LC server has five PCIe Gen3 slots. Two of the PCIe Gen3 slots are reserved
for GPU usage in the Power S822LC model 8335-GTA technical computing server.

Figure 3-7 is a rear view diagram of the PCIe slots for the Power S822LC server.

Figure 3-7 Power S822LC server rear view PCIe slots and connectors

Table 3-6 shows the PCIe Gen3 slot configuration for the Power S822LC server.

Table 3-6 Power S822LC server PCIe slot properties

6 The effective bandwidth of a PCIe Gen3 lane is approximately 985 MBps in each direction.

Slot Description Card size CAPI
capable

Power limit

Slot 1 PCIe Gen3 x8 Half height,
half length

Yes 50 W

Slot 2a PCIe Gen3 x16 Full height,
full length

Yes 300 W (GPU)
75 W (Full height full length
adapters)

Slot 3 PCIe Gen3 x8 Half height,
half length

No 50 W
34 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

The two x16 slots that are provided by the internal PCIe riser (Slot 2 and Slot 5) can be
populated with GPU adapters (NVIDIA) or can be used for any high-profile (not low-profile
(LP)) adapters. Mixing of GPU and other high-profile adapters on the internal PCIe riser is
supported.

Only LP adapters can be placed in LP slots. An x8 adapter can be placed in an x16 slot, but
an x16 adapter cannot be placed in an x8 slot. One LP slot must be used for a required
Ethernet adapter (#5260, #EL3Z, or #EN0T).

System ports
The system board has one 1 Gbps Ethernet port, one Intelligent Platform Management
Interface (IPMI) port and a VGA port, as shown in Figure 3-7 on page 34.

The integrated system ports are supported for modem and asynchronous terminal
connections with Linux. Any other application that uses serial ports requires a serial port
adapter to be installed in a PCI slot. The integrated system ports do not support IBM
PowerHA® configurations. The VGA port does not support cable lengths that exceed
3 meters.

PCI adapters
This section covers the various types and functions of the PCI adapters that are supported by
the Power S822LC servers.

PCI Express
PCIe uses a serial interface and allows for point-to-point interconnections between devices by
using a directly wired interface between these connection points. A single PCIe serial link is a
dual-simplex connection that uses two pairs of wires (one pair for transmit and one pair for
receive), and can transmit only one bit per cycle. These two pairs of wires are called a lane. A
PCIe link can consist of multiple lanes. In these configurations, the connection is labeled as
x1, x2, x8, x12, x16, or x32, where the number is effectively the number of lanes.

The PCIe interfaces that are supported on this server are PCIe Gen3, which are capable of
16 GBps simplex (32 GBps duplex) on a single x16 interface7. PCIe Gen3 slots also support
previous generation (Gen2 and Gen1) adapters, which operate at lower speeds, according to
the following rules:

� Place x1, x4, x8, and x16 speed adapters in the same size connector slots first, before
mixing adapter speed with connector slot size.

� Adapters with lower speeds are allowed in larger sized PCIe connectors, but larger speed
adapters are not compatible with smaller connector sizes (that is, a x16 adapter cannot go
in an x8 PCIe slot connector).

Slot 4 PCIe Gen3 x16 Full height,
full length

Yes 75 W

Slot 5a PCIe Gen3 x16 Full height,
full length

Yes 300 W (GPU)
75 W (Full height full length
adapters)

a. This slot is made available through a PCIe riser.

7 The effective bandwidth of a PCIe Gen3 lane is approximately 985 MBps in each direction.

Slot Description Card size CAPI
capable

Power limit
Chapter 3. Hardware components 35

PCIe adapters use a different type of slot than PCI adapters. If you attempt to force an
adapter into the wrong slot type, you might damage the adapter or the slot.

POWER8 based servers can support two different form factors of PCIe adapters:

� PCIe LP cards, which are used with the Power S822L server.

� PCIe full height and full high cards are designed for the 4 EIA scale-out servers, such as
the Power S824L server.

Before adding or rearranging adapters, use the System Planning Tool to validate the new
adapter configuration. For more information, see the System Planning Tool website:

http://www.ibm.com/systems/support/tools/systemplanningtool/

If you are installing a new feature, ensure that you have the software that is required to
support the new feature and determine whether there are any existing update prerequisites to
install. To obtain this information, use the IBM prerequisite website:

https://www-912.ibm.com/e_dir/eserverprereq.nsf

The following sections describe the supported adapters and provide tables of orderable
feature code numbers.

LAN adapters
To connect the Power S822LC servers to a local area network (LAN), you can use the LAN
adapters that are supported in the PCIe slots of the system unit. Table 3-7 lists the supported
LAN adapters for the Power S822LC servers.

Table 3-7 Supported LAN adapters

Feature
code

CCIN Description GCA/GTA
support

Max OS
support

5260 576F PCIe2 LP 4-port 1 GbE Adapter GCA and GTA 3 Linux

5899 576F PCIe2 4-port 1 GbE Adapter GCA 2 Linux

EC3A 57BD PCIe3 LP 2-Port 40 GbE NIC RoCE
QSFP+ Adapter

GCA and GTA 2 Linux

EC3B 57BD PCIe3 2-Port 40 GbE NIC RoCE
QSFP+ Adapter

GCA 2 Linux

EC3E 2CEA PCIe3 LP 2-port 100Gb EDR
InfiniBand Adapter x16

GCA and GTA 1 Linux

EC3T 2CEB PCIe3 LP 1-port 100Gb EDR
InfiniBand Adapter x16

GCA and GTA 1 Linux

EL3Z PCIe2 LP 2-port 10/1 GbE BaseT RJ45
Adapter

GCA and GTA 3 Linux

EL4L PCIe2 x4 LP capable 4-port (UTP)
1 GbE Adapter

GCA 2 Linux

EL4M PCIe2 x4 LP 4-port (UTP) 1 GbE
Adapter

GCA and GTA 3 Linux

EL55 PCIe2 2-port 10/1 GbE BaseT RJ45
Adapter

GCA 2 Linux
36 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

https://www-912.ibm.com/e_dir/eserverprereq.nsf
http://www.ibm.com/systems/support/tools/systemplanningtool/

Compute Intensive Accelerator
Compute Intensive Accelerators are GPUs that were developed by NVIDIA. With NVIDIA
GPUs, the Power S822LC server can offload processor-intensive operations to a GPU
accelerator and boost performance. The Power S822LC server aims to deliver a new class of
technology that maximizes performance and efficiency for all types of scientific, engineering,
Java, big data analytics, and other technical computing workloads.

Table 3-8 shows the supported Compute Intensive Accelerators.

Table 3-8 Graphics processing units adapters that are supported

Fibre Channel adapters
The servers support direct or SAN connection to devices that use Fibre Channel adapters.
Table 3-9 summarizes the available Fibre Channel adapters, which all have LC connectors.

If you are attaching a device or switch with an SC type fiber connector, then an LC-SC 50
Micron Fibre Converter Cable (#2456) or an LC-SC 62.5 Micron Fibre Converter Cable
(#2459) is required.

Table 3-9 Fibre Channel adapters supported

Internal storage
The internal storage on the Power S822LC server has the following features:

� A storage backplane for two 2.5-inch SFF Gen4 SATA HDDs or SDDs

� One integrated SATA disk controller without RAID capability

� The storage split backplane feature is not supported

EN0S 2CC3 PCIe2 4-Port (10 Gb+1 GbE)
SR+RJ45 Adapter

GCA 2 Linux

EN0T PCIe2 LP 4-Port (10 Gb+1 GbE)
SR+RJ45 Adapter

GCA and GTA 3 Linux

Feature code Description GCA/GTA
support

Max Operating
system support

EC49 Compute Intensive
Accelerator GPU K80

GCA and GTA 2 Linux

Feature
code

CCIN Description GCA/GTA
support

Max OS
support

EL43 577F PCIe3 LP 16Gb 2-port Fibre Channel
Adapter

GCA and GTA 2 Linux

EL5B 577F PCIe3 16Gb 2-port Fibre Channel
Adapter

GCA 2 Linux

Limitation: The disks use an SFF-4 carrier. Disks that are used in other Power
Systems usually have SFF-3 or SFF-2 carriers, and are not compatible with this
system.

Feature
code

CCIN Description GCA/GTA
support

Max OS
support
Chapter 3. Hardware components 37

Table 3-10 presents a summarized view of these features.

Table 3-10 Summary of features for the integrated SATA disk controller

The 2.5-inch or small form factor (SFF) SAS bays can contain SATA drives (HDD or SSD) that
are mounted on a Gen4 tray or carrier (also knows as SFF-4). SFF-2 or SFF-3 drives do not
fit in an SFF-4 bay. All SFF-4 bays support concurrent maintenance or hot-plug capability.

External I/O subsystems
The Power S822LC server does not support external PCIe Gen3 I/O expansion drawers or
EXP24S SFF Gen2-bay drawers.

External storage
For information about external storage options, see 3.3, “IBM System Storage” on page 41.

3.1.4 NVIDIA GPU

At the time of writing, the NVIDIA Tesla K80 product is the latest GPU model of the Tesla
family8 for HPC servers. In comparison with the previous Tesla K40 generation, the Tesla K80
nearly doubles overall resources and performance.

The Tesla K80 is a dual-GPU card that is composed of two GK210 GPUs sitting on different
slots at board. It interfaces with the host system by way of one PCI Express Gen3 (PCIe 3.0)
connector for x16 slot (fully specification bandwidth). The GK210 GPUs are connected with
each other and the host system by the PLX (an on-board PCIe switch).

Each GK210 GPU implements the Tesla Kepler architecture and has these capabilities:

� 13 SMX multiprocessors, each of which features:
– 192 CUDA cores
– 64 double-precision units
– 32 special function units
– 32 load/store units
– 16 texture filtering units
– 128 KB of configurable memory (shared memory and L1 cache)
– 64 KB read-only memory (also known as constant memory)

� 12 GB of memory (SDRAM)
– GDDR5 technology
– Bus width of 384-bit
– Clock rate of 2505 Mhz
– Bandwidth of 240 GBps

Option Integrated SATA disk controller

Supported RAID types JBOD

Disk bays Two SFF Gen4 (HDDs/SDDs)

SATA controllers Single

IBM Easy Tier® capable
controllers

No

External SAS ports No

Split backplane No

8 The NVIDIA GPU Tesla family landing webpage is http://www.nvidia.com/object/tesla-servers.html
38 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.nvidia.com/object/tesla-servers.html

� 1536 KB of L2 cache memory
� Power Cap of 150 W
� Base core clock rate of 560 MHz

– Maximum core clock rate of 875 MHz

So combined the GK210 GPUs on the K80 board provide a total of 24 GB of SDRAM,
480 GBps of memory bandwidth, and power capacity of 300 W.

The Tesla K80 uses error-correcting code (ECC) check codes to ensure the protection of the
memory SDRAM and read-only memories against failures. The ECC mechanism can also be
disabled when the application requires more memory bandwidth because this error checking
consumes some memory amount.

The Tesla K80 GPU has four compute modes:

� Prohibited: Not available for compute applications

� Exclusive Thread: Only one process and thread can use the GPU at a time

� Exclusive Process: Only one process can use the GPU at a time, but its threads can
create work concurrently

� Default: Multiple processes/threads can use the GPU simultaneously

Example 3-1 shows more details of the Tesla K80 GPU of an IBM Power System S822LC.

Example 3-1 Details of the Tesla K80 GPU

Device 0: "Tesla K80"
 CUDA Driver Version / Runtime Version 7.5 / 7.5
 CUDA Capability Major/Minor version number: 3.7
 Total amount of global memory: 11520 MBytes (12079136768 bytes)
 (13) Multiprocessors, (192) CUDA Cores/MP: 2496 CUDA Cores
 GPU Max Clock rate: 824 MHz (0.82 GHz)
 Memory Clock rate: 2505 Mhz
 Memory Bus Width: 384-bit
 L2 Cache Size: 1572864 bytes
 Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536),
3D=(4096, 4096, 4096)
 Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
 Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
 Total amount of constant memory: 65536 bytes
 Total amount of shared memory per block: 49152 bytes
 Total number of registers available per block: 65536
 Warp size: 32
 Maximum number of threads per multiprocessor: 2048
 Maximum number of threads per block: 1024
 Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
 Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
 Maximum memory pitch: 2147483647 bytes
 Texture alignment: 512 bytes
 Concurrent copy and kernel execution: Yes with 2 copy engine(s)
 Run time limit on kernels: No
 Integrated GPU sharing Host Memory: No
 Support host page-locked memory mapping: Yes
 Alignment requirement for Surfaces: Yes
 Device has ECC support: Enabled
 Device supports Unified Addressing (UVA): Yes
 Device PCI Domain ID / Bus ID / location ID: 0 / 3 / 0
Chapter 3. Hardware components 39

 Compute Mode:
 < Default (multiple host threads can use ::cudaSetDevice() with device
simultaneously) >

See the NVIDIA Tesla K80 GPU specification document for further information:

http://images.nvidia.com/content/pdf/kepler/Tesla-K80-BoardSpec-07317-001-v05.pdf

3.1.5 BMC

The IBM Power System S822LC server features a baseboard management controller (BMC)
for out-of-band system management. Some functions are also available by way of in-band
methods. This differs from previous lines of IBM Power System servers, which traditionally
featured a flexible service processor (FSP) for that purpose, with increased focus on RAS
functions.

The BMC offers functionality that is more focused on scale-out environments, such as HPC
clusters and cloud platform infrastructure, where factors like automation, and simplicity for
deployment and maintenance play an important role. For example, the BMC provides these
functions:

� Power management

� Console (or terminal) sessions

� Network and boot device configuration

� Sensors information (for example, temperature, fan speed, and voltage)

� Firmware and vital product data (VPD) information (for example, firmware components
version, serial number, and machine-type model)

� Virtual hard-disk and optical drives (for example, for installing operating systems)

� System firmware upgrade

The BMC functions are available by way of several methods, for example:

� IPMI, both in-band and out-of-band
� Advanced System Management Interface (ASMI)
� Secure Shell (SSH)

The BMC provides the following ports:

� Ethernet port, for out-of-band IPMI, ASMI (web), and SSH access

� Video Graphics Adapter (VGA) port, for graphics display (functional from Petitboot
onward)

� Serial port

� Internal (in-chassis) serial port

3.2 Mellanox InfiniBand

The IBM Power System S822LC server can include one-port or two-port high bandwidth and
low latency Mellanox InfiniBand host channel adapters (HCAs). These HCAs connect to the
bus through PCIe 3.0 x16, which is able to deliver 100 Gbps of data at each EDR port.
40 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://images.nvidia.com/content/pdf/kepler/Tesla-K80-BoardSpec-07317-001-v05.pdf

InfiniBand provides these significant features, among others:

� Delivers more than 100 Gb per second overall throughput
� Implements Virtual Protocol Interconnect (VPI)
� Takes over transport operations to offload the CPU
� Supports noncontinuous memory transfers
� Supported by IBM Parallel Environment (PE)

Device drivers and support tools are available with the Mellanox OpenFabrics Enterprise
Distribution (OFED) for Linux.

3.3 IBM System Storage

The IBM System Storage® disk systems products and offerings provide compelling storage
solutions with value for all levels of business, from entry-level to high-end storage systems.
For more information about the offerings, see the following website:

http://www.ibm.com/systems/storage/disk

The following section highlights a few of the offerings.

3.3.1 IBM Storwize family

The IBM Storwize® family is the ideal solution to optimize the data architecture for business
flexibility and data storage efficiency. Different models, such as the IBM Storwize V3700, IBM
Storwize V5000, and IBM Storwize V7000, offer storage virtualization, IBM Real-time
Compression™, Easy Tier, and many more functions. For more information, see the following
website:

http://www.ibm.com/systems/storage/storwize

3.3.2 IBM FlashSystem family

The IBM FlashSystem® family delivers extreme performance to derive measurable economic
value across the data architecture (servers, software, applications, and storage). IBM offers a
comprehensive flash portfolio with the IBM FlashSystem family. For more information, see the
following website:

http://www.ibm.com/systems/storage/flash

3.3.3 IBM XIV Storage System

The IBM XIV® Storage System is a high-end disk storage system that helps thousands of
enterprises meet the challenge of data growth with hotspot-free performance and ease of
use. Simple scaling, high service levels for dynamic, heterogeneous workloads, and tight
integration with hypervisors and the OpenStack platform enable optimal storage agility for
cloud environments.

XIV Storage Systems extend ease of use with integrated management for large and multi-site
XIV deployments, reducing operational complexity and enhancing capacity planning. For
more information, see the following website:

http://www.ibm.com/systems/storage/disk/xiv/index.html
Chapter 3. Hardware components 41

http://www.ibm.com/systems/storage/disk
http://www.ibm.com/systems/storage/storwize
http://www.ibm.com/systems/storage/flash
http://www.ibm.com/systems/storage/disk/xiv/index.html

42 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Chapter 4. Software stack

This chapter describes the software stack used in the implementation of an IBM High
Performance Computing (HPC) solution on IBM POWER8 with the IBM Power System
S822LC server.

For more information and details, see the following IBM HPC software announcement1: IBM
High Performance Computing software supports IBM Power Systems S822LC servers
running Red Hat Enterprise Linux (RHEL) 7.2 in little-endian mode.

This chapter includes the following sections:

� System management
� OPAL firmware
� xCAT
� RHEL server
� NVIDIA CUDA Toolkit
� Mellanox OFED for Linux
� IBM XL compilers, GCC, and Advance Toolchain
� IBM Parallel Environment
� IBM Engineering and Scientific Subroutine Library and Parallel ESSL
� IBM Spectrum Scale (formerly IBM GPFS)
� IBM Spectrum LSF (formerly IBM Platform LSF)

4

1 IBM United States Software Announcement 215-396 (December 8, 2015)
http://www.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/6/897/ENUS215-396/index.html
© Copyright IBM Corp. 2016. All rights reserved. 43

http://www.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/6/897/ENUS215-396/index.html

4.1 System management

The baseboard management controller (BMC) provides the system management functions by
way of several methods:

� The Advanced System Management Interface (ASMI)
� The Secure Shell (SSH) protocol
� The Intelligent Platform Management Interface (IPMI) protocol

You can access each method by way of one or more BMC IP addresses with the following
software:

� ASMI: Any standards-compliant web browser, by way of both (Secure) Hypertext Transfer
Protocols (HTTP and HTTPS)

� SSH: Any standards-compliant SSH client

� IPMI: The IPMItool utility, version 1.8.15 and later (requirement for some functions)

The IPMI method is available both out-of-band (from other systems, by way of network),
and in-band (from the current system, by way of internal communication).

You can find build instructions for IPMItool later in 5.4.8, “IPMI authentication credentials”
on page 91.

For more information and details about the IPMItool, see the project page at the following
website:

http://sourceforge.net/projects/ipmitool

You can configure access credentials for each method on the ASMI.

4.2 OPAL firmware

The Open Power Abstraction Layer (OPAL) firmware is available on the IBM Power System
S822LC server and several other IBM Power Systems servers with POWER8 processors.
The OPAL firmware supports running Linux in non-virtualized (or bare-metal) mode and
virtualized mode (guest or virtual-machine) with kernel-based virtual machine (KVM)
acceleration.

With the OPAL firmware, several of the system management functions are performed by way
of IPMI rather than Hardware Management Console (HMC), which was used in previous
generations of IBM Power Systems servers. This makes systems with OPAL firmware more
suited for a wider range of environments and system management tools, allowing for more
choice and integration between software and hardware components.

For more information about the OPAL firmware, see its open source project page:

https://github.com/open-power

4.3 xCAT

The Extreme Cluster/Cloud Administration Toolkit (xCAT) performs the roles of deployment
and management of the software stack. Among other things, it controls the node discovery
process, power management, console sessions, operating system provisioning, and software
stack installation and configuration.
44 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

https://github.com/open-power
http://sourceforge.net/projects/ipmitool

xCAT is open source software, and relatively recently moved toward more openness,
adopting significant changes to its development process and documentation pages. The
development process is now hosted on GitHub (with public milestones and schedules, issue
reporting and tracking, and source-code pull requests), and the documentation pages are
refreshed, and hosted on Read The Docs (a GitHub service).

xCAT also provides community support, and support options are available from IBM.

xCAT 2.11 release introduces support for the IBM Power System S822LC server, which is
accompanied with Linux distributions, installation modes, and other features:

� Red Hat Enterprise Linux (RHEL) Server 7.2 for PowerPC 64-bit Little-Endian (ppc64le) in
non-virtualized (or bare-metal) mode

� CUDA Toolkit for NVIDIA graphics processing units (GPUs)

� Mellanox OpenFabrics Enterprise Distribution (OFED) for Linux

� IBM HPC software support with xCAT kits

� System management: Hardware discovery, hardware control, and console sessions

� Diskful and diskless installation

For more information and details, see the xCAT project page, documentation page, and
release notes at the following websites:

http://xcat.org
http://xcat-docs.readthedocs.org
https://github.com/xcat2/xcat-core/wiki/XCAT_2.11_Release_Notes

4.4 RHEL server

RHEL is the world’s leading enterprise Linux platform2, which runs on highly scalable,
multi-core systems that support the most demanding workloads. Collaboration between Red
Hat and engineers from major hardware vendors ensure that the operating system takes
advantage of the newest hardware innovations available in chip design, system architecture,
and device drivers to improve performance and reduce power utilization.

For more information and details, see the RHEL documentation at the following website:

https://access.redhat.com/documentation/en/red-hat-enterprise-linux

4.5 NVIDIA CUDA Toolkit

The Compute Unified Device Architecture (CUDA) is a programming model and application
programming interface (API) conceived to fully utilize the NVIDIA General Purpose Graphics
Processing Unit (GPGPU), which provides a highly scalable parallel computing platform.

The toolkit offers a multi-platform apparatus to develop, compile, debug, profile, and run
CUDA programs on GPUs. In addition to APIs and runtime libraries, the following are the
main resources that are bundled:

� nvcc: A CUDA compiler (nvcc)
� cuda-gdb: A command-line program debugger
� cuda-memcheck: Suite of tools for dynamic error detection

2 According to the Red Hat Enterprise Linux datasheet published by Red Hat, Inc.® (#12182617_V1_0514).
Chapter 4. Software stack 45

http://xcat-docs.readthedocs.org
https://access.redhat.com/documentation/en/red-hat-enterprise-linux
http://xcat.org
https://github.com/xcat2/xcat-core/wiki/XCAT_2.11_Release_Notes

� profiler: A command-line program profiling tool (nvprof) and GUI-oriented (Visual Profiler)
� Binary utilities
� Development libraries
� Nsight Eclipse Edition: An Eclipse-based integrated development environment (IDE)

In many sections of this book, there are references about some aspects of the CUDA Toolkit
usage on the context of HPC on IBM Power Systems. However, see the following website to
read about topics on the toolkit:

http://docs.nvidia.com/cuda/index.html

4.6 Mellanox OFED for Linux

Mellanox OFED for Linux is a version of the OFED distribution from the OpenFabrics Alliance
that is tested and packaged by Mellanox, and supports Remote Direct Memory Access
(RDMA) and kernel bypass APIs (OFED verbs) over InfiniBand and Ethernet.

The Mellanox OFED for Linux comprises the following components, among others:

� Drivers for InfiniBand, RDMA over Converged Ethernet (RoCE), L2 network interface
controller (NIC)

� Access Layers and common verbs interface

� Virtual Protocol Interconnect (VPI)

� IP-over-IB

� Subnet Manager (OpenSM)

� Installation, administration, and diagnostics tools

� Performance test suites

For more details and information, see the Mellanox website:

http://www.mellanox.com

4.7 IBM XL compilers, GCC, and Advance Toolchain

This section describes some of the compiler options available for the software stack such as
the IBM XL compilers, the GNU Compiler Collection (GCC), and the IBM Advance Toolchain
(basically, more recent GCC and libraries than in the Linux distribution).

4.7.1 XL compilers

IBM XL compilers enhancements help to increase application performance and developer
productivity. XL Fortran v15.1.2 and XLC/C++ v13.1.2 compilers support the latest Linux
distributions, including RHEL 7.2 and all the new features of the POWER8 processor,
including the latest built-in vector intrinsics.

Note: At the time of writing, the latest CUDA Toolkit version 7.5 is fully supported on the
IBM Power S822LC System with RHEL version 7.2 for Linux on POWER8 Little-endian.
46 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://docs.nvidia.com/cuda/index.html
http://www.mellanox.com

The XL Fortran compiler improves support of the following features from release to release:

� Intrinsic procedures, which help to increase utilization of POWER8 processors

� New compiler options

� Fortran 2008 features

� Language interoperability, which lets developers write programs that contain parts written
in Fortran and parts written in the C language

� OpenMP (Version 15.1.2 fully supports the OpenMP Application Program Interface
Version 3.1 specification and partially supports the OpenMP Application Program
Interface Version 4.0 specification)

The following changes are included in the latest releases of the XL C/C++ compilers:

� Support of new built-in functions for POWER8 processors

� Additional compiler options

� Increase support of the following C/C++ standards:

– C++14

– C++11

– C11

� Partial support of OpenMP 4.0 (Version 13.1.2 fully supports only the OpenMP Application
Program Interface Version 3.1 specification).

For more information about XL Fortran support for POWER8 processor, see the following
website:

http://www.ibm.com/support/knowledgecenter/?lang=en#!/SSAT4T_15.1.2/com.ibm.compil
ers.linux.doc/welcome.html

For more information about XL C/C++ compilers, see the following website:

http://www.ibm.com/support/knowledgecenter/?lang=en#!/SSXVZZ_13.1.2/com.ibm.compil
ers.linux.doc/welcome.html

4.7.2 GCC and Advance Toolchain

GCC 4.8.5 is included in the RHEL 7.2 distribution. It contains features and optimizations in
the common parts of the compiler that improve support for the POWER8 processor
architecture.

The IBM Advance Toolchain for Linux on Power is a set of open source development tools
and runtime libraries that allows users to take advantage of the latest IBM POWER8
hardware features on Linux. It supports big endian (ppc64) and little endian (ppc64le).

The latest release includes current versions of the following packages, which can help with
porting and tuning applications for POWER8:

� GNU Compiler Collection (gcc, g++, gfortran), including individually optimized gcc runtime
libraries for supported POWER8 processor

� GNU C library (glibc), individually optimized for supported POWER8 processor

� GNU Binary Utilities (binutils)

� AUXV Library (libauxv)

� GNU Debugger (gdb)
Chapter 4. Software stack 47

http://www.ibm.com/support/knowledgecenter/?lang=en#!/SSAT4T_15.1.2/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/?lang=en#!/SSXVZZ_13.1.2/com.ibm.compilers.linux.doc/welcome.html

� Performance analysis tools (oprofile, valgrind, itrace)

� Multi-core exploitation libraries (Intel TBB, Userspace RCU, SPHDE)

� Plus several support libraries (libhugetlbfs, Boost, zlib, and more)

For more information about GCC support on POWER8 for RHEL 7.2, see this website:

https://gcc.gnu.org/gcc-4.8/

For more information about the IBM Advance Toolchain, see the following website:

http://ibm.co/1CsNsDs

4.8 IBM Parallel Environment

The IBM Parallel Environment (PE) is an added-value layer of components that provide a
complete solution for high performance and technical computing on clusters of Linux with IBM
Power Systems.

The IBM Parallel Environment comprises of two components:

4.8.1 IBM PE Runtime Edition

IBM PE Runtime Edition provides runtime environment, libraries, compiling scripts and tools
that target development, debugging and execution of programs written on C, C++ and Fortran
with the Message Passing Interface (MPI), Parallel Active Message Interface (PAMI) and
OpenSHMEM parallel programming models.

The execution of parallel batch jobs is managed by the Parallel Operating Environment
(POE). It provides a rich set of variables to manage the execution of parallel jobs and controls
to fine-tune the environment for performance. POE also can be evoked with the IBM
Spectrum Load Sharing Facility (LSF), which is a robust workload manager.

Some tools are also available. For instance, the runtime package comes with the Parallel
Environment Shell (PESH) command-line tool and parallel applications can be debugged with
the parallel debugger (PDB).

4.8.2 IBM PE Developer Edition

It provides tools for development, debugging, and performance analysis of parallel
applications in C, C++b and Fortran. The environment integrates with PE and IBM Spectrum
LSF, allowing you to spawn parallel jobs from within the GUI.

The following analysis and measurements can be achieved with PE Developer Edition tools:

� Hardware performance counter profiling
� GPU hardware counter profiling
� MPI profiling and trace
� MPI I/O profiling
� Call graph analysis
� openMP profiling

Note: For some specific workloads, GCC 5.2 provided with the IBM Advance Toolchain
and GCC 4.8.5 provided with the RHEL 7.2 distribution have different performance.
48 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

https://gcc.gnu.org/gcc-4.8/
http://ibm.co/1CsNsDs

The following components can also be installed:

� The HPC Toolkit: Provides libraries and tools that are used to prepare the parallel
application and collect performance data

� The hpctView: A GUI that eases the processes of gathering and analysis of the data

� Plug-ins: Used to extend an Eclipse IDE installation and provides integration with the HPC
Toolkit

Find more about PE Devloper Edition in 6.7.1, “The Parallel Environment Developer Edition”
on page 200.

4.9 IBM Engineering and Scientific Subroutine Library and
Parallel ESSL

The Engineering and Scientific Subroutine Library (ESSL) family of products is a
state-of-the-art collection of mathematical subroutines. Running on IBM POWER8 servers
and clusters, the ESSL family provides a wide range of high-performance mathematical
functions for various scientific and engineering applications.

The collection contains two types of libraries:

� ESSL 5.4, which contains over 600 high-performance serial and symmetric
multiprocessing (SMP) mathematical subroutines that are tuned for POWER8.

� Parallel ESSL 5.2, which contains over 125 high-performance single program, multiple
data (SPMD) mathematical subroutines. These subroutines are designed to exploit the full
power of clusters of POWER8 servers that are connected with a high performance
interconnect.

IBM ESSL includes IBM implementation of BLAS/LAPACK and IBM Parallel ESSL includes
IBM implementation of ScaLAPACK, which are the industry standards for linear algebra
subroutines. If the application utilizes BLAS/LAPACK/ScaLAPACK functions, you just
recompile your application on IBM POWER8 and link it with IBM ESSL to get optimized
performance.

Additionally, IBM ESSL implements some linear algebra routines that are not included in
BLAS/LAPACK. Examples of such routines: _GETMI (General Matrix Transpose (In-Place))
and _GETMO (General Matrix Transpose (Out-of-Place)).

For POWER8 servers and clusters, which have NVIDIA GPUs within, performance can be
significantly improved by using environment variables, which enables GPU usage inside
ESSL routines. There are two options:

� GPU-only mode: All computations will be performed on GPU

� Hybrid mode: All computations will be distributed between GPU and CPU to increase
utilization of the system

Additionally, eSSL provides support of the following libraries:

� Fastest Fourier Transform in the West (FFTW)
� CBLAS

Note: New in PE Developer Edition version 2.3 is support for GPU hardware counter
profiling.
Chapter 4. Software stack 49

All routines from the ESSL family are callable from Fortran, C, and C++.

For more information about the IBM ESSL, see the following website:

http://www.ibm.com/support/knowledgecenter/#!/SSFHY8/essl_welcome.html

For more information about the IBM Parallel ESSL, see the following website:

http://www.ibm.com/support/knowledgecenter/#!/SSNR5K/pessl_welcome.html

4.10 IBM Spectrum Scale (formerly IBM GPFS)

The IBM Spectrum Scale (formerly the IBM General Parallel File System (GPFS)) is a
distributed, high-performance, massively scalable enterprise file system solution that
addresses the most challenging demands in high-performance computing. It is a proven
solution that is used to store the data for thousands of mission-critical commercial
installations worldwide.

The IBM Spectrum Scale is software-defined storage for high performance, large-scale
workloads on-premises or in the cloud. This scale-out storage solution provides file, object,
and integrated data analytics for these items:

� Compute clusters (technical computing, and high-performance computing)
� Big data and analytics
� Hadoop Distributed File System (HDFS)
� Private cloud
� Content repositories
� File Placement Optimizer (FPO)

For more information about IBM Systems Software for high performance computing, in
particular IBM Spectrum Scale, see the following website:

http://www.ibm.com/systems/power/hardware/hpc.html

For more information about IBM Spectrum Scale, see the following website:

http://www.ibm.com/systems/storage/spectrum/scale/index.html

4.11 IBM Spectrum LSF (formerly IBM Platform LSF)

The IBM Spectrum LSF is a workload management that is employed to coordinate shared
access and optimized use of computing resources of an HPC cluster. It provides the following
features, among others:

� Policy-driven work scheduling and load balancing
� Compute resources allocation
� Cluster resources administration
� Cluster monitoring
� Supports heterogeneous resources and multi-cluster
� Fault tolerance
� Security

At the time of writing, its latest version (9.1.3) supports the IBM Power System S822LC server
with RHEL version 7.2. Spectrum LSF is also fully integrated with the IBM Parallel
Environment.
50 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/systems/power/hardware/hpc.html
http://www.ibm.com/support/knowledgecenter/#!/SSFHY8/essl_welcome.html
http://www.ibm.com/support/knowledgecenter/#!/SSNR5K/pessl_welcome.html
http://www.ibm.com/systems/storage/spectrum/scale/index.html

Cluster users and administrators can interact with Spectrum LSF by way of the command-line
tools, web interface (provided by the IBM Platform Center) or application programming
interface (API).

Many topics about Spectrum LSF in the context of the HPC solution that are described in this
book are discussed in 7.3, “Using the IBM Spectrum LSF” on page 240 and Chapter 8,
“Cluster monitoring” on page 247.

For more information about IBM Spectrum LSF, see the following website:

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_welcome.html
Chapter 4. Software stack 51

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_welcome.html

52 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Chapter 5. Software deployment

This chapter describes the software deployment of an Extreme Cluster/Cloud Administration
Toolkit (xCAT) cluster with the IBM High Performance Computing (HPC) software. The cluster
runs on Red Hat Enterprise Linux (RHEL) Server 7.2 for PowerPC 64-bit Little-Endian
(ppc64le) in non-virtualized (or bare-metal) mode on a IBM Power System S822LC server.

The following sections provide a summary of the software stack, and describe the system
management procedures adopted in this chapter:

� Software stack
� System management

The next sections describe the concepts and deployment of the xCAT cluster and the
software stack:

� xCAT overview
� xCAT Management Node
� xCAT Node Discovery
� xCAT Compute Nodes
� xCAT Login Nodes

5

© Copyright IBM Corp. 2016. All rights reserved. 53

5.1 Software stack

The following software stack components and versions are referenced in this chapter:

� Extreme Cluster/Cloud Administration Toolkit (xCAT) 2.11

� Red Hat Enterprise Linux (RHEL) Server 7.2

� Compute Unified Device Architecture (CUDA) Toolkit 7.5 (7.5-23)

� Mellanox OpenFabrics Enterprise Distribution (OFED) for Linux 3.2 (3.2-1.0.1.1)

� XL C/C++ Compiler for Linux V13.1.2

� XL Fortran Compiler for Linux V15.1.2

� Advance Toolchain 8.0 (8.0-5)

� GNU Compiler Collection (GCC) 4.8.5 (provided with RHEL)

� Parallel Environment (PE) Runtime Edition (PE RTE) 2.3

� Parallel Environment Developer Edition (PE DE) 2.2

� Engineering and Scientific Subroutine Library (ESSL) 5.4

� Parallel ESSL (PESSL) 5.2

� Spectrum Scale (formerly GPFS) 4.1.1.3

� Spectrum LSF (formerly Platform LSF) 9.1.3

� Open Power Abstraction Layer (OPAL) firmware OP810.10 (OP8_v1.7_1.13)

� Intelligent Platform Management Interface (IPMI) tool (IPMItool) 1.8.15

5.2 System management

This chapter describes system management functions (or operations) for the IBM Power
System S822LC server based on the IPMI protocol, using the IPMItool utility. Some functions
require IPMItool version 1.8.15 or later, such as system firmware upgrade.

This section provides the following instructions:

� Build IPMItool 1.8.15 from the source on RHEL Server 7.2
� Frequently used commands for IPMItool
� Configure the boot order in the Petitboot bootloader
� Upgrade the system firmware of the IBM Power System S822LC server

5.2.1 Build instructions for IPMItool

To build IPMItool version 1.8.15 (or later), complete the following steps:

1. Install the required build dependencies:

yum install gcc make bzip2 openssl-devel

1. Check the project page for more recent versions, and the download link for the
source-code tarball (file: ipmitool-version.tar.bz2):

https://sourceforge.net/projects/ipmitool/
54 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

https://sourceforge.net/projects/ipmitool/

2. Download, and extract the tarball:

mkdir /tmp/ipmitool
cd /tmp/ipmitool

curl -sOL http://sourceforge.net/projects/ipmitool/files/ipmitool/1.8.15/
ipmitool-1.8.15.tar.bz2

tar xf ipmitool-1.8.15.tar.bz2
cd ipmitool-1.8.15

3. Run the configure script to configure the build on the current system.

The following summary table is listed at the end of the script execution. The lan and
lanplus interfaces are listed as yes (that is, enabled). The lanplus interface requires the
openssl-devel package.

./configure
<...>
ipmitool 1.8.15

Interfaces
 lan : yes
 lanplus : yes
 open : yes
 free : no
 imb : yes
 bmc : no
 lipmi : no
 serial : yes
 dummy : no

Extra tools
 ipmievd : yes
 ipmishell : no

4. Run the make command to start the build.

If the system has multiple processors, you can increase the number of parallel build jobs
with the -jnumber option, for example:

make -j160

5. Run the make install command to install the build result in the system:

make install

6. Verify the ipmitool command points to the locally installed program (at the
/usr/local/bin directory) with the which command, at the expected version:

which ipmitool
/usr/local/bin/ipmitool

ipmitool -V
ipmitool version 1.8.15

5.2.2 Frequently used commands with the IPMItool

The following arguments are present in every command in the following list, replaced by the
<arguments> word:

-I lanplus -H bmc-address -U ipmi-username -P ipmi-password
Chapter 5. Software deployment 55

The lanplus interface is suggested. Some commands can work with the lan interface.

The default IPMI username is ADMIN, and the default IPMI password is admin.

The following list contains frequently used ipmitool commands:

� Power status:

$ ipmitool <arguments> chassis power status

� Power on:

$ ipmitool <arguments> chassis power on

� Power off:

$ ipmitool <arguments> chassis power off

� Power cycle (power off, then power on):

$ ipmitool <arguments> chassis power cycle

� Open console session:

$ ipmitool <arguments> sol activate

� Close console session:

$ ipmitool <arguments> sol deactivate

You can also close an active console session with the following keystrokes:

– On a non-Secure Shell (SSH) connection:

Enter, ~ (tilde1), . (period)

– On an SSH connection:

Enter, ~ (tilde), ~ (tilde), . (period)

� Reset the BMC:

$ ipmitool <arguments> bmc reset cold

� Values of sensors:

$ ipmitool <arguments> sdr list full

� Display the BMC Ethernet Port network configuration:

$ ipmitool <arguments> lan print 1

� Set the BMC Ethernet Port for Dynamic Host Configuration Protocol (DHCP) IP address:

$ ipmitool <arguments> lan set 1 ipsrc dhcp

� Set the BMC Ethernet Port for Static IP address:

$ ipmitool <arguments> lan set 1 ipsrc static
$ ipmitool <arguments> lan set 1 ipaddr a.b.c.d

1 On keyboards with dead keys (for example, on some non-English languages), the tilde mark requires two
keystrokes: tilde and space.

Note: This command can close an SSH connection, which can leave the console
session open.

Note: This command leaves the SSH connection open and closes the console
session.
56 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

$ ipmitool <arguments> lan set 1 netmask e.f.g.h
$ ipmitool <arguments> lan set 1 defgw i.j.k.l

� Display machine type and model, serial number, and other information:

$ ipmitool <arguments> fru print 3

� Display system firmware version information:

$ ipmitool <arguments> fru print 47

5.2.3 Boot order configuration

The Petitboot bootloader can automatically boot (or autoboot) from several types of devices in
a certain order (that is, falling back to later devices if earlier devices cannot be booted from).

The scenario presented here requires a specific configuration of device boot order
(specifically, for Genesis-based node discovery, and diskful installation, which are described
in 5.3, “xCAT overview” on page 61). It is important for Petitboot to first attempt to boot from
the network devices by way of DHCP. Only they are not available should it attempt to boot
from the disk devices. In such order, the node can obtain its network and boot configuration
from the xCAT management node (for example, the Genesis image or diskless installation), or
fall back to boot an operating system from disk if network boot is not specified (for example,
diskful installation).

In order to configure the boot order in the Petitboot bootloader, perform the following steps:

1. Power on the system:

ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
chassis power on

2. Open the console:

ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
sol activate

3. Wait for the Petitboot panel (Example 5-1).

Example 5-1 Petitboot panel

Petitboot (dev.20151015) 8335-GTA 0000000000000000

System information
System configuration
Language
Rescan devices
Retrieve config from URL
*Exit to shell

Enter=accept, e=edit, n=new, x=exit, l=language, h=help
Welcome to Petitboot

4. Configure boot order for Petitboot. In the Petitboot panel, select System configuration.

5. In the Petitboot System Configuration panel (Example 5-2 on page 58), complete these
steps:

a. In the Boot order section, complete the following steps:

i. Select Clear.

i. Select Add Device.
Chapter 5. Software deployment 57

ii. In the Select a boot device to add panel (Example 5-3), select Any Network
device, and press OK.

iii. Select Add Device again.

iv. In the Select a boot device to add panel again, select Any Disk device, and press
OK.

v. Verify that the Boot order section is identical to Example 5-4 on page 59.

b. In the Network section, select the DHCP on a specific interface option.

c. In the Device section, select the network interface for accessing the xCAT
Management Node (if you selected DHCP on a specific interface in the Network
section).

d. Press OK.

Example 5-2 Petitboot System Configuration panel, DHCP on a specific interface setting

Petitboot System Configuration

Boot Order: (None)

[Add Device]
[Clear & Boot Any]
[Clear]

Network: () DHCP on all active interfaces
(*) DHCP on a specific interface
() Static IP configuration

Device: () enP1p3s0f0 [98:be:94:59:fa:24, link down]
() enP1p3s0f1 [98:be:94:59:fa:25, link down]
() enP1p3s0f2 [98:be:94:59:fa:26, link up]
(*) enP1p3s0f3 [98:be:94:59:fa:27, link up]
() tunl0 [00:00:00:00:08:00, link up]

DNS Server(s): _______________________________ (eg. 192.168.0.2)
(if not provided by DHCP server)

Disk R/W: () Prevent all writes to disk
(*) Allow bootloader scripts to modify disks

[OK] [Help] [Cancel]

tab=next, shift+tab=previous, x=exit, h=help

Example 5-3 shows the panel to select a boot device.

Example 5-3 Select a boot device to add panel (any Network Device setting)

Select a boot device to add

() net: enP1p3s0f0 [mac: 98:be:94:59:fa:24]
() net: enP1p3s0f1 [mac: 98:be:94:59:fa:25]

Note: You can select the DHCP on all active interfaces option, but that might slow
the boot process unnecessarily if multiple network ports are cabled and active.
58 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

() net: enP1p3s0f2 [mac: 98:be:94:59:fa:26]
() net: enP1p3s0f3 [mac: 98:be:94:59:fa:27]
() net: tunl0 [mac: 00:00:00:00:08:00]
(*) Any Network device
() Any Disk device
() Any USB device
() Any CD/DVD device
() Any Device

[OK] [Cancel]

 tab=next, shift+tab=previous, x=exit, h=help

Example 5-4 shows the petitboot system configuration option panel.

Example 5-4 Petitboot System Configuration panel, Boot Order configuration

Petitboot System Configuration

Boot Order: (0) Any Network device
(1) Any Disk device

[Add Device]
[Clear & Boot Any]
[Clear]

<...>

On the next boot, the Petitboot bootloader can automatically boot from the network and disk
devices in the specified order. On this boot, no automatic boot attempt is made due to user
intervention.

5.2.4 System firmware upgrade

The IPMItool version 1.8.15 or later can be used to upgrade the system firmware of the IBM
Power System S822LC. Run the IPMItool command from the same or a close local area
network (LAN) to the target system or Baseboard Management Controller (BMC) to avoid
network instability problems.

To upgrade the system firmware, complete the following steps:

1. Download the system firmware image:

a. Go to the IBM Support page:

http://ibm.com/support

b. In Product Finder, enter 8335-GTA.

c. In the results list, select Scale-out LC 8335-GTA.

d. Under Downloads, select Downloads (drivers, firmware, PTFs).

e. In the results list, click the desired version (for example, OP8_v1.7_1.62_F). Usually,
the latest version is suggested for the general case.

f. Proceed with the sign-in process.

g. Select a download option (for example, HTTPS).
Chapter 5. Software deployment 59

http://ibm.com/support

h. Click the 8335_<version>_update.hpm link to download the file (for HTTPS; for other
methods, follow the instructions that are provided in the website).

i. Optional: Click the Description link for more details about the firmware version.

2. Install the system firmware image:

a. Power off the system:

ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
chassis power off

Chassis Power Control: Down/Off

Wait until the system is powered off. You can verify it with the following command:

ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
chassis power status

Chassis Power is off

b. Reset the BMC:

ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
mc reset cold

Sent cold reset command to MC

Wait until the BMC is back online. You can verify it with the following command (repeat
as necessary):

ping -c1 bmc-address
<...>
1 packets transmitted, 1 received, 0% packet loss, time 0ms
<...>

c. Protect the BMC memory content (for example, network configuration) during upgrade:

ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
raw 0x32 0xba 0x18 0x00

d. Upgrade the system firmware image (Example 5-5). Note the following about the
process:

• You might be asked to confirm the operation; press y and enter.

• The output can vary depending on the old and new firmware versions used.

• In case of segmentation fault errors, try to change the -z argument to 25000.

• If you lose the network configuration, establish a serial connection to the internal
serial port and configure it with the ipmitool command on the 127.0.0.1 IP address.

• For more information and details about errors, see the Description link in the
system firmware image download page for more information and instructions.

Example 5-5 One step of the system firmware upgrade with the ipmitool command

ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
-z 30000 hpm upgrade 8335_<version>_update.hpm force

Setting large buffer to 30000

PICMG HPM.1 Upgrade Agent 1.0.9:

Validating firmware image integrity...OK
Performing preparation stage...
Services be affected during upgrade. Do you wish to continue? (y/n): y
OK
60 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Performing upgrade stage:

--
|ID | Name | Versions | % |
		Active	Backup	File	
* 2	BIOS	0.00 00000000	---.-- --------	1.00 3E010701	100%
	Upload Time: 00:27	Image Size: 33554584 bytes			
* 0	BOOT	2.13 7B4E0100	---.-- --------	2.13 AB660100	100%
	Upload Time: 00:00	Image Size: 262296 bytes			
* 1	APP	2.13 7B4E0100	---.-- --------	2.13 AB660100	100%
	Upload Time: 00:16	Image Size: 33292440 bytes			
--
(*) Component requires Payload Cold Reset

Firmware upgrade procedure successful

e. Power on the system:

ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
chassis power on

Chassis Power Control: Up/On

f. Open the console:

ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
sol activate

g. Wait for the Petitboot panel (Example 5-1 on page 57).

If the IPMI console is not responsive to any keys, try to reset the BMC again.

3. Verify that the system firmware version matches the desired or downloaded version:

ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
fru print 47

Product Name : OpenPOWER Firmware
Product Version : IBM-firestone-ibm-OP8_v1.7_1.62
Product Extra : hostboot-bc98d0b-1a29dff
Product Extra : occ-0362706-16fdfa7
Product Extra : skiboot-5.1.13
Product Extra : hostboot-binaries-43d5a59
Product Extra : firestone-xml-e7b4fa2-c302f0e
Product Extra : capp-ucode-105cb8f

5.3 xCAT overview

This section provides an overview of the architecture and concepts involved in a cluster that is
administered with xCAT (that is, an xCAT cluster), and the scenario described in this chapter.

Note: The system firmware upgrade only completes after the system is powered on.

Note: Only around twenty ISTEP lines are required (earlier than Petitboot).
Chapter 5. Software deployment 61

xCAT manages the nodes in a cluster by using continuous configuration and event handling.
The xCAT database contains the information required to perform the configuration steps.
Several services and commands (for example, DHCP server, and xCAT administration
commands) trigger and respond to events such as node booting, node discovery, and
installation of operating system (OS) and other software.

For more information and details, see the xCAT project and documentation pages at the
following websites:

http://xcat.org
http://xcat-docs.readthedocs.org

5.3.1 xCAT cluster: Nodes and networks

An xCAT cluster is a number of nodes that are interconnected by one or more networks.

The type of node depends on its function in the cluster (for example, management, compute,
login, or service node). The type of network depends on its traffic and interconnected nodes
(for example, operating system-level management and provisioning, service processor-level
hardware management, application-level intercommunication, and public/Internet access).

The following list describes the types of nodes in an xCAT cluster:

� Management node: Performs administrative operations on compute nodes, for example
power control, software deployment (operating system provisioning, application
installation, and updates), configuration, command execution, and monitoring.

� Compute nodes: Perform operations that are specified by the management node, for
example operating system provisioning and command execution, and runs the runtime
and application software. Compute nodes are sometimes referred to simply as nodes.

� Login nodes: Perform the role of an interface to the users of the clusters, allowing for tasks
such as job submission and source-code compilation.

� Service nodes: Perform operations that are delegated by the management node on
groups of nodes, and respond to requests from a set of other nodes, acting as
intermediary management nodes on large clusters. An xCAT cluster with service nodes is
known as a hierarchical cluster.

The following list describes the types of networks in an xCAT cluster:

� Management network:

– Used for in-band operations (that is, through the system’s network interface), for
example, node discovery, operating system provisioning, and management

– Interconnects the management node, service nodes (if any), login nodes (if any), and
compute nodes (all by way of the in-band network interface controller (NIC))

– Possibly segregated into separate virtual LANs (VLANs) for each service node

– Usually an Ethernet network of high transfer speed, depending on the number of
compute nodes and frequency of operating system provisioning, software download,
and installation operations

� Service network:

– Used for out-of-band operations (that is, through the BMC’s network interface), for
example, power control, console sessions, and platform-specific functions

– Interconnects the management node and service nodes (by way of the in-band NIC),
and the other nodes (by way of the out-of-band NIC)
62 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://xcat.org
http://xcat-docs.readthedocs.org

– Possibly combined with the management network (same physical network)

– Usually an Ethernet network, but do not need to be as high transfer speed as the
management node because the network traffic of out-of-band operations is usually of
smaller size and lower frequency

� Application network:

– Used by applications that are running on compute nodes

– Interconnects the compute nodes

– Usually an InfiniBand network for HPC applications

� Optional: Site (public) network:

– Used for directly accessing the management node, and other nodes

– Interconnects the site gateway, and nodes (by way of in-band NIC)

– Can provide the cluster with access to the Internet

– Can be combined with the management node (same physical network)

– Usually an Ethernet network

5.3.2 xCAT database: Objects and tables

The xCAT database contains all information that relates to the cluster. This information is
either defined by an administrator or automatically obtained from the cluster, such as nodes,
networks, services, and configuration for any services used by xCAT (for example, DNS,
DHCP, HTTP, and NFS).

All data is stored in tables, and can be manipulated either directly as tables (for example,
nodelist, networks, nodegroup, osimage, or site) or logically as objects (or object definitions)
of certain types (for example, node, network, group, osimage, or site) with the following
commands:

� Objects:

– View: lsdef
– Create: mkdef
– Change: chdef
– Remove: rmdef

� Tables:

– View: tabdump
– Change: tabedit or chtab

On certain tables or object attributes (typically on per-node attributes), you can use regular
expressions to set an attribute’s value according to the name of the respective object (for
example, the IP address of compute nodes).

The xCAT database is stored in a SQLite database by default, but other database
management systems can be used (for example, for higher scalability on larger clusters).

For more information, see the xCAT database manual page by using the following command:

$ man 5 xcatdb
Chapter 5. Software deployment 63

5.3.3 xCAT node booting

The xCAT management node can control the boot method (or device) of the compute nodes
with several methods:

� Change the temporary boot device configuration of the bootloader by way of IPMI.

� Change the network boot configuration that is provided to the bootloader by way of DHCP.

� Do not provide a network boot configuration to the bootloader, allowing it to boot from
other device than network adapters.

The methods based on the network boot configuration require the correct automatic boot (or
autoboot) configuration in the bootloader, and dynamic configuration of DHCP and Trivial File
Transfer Protocol (TFTP) servers with general and per-node settings.

It is possible to boot new or undiscovered nodes into node discovery, and known or
discovered nodes into arbitrary stages (for example, operating system provisioning, installed
operating system, basic shell environment, or node discovery again).

For that purpose, the nodes’ bootloader needs to be configured to automatically boot with the
following device order: Primarily, from the network interface on the xCAT management
network (to obtain network and boot configuration by way of DHCP/TFTP from the xCAT
management node), and secondarily from local disks. For more details, see 5.2.3, “Boot order
configuration” on page 57.

On that foundation, any boot image can be specified by the xCAT management node through
DHCP to a node, retrieved by the node through TFTP, and booted. If no boot image is
specified, the node proceeds to boot from disk, which can contain an operating system
installation that is already provisioned.

5.3.4 xCAT node discovery

The xCAT node discovery (or node discovery process) consists of booting a new (or
undiscovered) node, and letting the management node identify (or discover) the node by
using some particular method.

For example, during boot, the node can be offered a special-purpose boot image by the
management node. This process is called genesis (basically, a Linux kernel and a custom
initial RAM file system, or initramfs). Genesis collects identification and hardware information
about the node, informs the management node about it, and waits for instructions. The
management node can then configure and control the discovered node (for example, based
on existing object definitions).

Several node discovery methods are available in xCAT, ranging between more manual and
more automatic:

� Manual node definition (not really “discovery”)

� MTMS-based (Machine Type and Model, and Serial number) discovery (adopted in this
chapter)

� Sequential discovery

� Switch-based discovery
64 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

For more information and details about node discovery methods, see the xCAT
documentation page:

http://xcat-docs.readthedocs.io/en/2.11/guides/admin-guides/manage_clusters/ppc64l
e/discovery/index.html

For example, the MTMS-based discovery can be summarized in the following sequence:

1. The new or undiscovered node is powered on, and the bootloader requests a network
address and boot configuration.

2. The xCAT management node does not recognize the node (that is, the Media Access
Control (MAC) address in the request). It provides the node with a temporary network
address, and pointers to the node discovery boot image.

3. The node applies the network configuration, downloads the node discovery boot image,
and boots it.

4. The boot image collects hardware information (for example, the system’s machine type
and model, serial number, network interfaces’ MAC address, and processor and memory
information) and reports it back to the xCAT management node.

5. The xCAT management node attempts to match part of the reported hardware information
to a node object definition (currently, the system’s machine-type and model, and serial
number).

6. If a match is identified, the xCAT management node then configures that node according
to its object definition (for example, network configuration and next stages to perform) and
updates that object definition with any new hardware information.

The node can then respond to in-band or operating system-level management operations
through SSH on its IP address (available on the running Genesis image).

After node discovery, the new or undiscovered node becomes a known or discovered node
and supports in-band operations, for example, operating system provisioning, software
installation, and configuration, from the xCAT management node.

5.3.5 xCAT BMC discovery

The xCAT BMC discovery occurs automatically after node discovery, and it can be
summarized in the following sequence:

1. The xCAT management node attempts to match the node object definition to a temporary
BMC object definition (with machine type and model, and serial number information) for
new or undiscovered BMCs.

2. If a match is identified, the xCAT management node configures the BMC according to the
BMC attributes in the node object definition, for example network configuration, and
removes the temporary BMC object.

The node can then respond to out-of-band management operations through IPMI on its
BMC’s IP address.

Note: The Genesis image contains the IPMItool utility, which is available for performing
IPMI commands both out-of-band (by way of the BMC IP address) and in-band (by way of
the internal connection between the system and BMC, independently of network
configuration).

This is specially useful in case of problems during the network configuration of the BMC,
which can render it unresponsive out-of-band, but still responsive in-band.
Chapter 5. Software deployment 65

http://xcat-docs.readthedocs.io/en/2.11/guides/admin-guides/manage_clusters/ppc64le/discovery/index.html

The BMC becomes a discovered BMC, and the corresponding node supports out-of-band
operations, for example power control and monitoring, by way of its object definition in the
xCAT management node.

5.3.6 xCAT operating system installation types: Disks and state

The xCAT management node can support different methods for provisioning an OS and
providing persistent state (data) to the compute nodes according to availability of disks and
persistency requirements:

� Diskful and Stateful: The operating system is installed to disk and loaded from disk.
Changes are written to disk (persistent).

� Diskless and Stateless: The operating system is installed by using a different and
contained method in the management node and loaded from the network. Changes are
written to memory and discarded (not persistent).

� Diskless and Statelite: An intermediary type between stateless and stateful. The operating
system is installed by using a different and contained method in the management node
and loaded from the network. Changes are written to memory and can be stored
(persistent) or discarded (not persistent). This method is not supported by xCAT 2.11.

For more information about operating system provisioning and state persistency, see the
xCAT documentation page:

http://xcat-docs.readthedocs.io/en/2.11/guides/admin-guides/manage_clusters/ppc64l
e/index.html

5.3.7 xCAT network interfaces: Primary and additional

In xCAT terminology, a network adapter or interface2 in a node can be either primary or
additional (also known as secondary). Only one primary network adapter exists, and zero or
more additional network adapters can exist.

The primary network interface of a node connects to the xCAT management network (that is,
to the management node), and therefore is used to provision, boot, and manage that node.

An additional network interface connects to an xCAT network other than the xCAT
management network and xCAT service network. Therefore, it is used by xCAT application
networks, xCAT site networks or public networks, or for other purposes.

For more information, see the xCAT documentation page:

http://xcat-docs.readthedocs.io/en/2.11/guides/admin-guides/manage_clusters/ppc64l
e/diskless/customize_image/cfg_second_adapter.html

5.3.8 xCAT software kits

The xCAT provides support to a software package format that is called xCAT Software Kits
(also known as xCAT kits or simply kits) that is tailored for installing software in xCAT clusters.
Kits are used with some products of the IBM HPC Software stack.

An xCAT software kit can include a software product’s distribution packages, configuration
information, scripts, and other files. It also includes xCAT-specific information for installing the

2 The term network interface can be more precise and unambiguous because a single network adapter can provide
multiple network interfaces (for example, one interface per port, or virtual interfaces) to the operating system.
66 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://xcat-docs.readthedocs.io/en/2.11/guides/admin-guides/manage_clusters/ppc64le/index.html
http://xcat-docs.readthedocs.io/en/2.11/guides/admin-guides/manage_clusters/ppc64le/diskless/customize_image/cfg_second_adapter.html

appropriate product pieces, which are referred to as the kit components, to a particular node
according to its environment and role in the xCAT cluster.

The kits are distributed as tarballs, which are files with the .tar extension. The kits can be
either complete or incomplete (which are also known as partial), which indicates whether a kit
contains the packages of a product (complete) or not (incomplete/partial).

The incomplete or partial kits are indicated by filenames with the NEED_PRODUCT_PKGS
string, which can be converted to complete kits when combined with the product’s distribution
packages. Incomplete or partial kits are usually distributed separately from the product’s
distribution media.

After a complete kit is added to the xCAT management node, its kit components can be
assigned or installed to new and existing operating system installations.

For more information about xCAT Software Kits, see the xCAT documentation page:

http://xcat-docs.readthedocs.io/en/2.11/advanced/kit/index.html

5.3.9 xCAT version

This section describes xCAT version 2.11, which includes the following functionalities:

� RHEL Server 7.2 support for PowerPC 64-bit Little-Endian (ppc64le)

– Provisioning types: Diskful/stateful and diskless/stateless

– Support for CUDA Toolkit for NVIDIA GPUs

– Support for Mellanox OFED for Linux for Mellanox InfiniBand adapters

– Support for kits with the IBM HPC Software

– Support for non-virtualized (or bare-metal) mode

� Power System S822LC server with OPAL firmware:

– Hardware discovery for BMCs

– Hardware management with IPMI

For more information about the xCAT 2.11 release, see the following website:

https://github.com/xcat2/xcat-core/wiki/XCAT_2.11_Release_Notes

5.3.10 xCAT scenario

This chapter adopts the following xCAT networks and network addresses:

� Network address scheme: 10.network-number.0.0/16 (16-bit network mask)

� Management network (1 Gigabit Ethernet, or 1 GbE): 10.1.0.0/16

� Service network (1 Gigabit Ethernet): 10.2.0.0/16

� Application network (10 Gigabit Ethernet, or 10 GbE): 10.3.0.0/16

� Application network (10 Gigabit Ethernet): 10.4.0.0/16

Update: After this publication was written, xCAT 2.11.1 was announced. For more
information and details, see the release notes at the following website:

https://github.com/xcat2/xcat-core/wiki/XCAT_2.11.1_Release_Notes
Chapter 5. Software deployment 67

http://xcat-docs.readthedocs.io/en/2.11/advanced/kit/index.html
https://github.com/xcat2/xcat-core/wiki/XCAT_2.11_Release_Notes
https://github.com/xcat2/xcat-core/wiki/XCAT_2.11.1_Release_Notes

� Application network (InfiniBand): 10.5.0.0/16

� Application network (InfiniBand): 10.6.0.0/16

� Site network (Ethernet): 9.114.37.0/24

The management and service networks are combined in a single network interface. They can
be configured on different network interfaces. The network switch VLAN configuration can
ensure that the management node can access all nodes’ both in-band and out-of-band (BMC)
network interfaces, and the non-management nodes can only access in-band network
interfaces (but not out-of-band network interfaces).

The IP addresses are assigned to the nodes according to the following scheme:

� IP address: 10.network-number.rack-number.node-number-in-rack

� xCAT management node: 10.network-number.0.1

� Temporary IP addresses (the dynamic range): 10.network-number.254.sequential-number

The hostnames (or node names) are assigned to the POWER8 (thus, p8) compute nodes
according to the following naming scheme:

� Node naming scheme: p8r<rack-number>n<node-number-in-rack>

� For example, for five racks and six systems per rack: p8r1n1, p8r1n2, ..., p8r2n1, p8r2n2,...
p8r5n6

The following IPMI credentials are adopted for the BMCs:

� Username: ADMIN
� Password: admin

5.4 xCAT Management Node

This section describes the deployment of the xCAT Management Node with RHEL Server 7.2
for PowerPC 64-bit Little-Endian (ppc64le) in non-virtualized (or bare-metal) mode on the IBM
Power System S822LC server.

After you complete the steps in this section, the Management Node will be ready for the
configuration and execution of the xCAT Node Discovery process on other nodes in the
cluster.

For more information and details, see the xCAT Installation Guide for Red Hat Enterprise
Linux, and the Configure xCAT section, at the following location and steps:

http://xcat-docs.readthedocs.org

� Install Guides → Installation Guide for Red Hat Enterprise Linux

� Admin Guide → Manage Clusters → IBM Power LE / OpenPOWER → Configure
xCAT

Note: Depending on the adapters in the systems, the number and type of network
interfaces (for example, 2x 1 GbE, 2x 10 GbE, and 2x InfiniBand) can differ.

This chapter describes the configuration of all the mentioned network interfaces, and the
usage of 1 GbE and InfiniBand network interfaces.
68 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://xcat-docs.readthedocs.org

5.4.1 RHEL server

You can install RHEL server with one of the following methods:

� Virtual media (with the BMC ASM interface)
� Network boot server
� USB device
� Network installation (for example, by way of HTTP)

The Knowledge Center provides instructions for the first three methods (virtual media,
network boot server, and USB device), at this location:

http://ibm.com/support/knowledgecenter/linuxonibm/liabw/liabwinstalllc.htm

This chapter describes the last method (network installation by way of HTTP), which is
officially supported by RHEL. It consists of making the ISO contents available in an HTTP
server.

For more information and details, see the RHEL 7 Installation Guide (section 2.3.3.2
Installation Source on an HTTP, HTTPS or FTP Server), at this location:

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Inst
allation_Guide/sect-making-media-additional-sources.html#sect-making-media-sources
-network

Install the HTTP server
Install an HTTP server with the yum package manager:

yum install httpd

Open ports in the firewall
Complete these steps to open ports in the firewall:

1. Check the firewall zone of the network interface for the HTTP server:

firewall-cmd --get-zone-of-interface=enP3p3s0f3

2. Add the HTTP service to that firewall zone:

firewall-cmd --permanent --zone=public --add-service=http
success

3. Restart the firewall service:

systemctl restart firewalld

4. Confirm that the HTTP service is listed for that zone and network interface:

firewall-cmd --zone=public --list-all
public (default, active)
interfaces: enP3p3s0f3
sources:

Note: It is not possible to use optical media because optical drives are not supported.

Note: The network installation method described requires another system with RHEL 7.

In case another system is not available, see the USB device method, and the RHEL 7
Installation Guide (section 2.2.1 Making Installation USB Media) for more instructions.

Instructions can differ for other Linux distributions.
Chapter 5. Software deployment 69

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-making-media-additional-sources.html#sect-making-media-sources-network
http://ibm.com/support/knowledgecenter/linuxonibm/liabw/liabwinstalllc.htm

services: dhcpv6-client http ssh
ports:
masquerade: no
forward-ports:
icmp-blocks:

Download the installation ISO
Download the RHEL Server 7.2 installation ISO at this location:

https://access.redhat.com/downloads/content/69/ver=/rhel---7/7.2/x86_64/product-so
ftware

Copy ISO contents to HTTP server
Complete these steps to copy the ISO contents to the HTTP server:

1. Mount the ISO in a temporary directory:

mkdir /mnt/rhel7.2-install

mount -o loop,ro -t iso9660 \
RHEL-7.2-20151030.0-Server-ppc64le-dvd1.iso \
/mnt/rhel7.2-install/

2. Copy the ISO contents to the HTTP server’s document root:

cp -r /mnt/rhel7.2-install/ /var/www/html/

3. Unmount the ISO:

umount /mnt/rhel7.2-install/

4. Remove the temporary directory:

rmdir /mnt/rhel7.2-install/

Create a Petitboot configuration file
Complete these steps to create a Perirboot configuration file:

1. Confirm that the kernel and initramfs files are present:

ls -1 /var/www/html/rhel7.2-install/ppc/ppc64/
initrd.img
TRANS.TBL
upgrade.img
vmlinuz

2. Create a Petitboot configuration file, pointing to the HTTP server’s network address and
ISO contents:

server=<ip-address>
dir=/rhel7.2-install

cat <<EOF >/var/www/html/rhel7.2-install.cfg
label RHEL Server 7.2 Network Installation via HTTP
 kernel http://$server/$dir/ppc/ppc64/vmlinuz
 initrd http://$server/$dir/ppc/ppc64/initrd.img
 append inst.repo=http://$server/$dir/
EOF

Note: The Download Red Hat Enterprise Linux page did not provide ISO images for the
PowerPC 64-bit Little-Endian (ppc64le) architecture at the time this publication was written.
70 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

https://access.redhat.com/downloads/content/69/ver=/rhel---7/7.2/x86_64/product-software

3. Confirm that the ISO contents are available in the HTTP server:

curl http://$server/$dir
...
<html>

<head>
<title>Index of /rhel7.2-install</title>

</head>
...

Power on
Complete these steps to power on the system:

1. Power on the system:

ipmitool -I lanplus -H <bmc-ip> -U <username> -P <password> chassis power on

2. Open the console:

ipmitool -I lanplus -H <bmc-ip> -U <username> -P <password> sol activate

3. Wait for the Petitboot panel (Example 5-6).

Example 5-6 Petitboot panel

Petitboot (dev.20151015) 8335-GTA 0000000000000000

System information
System configuration
Language
Rescan devices
Retrieve config from URL
*Exit to shell

Enter=accept, e=edit, n=new, x=exit, l=language, h=help
Welcome to Petitboot

Configure network interface for Petitboot
Complete these steps to configure network interface for Petitboot:

1. In the Petitboot panel, select System configuration.

2. In the Petitboot System Configuration panel (Example 5-7 on page 72), complete these
steps:

a. In the Network section, select one of the following options, according to your network
configuration (either dynamic or static IP address):

• DHCP on all active interfaces

• DHCP on a specific interface

• Static IP configuration

b. In the Device section, select the network interface for accessing the HTTP server. (if
you selected either DHCP on a specific interface or Static IP configuration)

c. In the IP/mask, Gateway, and DNS Server(s) fields, provide the values according to
your network configuration (if you selected Static IP configuration).

d. Press OK.
Chapter 5. Software deployment 71

Example 5-7 Petitboot System Configuration panel, Static IP configuration

Petitboot System Configuration

Network: () DHCP on all active interfaces
() DHCP on a specific interface
(*) Static IP configuration

Device: () enP1p3s0f0 [98:be:94:59:fa:24, link down]
() enP1p3s0f1 [98:be:94:59:fa:25, link down]
() enP1p3s0f2 [98:be:94:59:fa:26, link up]
(*) enP1p3s0f3 [98:be:94:59:fa:27, link up]
() tunl0 [00:00:00:00:08:00, link up]

IP/mask: 9.114.37.179 / 24 (eg. 192.168.0.10 / 24)
Gateway: 9.114.37.254 (eg. 192.168.0.1)
DNS Server(s): 9.12.16.2 (eg. 192.168.0.2)

Disk R/W: () Prevent all writes to disk
(*) Allow bootloader scripts to modify disks

[OK] [Help] [Cancel]

tab=next, shift+tab=previous, x=exit, h=help

Download Petitboot configuration file
Complete these steps to download the Petitboot configuration file:

1. In the Petitboot panel, select Retrieve config from URL.

2. In the Petitboot Config Retrieval panel (Example 5-8).

a. In the Configuration URL field, provide the address of the Petitboot configuration file
on the HTTP server.

b. Press OK.

Example 5-8 Petitboot Config Retrieval panel

Petitboot Config Retrieval

Configuration URL: http://9.114.37.180/rhel7.2-install.cfg

 [OK] [Help] [Cancel]

tab=next, shift+tab=previous, x=exit, h=help

Note: Alternatively, you can perform the network configuration steps in the Petitboot shell.

For the static IP network configuration in Example 5-7:

ip link set enP1p3s0f3 up
ip addr add 9.114.37.179/24 dev enP1p3s0f3
ip route add default via 9.114.37.254
echo nameserver 9.12.16.2 >/etc/resolv.conf
72 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

3. In the Petitboot panel, the boot entry for the Petitboot configuration file is present, if it can
be correctly downloaded and parsed as shown in Example 5-9.

Example 5-9 Petitboot configuration information

Petitboot (dev.20151015) 8335-GTA 0000000000000000

[Network: enP1p3s0f3 / 98:be:94:59:fa:27]
 RHEL Server 7.2 Network Installation via HTTP

System information
System configuration
Language
Rescan devices
*Retrieve config from URL
Exit to shell

Enter=accept, e=edit, n=new, x=exit, l=language, h=help
Info: Config file rhel7.2-install.cfg parsed

Configure network boot options for RHEL installation
To configure network boot options for RHEL installation, complete these steps:

1. In the Petitboot panel, place the cursor in RHEL Server 7.2 Network Installation via
HTTP, and press the e key (edit).

2. In the Petitboot Option Editor panel (Example 5-10), complete these steps:

a. In the Boot arguments field, provide the network boot options (for the installer) for the
network interface accessing the HTTP server, according to your network configuration.

The boot options used are: ip, nameserver (optional), ifname (optional). The boot
option inst.repo has been provided in the Petitboot configuration file.

For example, for the network configuration in Example 5-7 on page 72:

• ifname=eth0:98:be:94:59:fa:27

• ip=9.114.37.179::9.114.37.254:255.255.255.0::eth0:none

• nameserver=9.12.16.2

The options are listed in multiple lines for clarity, but are entered in a single line in
the Boot arguments field.

b. Press OK.

Example 5-10 Petitboot Option Editor panel

Petitboot Option Editor

Device: (*) Specify paths/URLs manually

Note: The network boot options are required in order for the initramfs to configure
the network interface at boot time, and download files for starting the installation.

For more information and details about network boot options, see the RHEL 7
Installation Guide (chapter 20 Boot options, section Network boot options) at the
following website:

http://red.ht/25OX76a
Chapter 5. Software deployment 73

http://red.ht/25OX76a

Kernel: http://9.114.37.180/rhel7.2-install/ppc/ppc64/vmlinuz
Initrd: http://9.114.37.180/rhel7.2-install/ppc/ppc64/initrd.img
Device tree:
Boot arguments: inst.repo=http://9.114.37.180/rhel7.2-install/ <other options>

 [OK] [Help] [Cancel]

tab=next, shift+tab=previous, x=exit, h=help

Boot network installation
Complete these steps to boot the network installation:

1. In the Petitboot panel, select RHEL Server 7.2 Network Installation via HTTP.

2. Wait for the installer to start (Example 5-11).

Example 5-11 Petitboot panel, booting the RHEL Server 7.2 Network Installation

Petitboot (dev.20151015) 8335-GTA 0000000000000000

[Network: enP1p3s0f3 / 98:be:94:59:fa:27]
* RHEL 7.2 Network Install via HTTP

System information
System configuration
Language
Rescan devices
Retrieve config from URL
Exit to shell

Enter=accept, e=edit, n=new, x=exit, l=language, h=help
The system is going down NOW!t
Sent SIGTERM to all processes
Sent SIGKILL to all processes
<...>
[...] OPAL V3 detected !
<...>
[...] Using PowerNV machine description
<...>
[...] systemd[1]: Detected architecture ppc64-le.
[...] systemd[1]: Running in initial RAM disk.

Welcome to Red Hat Enterprise Linux ComputeNode 7.2 (Maipo)
dracut-033-359.el7 (Initramfs)!

<...>
[...] dracut-initqueue[1708]: % Total % Received % Xferd <...>
[...] dracut-initqueue[1708]: Dload Upload Total Spent Left Speed
100 260M 100 260M 0 0 112M 0 <...>
<...>

Welcome to Red Hat Enterprise Linux ComputeNode 7.2 (Maipo)!

<...>
Starting installer, one moment...
74 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

anaconda 21.48.22.56-1 for Red Hat Enterprise Linux 7.2 started.
<...>

Start VNC mode installation
The installation offers the option to start the VNC mode (remote graphical-based installation).
You can start the VNC mode with the following steps (Example 5-12):

1. Select option 1) Start VNC (type 1, and press Enter).

2. Provide the VNC password, and confirm it.

The installation starts a VNC server.

Example 5-12 RHEL Server 7.2 Network Installation: Start VNC

Starting installer, one moment...
anaconda 21.48.22.56-1 for Red Hat Enterprise Linux 7.2 started.
<...>
==
==
VNC

Text mode provides a limited set of installation options. It does not offer cust
om partitioning for full control over the disk layout. Would you like to use VNC
mode instead?

1) Start VNC

2) Use text mode

Please make your choice from above ['q' to quit | 'c' to continue |
'r' to refresh]: 1
==
==
VNC Password

Please provide VNC password (must be six to eight characters long).
You will have to type it twice. Leave blank for no password

Note: Alternatively, you can skip the steps related to downloading Petitboot configuration
file and configuring network boot options, and boot the network installation with the
network boot options from the Petitboot shell.

For the configuration in Example 5-10 on page 73:

wget http://9.114.37.180/rhel7.2-install/ppc/ppc64/vmlinuz
wget http://9.114.37.180/rhel7.2-install/ppc/ppc64/initrd.img
kexec \

-l vmlinuz \
-i initrd.img \
-c ‘inst.repo=http://9.114.37.180/rhel7.2-install/
ip=9.114.37.179::9.114.37.254:255.255.255.0::eth0:none
nameserver=9.12.16.2
ifname=eth0:98:be:94:59:fa:27’ \
-e

Notice that the argument of the -c option has quotes, and no line breaks (just spaces).
Chapter 5. Software deployment 75

Password:
Password (confirm):
<...> Starting VNC...
<...> The VNC server is now running.
<...>

You chose to execute vnc with a password.

<...> Please manually connect your vnc client to <hostname>:1 (9.114.37.179:1) to
begin the install.
<...> Attempting to start vncconfig

Connect to VNC mode installation
You can connect to the VNC mode installation with a VNC client (viewer) from your
workstation with the following command:

� Direct connection from workstation to system:

$ vncviewer <system-address>:<display number>

For example, using the values in Example 5-12 on page 75:

$ vncviewer 9.114.37.179:1

� Indirect connection from workstation to system, with an intermediary system (SSH tunnel):

$ ssh -N -L <local-port>:<system-address>:<5900+display> <intermediary-address>

For example, using the system with the HTTP server as an intermediary system:

$ ssh -N -L 55901:9.114.37.179:5901 9.114.37.180

Then, connect to the local host/port:

$ vncviewer 127.0.0.1:55901

After connected, the VNC client prompts for the password, and, upon successful
authentication, provides some output (Example 5-13), and display a window with the
graphical installation.

Example 5-13 RHEL Server 7.2 Network Installation: VNC client output

$ vncviewer 127.0.0.1:59001
Connected to RFB server, using protocol version 3.8

Note: Linux distributions usually include packages that provide a VNC client.

You can use the package manager to search for VNC-related packages and install an
example VNC client with the following commands:

Fedora-based Linux distributions (for example, RHEL, CentOS):

$ yum search vnc
$ sudo yum install tigervnc

Debian-based Linux distributions (for example, Ubuntu):

$ apt-cache search vnc
$ sudo apt-get install xtightvncviewer

The example VNC packages provide the vncviewer command.
76 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Performing standard VNC authentication
Password:
Authentication successful
Desktop name "Red Hat Enterprise Linux 7.2 installation on host
redbook01.pok.stglabs.ibm.com"
<...>

Install RHEL Server 7.2
Proceed with the RHEL Server 7.2 installation. For more information and details, see the
RHEL 7 Installation Guide at the following website:

http://red.ht/25OX76a

When the installation is complete, it prompts you to reboot the system.

Boot the RHEL Server 7.2
After the system boot reaches the Petitboot bootloader, it lists boot entries for RHEL Server
7.2 (rescue and default modes), and automatically boots it after a few seconds, according to
the system configuration for automatic boot (Example 5-14).

Example 5-14 RHEL Server 7.2: boot process from Petitboot to the Login prompt

Petitboot (dev.20151015) 8335-GTA 0000000000000000

[Disk: sda2 / 1fa92838-dfd3-403b-994a-2c4c2ecee5cf]
Red Hat Enterprise Linux Server (0-rescue-6e9bbfaeaa954952a3c89155d5746cb6)

* Red Hat Enterprise Linux Server (3.10.0-327.el7.ppc64le) 7.2 (Maipo)

System information
System configuration
Language
Rescan devices
Retrieve config from URL
Exit to shell

Enter=accept, e=edit, n=new, x=exit, l=language, h=help
Info: Booting in 3 sec: Red Hat Enterprise Linux Server (3.10.0-327.el7.ppc64le
<...>
[...] OPAL V3 detected !
[...] Reserving 4096MB of memory at 128MB for crashkernel (System RAM: 262144MB)
[...] Using PowerNV machine description
<...>
[...] systemd[1]: Detected architecture ppc64-le.
<...>
Welcome to Red Hat Enterprise Linux Server 7.2 (Maipo)!
<...>
Red Hat Enterprise Linux Server 7.2 (Maipo)
Kernel 3.10.0-327.el7.ppc64le on an ppc64le

redbook01 login:

Configure RHEL Server 7.2 package repository
To install additional packages and satisfy package dependencies for xCAT, configure a yum
package repository for the RHEL Server 7.2 packages.
Chapter 5. Software deployment 77

http://red.ht/25OX76a

You can configure the system for the RHEL regular package update channels, or at least, the
RHEL Server 7.2 DVD 1 (or Binary DVD). For simplicity, this chapter describes the latter.

You can configure the package repository for RHEL Server 7.2 DVD 1 in one of the following
ways:

� Contents in the HTTP server:

a. Install the RPM GPG key:

rpm --import http://9.114.37.180/rhel7.2-install/RPM-GPG-KEY-redhat-release

b. Create the yum package repository file:

cat <<EOF > /etc/yum.repos.d/rhel72-dvd1.repo
[rhel-7.2-dvd1]
name=RHEL Server 7.2 DVD1 (HTTP)
baseurl=http://9.114.37.180/rhel7.2-install/
enabled=1
gpgcheck=1
EOF

� Contents in local ISO file:

a. Configure a mountpoint for the ISO:

cp /path/to/RHEL-7.2-20151030.0-Server-ppc64le-dvd1.iso /mnt/

echo '/mnt/RHEL-7.2-20151030.0-Server-ppc64le-dvd1.iso /mnt/rhel7.2-dvd1
iso9660 defaults,loop,ro 0 0' >> /etc/fstab

mkdir /mnt/rhel7.2-dvd1
mount /mnt/rhel7.2-dvd1

b. Install the RPM GPG key:

rpm --import /mnt/rhel7.2-dvd1/RPM-GPG-KEY-redhat-release

c. Create the yum package repository file:

cat <<EOF >/etc/yum.repos.d/rhel7.2-dvd1.repo
[rhel-7.2-dvd1]
name=RHEL 7.2 Server DVD1 (ISO)
baseurl=file:///mnt/rhel7.2-dvd1
enabled=1
gpgcheck=1
EOF

You can verify that the package repository is configured correctly with the following command:

yum repolist
<...>
rhel-7.2-dvd1 | 4.1 kB 00:00:00
(1/2): rhel-7.2-dvd1/group_gz | 132 kB 00:00:00
(2/2): rhel-7.2-dvd1/primary_db | 2.9 MB 00:00:00
repo id repo name status
rhel-7.2-dvd1 RHEL 7.2 Server DVD1 (ISO) 3,398
repolist: 3,398
78 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Enable the rpcbind service
The xCAT installs and attempts to start the NFS server. However, the nfs service fails to start
if the rpcbind service is not yet started as shown in Example 5-15. To resolve this problem,
complete the following steps:

1. Install the nfs-utils package for the NFS server and services:

yum install nfs-utils

2. Enable the rpcbind service to start automatically on system boot:

systemctl enable rpcbind.service

3. Start the rpcbind service:

systemctl start rpcbind.service

Example 5-15 RHEL Server 7.2: nfs service fails to start if the rpcbind service is not running

systemctl start nfs.service
Job for nfs-server.service failed <...>
See "systemctl status nfs-server.service" <...>

systemctl status nfs-server.service
<...>
 Active: failed (Result: exit-code) since ...; 9s ago
 Process: ... ExecStart=/usr/sbin/rpc.nfsd ... (code=exited, status=1/FAILURE)
<...>
<...> systemd[1]: Starting NFS server and services...
<...> rpc.nfsd[...]: rpc.nfsd: writing fd to kernel failed: errno 111 (Connection
refused)
<...>
<...> systemd[1]: Failed to start NFS server and services.
<...>

The nfs service then starts correctly (Example 5-16).

Example 5-16 RHEL Server 7.2: nfs service starts correctly if the rpcbind service is running

systemctl start nfs.service

systemctl status nfs-server.service
<...>
 Active: active (exited) since ...; 3s ago
 Process: ... ExecStart=/usr/sbin/rpc.nfsd $... (code=exited, status=0/SUCCESS)
<...>
<...> systemd[1]: Starting NFS server and services...
<...> systemd[1]: Started NFS server and services.

Disable SELinux
The xCAT 2.11 requires SELinux to be disabled because it is enabled by default on the RHEL
Server 7.2.

You can disable it with a change to the /etc/selinux.conf file, and a reboot (Example 5-15):

1. Verify SELinux is enabled (current status and configuration file):

getenforce
Enforcing
Chapter 5. Software deployment 79

grep ^SELINUX= /etc/selinux/config
SELINUX=enforcing

2. Disable SELinux in the configuration file:

sed 's/^SELINUX=.*/SELINUX=disabled/' -i /etc/selinux/config

grep ^SELINUX= /etc/selinux/config
SELINUX=disabled

3. Reboot the system:

reboot

4. Verify SELinux is disabled (current status):

getenforce
Disabled

5.4.2 xCAT packages

The xCAT is a collection of packages that are available for download in the xCAT project page
at the following website:

http://xcat.org/download.html

The xCAT packages are organized into two package repositories:

� xCAT Core Packages: Packages with the xCAT.

This package repository is available in three streams (or types):

– Release (or Stable) builds: The latest, officially released (general availability) version of
xCAT.

– Snapshot Builds: Unreleased changes for the next refresh of current version of xCAT.

– Development Builds: Unreleased changes for the next version of xCAT.

� xCAT Dependency Packages: Required packages that are not provided by the Linux
distribution.

Each package repository is available either as an online repository or local (or offline)
repository, both as RPM packages (for RHEL and SUSE Linux Enterprise Server (SLES)) and
Debian packages (for Ubuntu).

This chapter describes the local repository method with RPM packages.

Create local package repositories by using these steps:

1. Install the bzip2 package, which is not installed with the minimal installation package set:

yum install bzip2

2. Create a local package repository for xCAT Core Packages (xCAT-core) Release tarball by
using these steps:

a. Download and extract the xCAT-core tarball:

mkdir -p /root/software/xcat
cd /root/software/xcat

Note: For the online repository method, download the xCAT-core.repo and xCAT-dep.repo
files into the /etc/yum.repos.d directory.
80 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://xcat.org/download.html

curl -sOL http://xcat.org/files/xcat/xcat-core/2.11.x_Linux/xcat-core/
xcat-core-2.11-linux.tar.bz2

tar xf xcat-core-2.11-linux.tar.bz2

b. Run the mklocalrepo.sh script:

./xcat-core/mklocalrepo.sh
/root/software/xcat

This process creates the xCAT-core.repo file in the/etc/yum.repos.d directory:

cat /etc/yum.repos.d/xCAT-core.repo
[xcat-2-core]
name=xCAT 2 Core packages
baseurl=file:///root/software/xcat/xcat-core
enabled=1
gpgcheck=1
gpgkey=file:///root/software/xcat/xcat-core/repodata/repomd.xml.key

c. Import the RPM GPG key:

rpm --import xcat-core/repodata/repomd.xml.key

d. Verify that the package repository is configured correctly:

yum repolist
<...>
repo id repo name status
rhel-7.2-dvd1 RHEL 7.2 Server DVD1 (ISO) 3,398
xcat-2-core xCAT 2 Core packages 18
repolist: 3,416

3. Create a local package repository for xCAT Dependency Packages (xCAT-deps) tarball:

a. Download and extract the xCAT-deps tarball:

curl -sOL http://xcat.org/files/xcat/xcat-dep/2.x_Linux/
xcat-dep-2.11.tar.bz2

tar xf xcat-dep-2.11.tar.bz2

b. Run the mklocalrepo.sh script for this Linux distribution and processor architecture:

./xcat-dep/rh7/ppc64le/mklocalrepo.sh
/root/software/xcat

This process creates the xCAT-dep.repo file in the/etc/yum.repos.d directory:

cat /etc/yum.repos.d/xCAT-dep.repo
[xcat-dep]
name=xCAT 2 depedencies
baseurl=file:///root/software/xcat/xcat-dep/rh7/ppc64le
enabled=1
gpgcheck=1
gpgkey=file:///root/software/xcat/xcat-dep/rh7/ppc64le/repodata/repomd.xml.k
ey

c. Import the RPM GPG key:

rpm --import xcat-dep/rh7/ppc64le/repodata/repomd.xml.key

d. Verify that the package repository is configured correctly:

yum repolist
<...>
Chapter 5. Software deployment 81

repo id repo name status
rhel-7.2-dvd1 RHEL 7.2 Server DVD1 (ISO) 3,398
xcat-2-core xCAT 2 Core packages 18
xcat-dep xCAT 2 depedencies 30
repolist: 3,446

Install xCAT packages
Complete these steps to install the xCAT packages:

1. Install the xCAT package.

This process installs the xCAT and any required package dependencies, and performs
some initialization steps for the xCAT (Example 5-17):

Example 5-17 xCAT: Package installation

yum install xCAT
<...>
Is this ok [y/d/N]: y
<...>
 Installing : xCAT-2.11-snap201511300543.ppc64le
<...>
Generating new node hostkeys...
<...>
NFS has been restarted.
<...>
Created xCAT certificate.
<...>
Restarting xcatd (via systemctl): [OK]
dns server has been enabled on boot.
<...>
httpd has been restarted.
xCAT is now running, it is recommended to tabedit networks
<...>
Running '/opt/xcat/sbin/mknb ppc64', triggered by the installation/update of
xCAT-genesis-scripts-ppc64 ...
Creating genesis.fs.ppc64.gz in /tftpboot/xcat
The 'mknb ppc64' command completed successfully.
<...>
Installed:

xCAT.ppc64le 0:2.11-snap201511300543
<...>
Complete!

2. Verify that the xCAT service is running:

systemctl status xcatd.service
xcatd.service - LSB: xCATd
 Loaded: loaded (/etc/rc.d/init.d/xcatd)
 Active: active (running) since ...; 4min 37s ago
<...>

3. Verify the version information and node type:

source /etc/profile.d/xcat.sh

lsxcatd -a
82 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Version 2.11 (git commit 9ea36ca6163392bf9ab684830217f017193815be, built Mon
Nov 30 05:43:11 EST 2015)
This is a Management Node
dbengine=SQLite

Configure logging to /var/log/messages
At the time of writing, an xCAT issue3 disabled any logging to the /var/log/messages file at
installation time. In order to restore the default behavior, complete the following steps:

1. Verify logging to /var/log/messages is disabled (line commented with leading # symbol):

grep '*\.info' /etc/rsyslog.conf
#*.info;mail.none;authpriv.none;cron.none /var/log/messages

2. Remove the leading # symbol from the line:

sed '/^#*\.info/ s/^#//' -i /etc/rsyslog.conf

3. Verify that the leading # symbol is removed from the line:

grep '*\.info' /etc/rsyslog.conf
*.info;mail.none;authpriv.none;cron.none /var/log/messages

4. Restart the rsyslog service:

systemctl restart rsyslog.service

5. Verify that logging is restored to /var/log/messages:

tail /var/log/messages
<...>
<...> systemd: Started System Logging Service.

5.4.3 Static IP network configuration

The xCAT requires static IP network configuration for the Management Node.

You can configure an Ethernet network interface with static IP address in one of many ways.
This chapter describes the method that uses sysconfig or ifcfg files, and the nmcli
command (Network Manager Command Line Interface).

For more information and details, see the RHEL 7 Networking Guide, at this location and
navigation steps:

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Netw
orking_Guide/index.html

This section employs content from the following sections of the RHEL 7 Networking Guide:

� Section 1.9 Network configuration using sysconfig files

� Section 2.4.1 Configuring a network interface with ifcfg files

Note: The source command for the xcat.sh file is only required on current login shells.

3 https://github.com/xcat2/xcat-core/issues/438

Note: This requirement applies to any xCAT networks with communication between the
Management Node and other nodes (for example, Management and Service Networks).
Chapter 5. Software deployment 83

https://github.com/xcat2/xcat-core/issues/438
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/index.html

In order to configure a network interface with static IP address, complete the following steps:

� For the Management Network:

a. Create the /etc/sysconfig/network-scripts/ifcfg-<network-interface> file.

For the scenario described in this chapter, the file looks like this:

cat <<EOF >/etc/sysconfig/network-scripts/ifcfg-enP3p3s0f2
DEVICE=enP3p3s0f2
ONBOOT=yes
BOOTPROTO=none
IPADDR=10.1.0.1
PREFIX=16
IPV6INIT=yes
EOF

b. Verify that the network configuration is not in effect immediately (no IPv4 or IPv6
address):

ip addr show enP3p3s0f2
4: enP3p3s0f2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
qlen 1000
 link/ether 98:be:94:59:fa:26 brd ff:ff:ff:ff:ff:ff

c. Reload the network configuration for that network interface with the nmcli command.

The network configuration is loaded automatically on system boot.

nmcli connection load /etc/sysconfig/network-scripts/ifcfg-enP3p3s0f2

d. Verify that the network configuration is in effect (including an IPv6 link-local address):

ip addr show enP3p3s0f2
4: enP3p3s0f2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
qlen 1000
 link/ether 98:be:94:59:fa:26 brd ff:ff:ff:ff:ff:ff
 inet 10.1.0.1/16 brd 10.1.255.255 scope global enP3p3s0f2
 valid_lft forever preferred_lft forever
 inet6 fe80::9abe:94ff:fe59:fa26/64 scope link
 valid_lft forever preferred_lft forever

� For the Service Network:

Depending on your network environment and configuration, the Management Node can
use different or shared network interfaces for the Management and Service Networks.

– For different network interfaces, perform the steps for the Management Network, and
replace the network interface and configuration for the Service Network.

– For shared network interface, modify the respective ifcfg file, and define IPADDR<n>
and PREFIX<n> (or NETMASK<n>) options for each network.

For more information and details, see the Red Hat Knowledgebase Solution article4 How
to configure multiple IP addresses on a single interface? and the documentation for ifcfg
files in the /usr/share/doc/initscripts-*/sysconfig.txt file.

For the scenario described in this chapter, the file looks like this:

cat <<EOF >/etc/sysconfig/network-scripts/ifcfg-enP3p3s0f2
DEVICE=enP3p3s0f2
ONBOOT=yes
BOOTPROTO=none
IPADDR0=10.1.0.1

4 https://access.redhat.com/solutions/915193
84 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

https://access.redhat.com/solutions/915193

PREFIX0=16
IPADDR1=10.2.0.1
PREFIX1=16
IPV6INIT=yes
EOF

a. Reload the network configuration for that network interface with the nmcli command.

The network configuration is loaded automatically on system boot.

nmcli connection load /etc/sysconfig/network-scripts/ifcfg-enP3p3s0f2

b. Apply the network configuration changes with the ifdown and ifup commands:

ifdown enP3p3s0f2
ifup enP3p3s0f2

c. Verify that the network configuration is in effect (including the other IPv4 address):

ip addr show enP3p3s0f2
4: enP3p3s0f2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
qlen 1000
 link/ether 98:be:94:59:fa:26 brd ff:ff:ff:ff:ff:ff
 inet 10.1.0.1/16 brd 10.1.255.255 scope global enP3p3s0f2
 valid_lft forever preferred_lft forever
 inet 10.2.0.1/16 brd 10.2.255.255 scope global enP3p3s0f2
 valid_lft forever preferred_lft forever
 inet6 fe80::9abe:94ff:fe59:fa26/64 scope link
 valid_lft forever preferred_lft forever

5.4.4 Hostname and aliases

Configure the hostname to be resolved to the IP address in the Management Network by
completing these steps:

1. Configure the hostname in the /etc/hostname file:

echo 'xcat-mn.xcat-cluster' > /etc/hostname

2. Add the host aliases in the /etc/hosts file:

echo '10.1.0.1 xcat-mn.xcat-cluster xcat-mn' >> /etc/hosts

3. Verify the short and long (fully qualified domain name) hostnames are detected:

hostname --short
xcat-mn

hostname --long
xcat-mn.xcat-cluster

4. Verify that the short hostname resolves to the long hostname, and the ping test works:

ping -c1 xcat-mn
PING xcat-mn.xcat-cluster (10.1.0.1) 56(84) bytes of data.
64 bytes from xcat-mn.xcat-cluster (10.1.0.1): icmp_seq=1 ttl=64 time=0.025 ms

--- xcat-mn.xcat-cluster ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.025/0.025/0.025/0.000 ms
Chapter 5. Software deployment 85

5.4.5 xCAT networks

The xCAT networks configuration is stored the networks table, and is also available as objects
of the network type.

The makenetworks command populates the networks table based on the current configuration
of the network interfaces. It is run automatically during the installation of xCAT packages.

You can use the following commands to create, list, modify, and remove, network objects, and
list, and edit, the networks table, respectively:

� mkdef -t network
� lsdef -t network
� chdef -t network
� rmdef -t network
� tabdump networks
� tabedit networks

To configure the xCAT networks, populate the networks table with the makenetworks
command, remove any non-xCAT networks, rename the xCAT networks (optional), and create
any other xCAT networks.

For the scenario described in this chapter, complete these steps:

1. Populate the networks table with the makenetworks command:

makenetworks

lsdef -t network
10_1_0_0-255_255_0_0 (network)
10_2_0_0-255_255_0_0 (network)
9_114_37_0-255_255_255_0 (network)
fd55:faaf:e1ab:33e::/64 (network)

2. Remove any non-xCAT networks:

rmdef -t network 9_114_37_0-255_255_255_0
1 object definitions have been removed.

rmdef -t network fd55:faaf:e1ab:33e::/64
1 object definitions have been removed.

lsdef -t network
10_1_0_0-255_255_0_0 (network)
10_2_0_0-255_255_0_0 (network)

3. Rename the xCAT networks (optional):

chdef -t network 10_1_0_0-255_255_0_0 -n net-mgmt
Changed the object name from 10_1_0_0-255_255_0_0 to net-mgmt.

chdef -t network 10_2_0_0-255_255_0_0 -n net-svc
Changed the object name from 10_1_0_0-255_255_0_0 to net-mgmt.

lsdef -t network
net-mgmt (network)
net-svc (network)
86 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

4. Create any other xCAT networks:

mkdef -t network net-app-10gbe-port1 net=10.3.0.0 mask=255.255.0.0
1 object definitions have been created or modified.

mkdef -t network net-app-10gbe-port2 net=10.4.0.0 mask=255.255.0.0
1 object definitions have been created or modified.

mkdef -t network net-app-ib-port1 net=10.5.0.0 mask=255.255.0.0
1 object definitions have been created or modified.

mkdef -t network net-app-ib-port2 net=10.6.0.0 mask=255.255.0.0
1 object definitions have been created or modified.

lsdef -t network
net-app-10gbe-port1 (network)
net-app-10gbe-port2 (network)
net-app-ib-port1 (network)
net-app-ib-port2 (network)
net-mgmt (network)
net-svc (network)

5. Verify the xCAT networks configuration.

You can use the lsdef command to list the configuration of a specific xCAT network or
networks. The following example lists the Management Network and Application Network
for InfiniBand port 1:

lsdef -t network net-mgmt,net-app-ib-port1
Object name: net-mgmt
 gateway=<xcatmaster>
 mask=255.255.0.0
 mgtifname=enP3p3s0f2
 net=10.1.0.0
 tftpserver=10.1.0.1
Object name: net-app-ib-port1
 mask=255.255.0.0
 net=10.5.0.0

You can use the tabdump command to list the configuration of all xCAT networks:

tabdump networks
#netname,net,mask,mgtifname,<...>
"net-mgmt","10.1.0.0","255.255.0.0","enP3p3s0f2",<...>
"net-svc","10.2.0.0","255.255.0.0","enP3p3s0f2",<...>
"net-app-10gbe-port1","10.3.0.0","255.255.0.0",,,,,,,,,,,,,,,,
"net-app-10gbe-port2","10.4.0.0","255.255.0.0",,,,,,,,,,,,,,,,
"net-app-ib-port1","10.5.0.0","255.255.0.0",,,,,,,,,,,,,,,,
"net-app-ib-port2","10.6.0.0","255.255.0.0",,,,,,,,,,,,,,,,

Note: The Application Networks lack the mgtifname attribute (management interface
name) because the Management Node is not connected to them (that is, only some
other nodes are, such as the Compute Nodes, and Login Nodes).

However, Application Networks must be defined in the Management Node for it to
perform their network configuration on other nodes (via Management Network).
Chapter 5. Software deployment 87

5.4.6 DNS server

The xCAT configures the DNS server based on attributes of the site table, the /etc/hosts
file, and node definitions. The makedns command applies the configuration.

The following attributes of the site table are used to configure the DNS server:

� dnsinterfaces: hostname (optional) and network interfaces for the DNS server to listen
on.

� domain: DNS domain name for the cluster.

� forwarders: DNS servers for resolving non-cluster names, that is, the site’s or external
DNS servers.

� master: IP address of the xCAT management node on the management network, as
known by the nodes.

� nameservers: DNS servers that are used by the compute nodes. Usually, the IP address of
the management node. The value <xcatmaster> indicates that the management node or
service node that is managing a node (automatically defined to the correct IP address in
the respective xCAT network) is more portable.

For more information, see the manual page of the site table with the following command:

man 5 site

The makedns command generates the following configuration files for the DNS server, and
reloads it:

� /etc/named.conf: main configuration file (generated by makedns -n).

� /var/named/*: zone files for network names and addresses (generated by makedns -n)

To perform the configuration of the DNS server, complete the following steps:

1. Set the dnsinterfaces, domain, forwarders, master, and nameservers attributes of the
site table with the chdef command.

For the scenario described in this chapter:

chdef -t site \
 dnsinterfaces='xcat-mn|enP3p3s0f2' \
 domain=xcat-cluster \
 forwarders=9.12.16.2 \
 master=10.1.0.1 \
 nameservers=10.1.0.1
1 object definitions have been created or modified.

You can verify the attributes with the lsdef command:

lsdef -t site -i dnsinterfaces,domain,forwarders,master,nameservers
Object name: clustersite
 dnsinterfaces=xcat-mn|enP3p3s0f2
 domain=xcat-cluster
 forwarders=9.12.16.2
 master=10.1.0.1
 nameservers=10.1.0.1

2. Generate new configuration files for the DNS server with the makedns -n command.

The DNS server is automatically (re)started.

makedns -n
Handling xcat-mn.xcat-cluster in /etc/hosts.
88 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Handling localhost in /etc/hosts.
Handling localhost in /etc/hosts.
Getting reverse zones, this take several minutes for a large cluster.
Completed getting reverse zones.
Updating zones.
Completed updating zones.
Restarting named
Restarting named complete
Updating DNS records, this take several minutes for a large cluster.
Completed updating DNS records.

3. Verify that the DNS server is resolving internal and external names with the host
command by completing these steps:

a. Install the bind-utils package (not installed with the minimal installation package set):

yum install bind-utils

b. Verify the name resolution of internal names:

For example, the Management Node (that is, its short and long hostnames are
associated, and are resolved to its IP address in the Management Network):

host xcat-mn 10.1.0.1
Using domain server:
Name: 10.1.0.1
Address: 10.1.0.1#53
Aliases:

xcat-mn.xcat-cluster has address 10.1.0.1

c. Verify the name resolution of external names as well:

host example.com 10.1.0.1
Using domain server:
Name: 10.1.0.1
Address: 10.1.0.1#53
Aliases:

example.com has address 93.184.216.34
example.com has IPv6 address 2606:2800:220:1:248:1893:25c8:1946

5.4.7 DHCP server

The xCAT configures the DHCP server based on attributes of the site and networks tables,
and the node definitions (for reservation of IP address leases based on MAC address). The
makedhcp command applies the configuration.

Note: It is important that no errors are reported in the output of the makedns command.
The proper functioning of the DNS server is essential to several features in the xCAT
(for example, node discovery).

If any errors are reported, check the messages, the contents of the /etc/hosts file, and
any existing node definitions (with the lsdef command) for errors or inconsistencies.
Chapter 5. Software deployment 89

The following attributes of the site and networks tables are used to configure the DHCP
server:

� dhcpinterfaces (site table)

Hostname (optional) and network interfaces for the DHCP server to listen on.

� dynamicrange (networks table)

Range of IP addresses that are temporarily assigned during the node discovery process,
which are required in the xCAT management and service networks.

The makedhcp command generates the configuration files for the DHCP server, and reloads it:

� /etc/dhcp/dhcpd.conf: Main configuration file (generated by makedhcp -n)

� /var/lib/dhcpd/dhcpd.leases: IP address leases (generated by makedhcp -a)

To configure of the DHCP server, complete the following steps:

1. Set the dhcpinterfaces attribute of the site table with the chdef command.

For the scenario described in this chapter:

chdef -t site dhcpinterfaces='xcat-mn|enP3p3s0f2'
1 object definitions have been created or modified.

You can verify the attributes with the lsdef command:

lsdef -t site -i dhcpinterfaces
Object name: clustersite
 dhcpinterfaces=xcat-mn|enP3p3s0f2

2. Generate the configuration file for the DHCP server with the makedhcp -n command.

The DHCP server is automatically (re)started.

makedhcp -n
Renamed existing dhcp configuration file to /etc/dhcp/dhcpd.conf.xcatbak

The dhcp server must be restarted for OMAPI function to work
Warning: No dynamic range specified for 10.1.0.0. If hardware discovery is
being used, a dynamic range is required.
Warning: No dynamic range specified for 10.2.0.0. If hardware discovery is
being used, a dynamic range is required.

Despite the message related to the need to restart the DHCP server, it is automatically
restarted, as noticed in the /var/log/messages file:

tail /var/log/messages
<...>
<...> xcat[...]: xCAT: Allowing makedhcp -n for root from localhost
<...> systemd: Starting DHCPv4 Server Daemon...
<...> dhcpd: Internet Systems Consortium DHCP Server 4.2.5
<...>

3. Generate the leases file for the DHCP server with the makedhcp -a command. This step is
only required if any node definitions exist (they do not yet exist in the scenario in this
chapter).

makedhcp -a
90 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

5.4.8 IPMI authentication credentials

The xCAT configures the authentication credentials for IPMI commands (for example, power
management, console sessions, BMC discovery, and network configuration) based on
attributes from node definitions, node groups definitions, and the passwd table (in this order).

To configure IPMI authentication credentials on individual nodes or on node groups, set the
bmcusername and bmcpassword attributes on the node or node group object with the chdef
command:

chdef <node or group> bmcusername=<IPMI username> bmcpassword=<IPMI password>

If the IPMI authentication credentials are common across some or all of the systems’
baseboard management controllers (BMCs), you can set the common credentials in the
passwd table. Any different credentials can be set in the respective node or node group
objects.

To configure the IPMI authentication credentials, complete the following steps:

1. Set the username and password attributes of the ipmi key/row in the passwd table with
either one of the chtab or tabedit commands.

For the scenario adopted in this chapter:

chtab key=ipmi passwd.username=ADMIN passwd.password=admin

2. Verify the setting with the tabdump command:

tabdump -w key==ipmi passwd
#key,username,password,cryptmethod,authdomain,comments,disable
"ipmi","ADMIN","admin",,,,

You can use the tabdump command without filter arguments to list the configuration of all
entries in the passwd table:

tabdump passwd
#key,username,password,cryptmethod,authdomain,comments,disable
"omapi","xcat_key","<...>=",,,,
"ipmi","ADMIN","admin",,,,

5.5 xCAT Node Discovery

This section describes the xCAT Node Discovery (or Hardware Discovery) process. It covers
the configuration steps that are required in the Management Node, and instructions for
performing the discovery of nodes in the cluster. For more information, see 5.3.4, “xCAT node
discovery” on page 64.

The xCAT provides the following methods for node discovery:

� Manual definition: Manual hardware information collection and node object definition. This
example includes required node-specific and xCAT/platform-generic attributes:

mkdef node1 \
groups=all,s822lc \

Note: If the IPMI authentication credentials are not set or invalid, some IPMI-based
commands can show errors like the following:

rpower node status
node: Error: Unauthorized name
Chapter 5. Software deployment 91

ip=10.1.1.1 mac=6c:ae:8b:6a:d4:e installnic=mac primarynic=mac \
bmc=10.2.1.1 bmcusername=ADMIN bmcpassword=admin \
mgt=ipmi cons=ipmi netboot=petitboot

� Machine Type and Model, and Serial Number (MTMS)-based discovery: Automatically
collects MTM and SN information from the node’s BMC and operating system (Genesis),
and match it with a minimal manually defined node object (with mtm and serial attributes).
This process automatically stores the hardware information in the matched node object.

� Sequential discovery: Automatically stores hardware information in a list of minimal node
objects (with no attributes) in a sequential manner, in the order the nodes are booted.

� Switch-based discovery: Automatically identifies the network switch and port for the node
(with the SNPMv3 protocol), and matches it with a minimal manually defined node object
(with switch and switchport attributes). This process automatically stores the hardware
information in the matched node object.

This chapter describes the MTMS-based discovery method.

5.5.1 Verification of network boot configuration and Genesis image files

The xCAT node discovery requires the node to boot the Genesis image from the network. For
more information, see 5.3.4, “xCAT node discovery” on page 64. It is important to verify that
the files for network boot configuration and Genesis image are correctly in place.

The mknb (make network boot) command generates the network boot configuration file
(specified in the /etc/dhcp/dhcpd.conf file) and Genesis image files. It is run automatically
during the installation of xCAT packages.

In order to verify and generate the files for network boot configuration and Genesis image,
perform the following steps:

1. Verify the location of the platform-specific network boot configuration file in the
/etc/dhcp/dhcpd.conf file.

The scenario adopted in this chapter uses OPAL firmware:

grep -A1 OPAL /etc/dhcp/dhcpd.conf
} else if option client-architecture = 00:0e { #OPAL-v3

option conf-file = "http://10.1.0.1/tftpboot/pxelinux.cfg/p/10.1.0.0_16";
--

} else if option client-architecture = 00:0e { #OPAL-v3
option conf-file = "http://10.2.0.1/tftpboot/pxelinux.cfg/p/10.2.0.0_16";

2. Verify that the file exists.

The specified file might not exist in some cases, such as if the mknb command is not run
after a change in the xCAT networks configuration, which is the scenario in this chapter.

cat /tftpboot/pxelinux.cfg/p/10.1.0.0_16
cat: /tftpboot/pxelinux.cfg/p/10.1.0.0_16: No such file or directory

3. If the file does not exist, you can generate it and the Genesis image with the mknb
command for the ppc64 architecture:

mknb ppc64
Creating genesis.fs.ppc64.gz in /tftpboot/xcat

Note: The network boot configuration and Genesis image files are required only for the
xCAT Management Network.
92 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

4. Verify that the file exists. It contains pointers to the platform-specific Genesis image files.

cat /tftpboot/pxelinux.cfg/p/10.1.0.0_16
default xCAT
 label xCAT
 kernel http://10.1.0.1:80//tftpboot/xcat/genesis.kernel.ppc64
 initrd http://10.1.0.1:80//tftpboot/xcat/genesis.fs.ppc64.gz
 append "quiet xcatd=10.1.0.1:3001 "

5. Verify that the files of the Genesis image exist:

ls -lh /tftpboot/xcat/genesis.kernel.ppc64 /tftpboot/xcat/genesis.fs.ppc64.gz
-rw-r--r-- 1 root root 48M Nov 24 22:47 /tftpboot/xcat/genesis.fs.ppc64.gz
-rwxr-xr-x 1 root root 23M Nov 16 08:19 /tftpboot/xcat/genesis.kernel.ppc64

5.5.2 Configuration of the DHCP dynamic range

The xCAT node discovery requires temporary IP addresses for nodes and BMCs until the
association with the respective node objects, and permanent network configuration occur.
The IP address range that is reserved for that purpose is known as dynamic range, an
attribute of network objects, reflected in the configuration file of the DHCP server.

You need to provide temporary IP addresses for the Management and Service Networks to
handle both the in-band network interface (used by the Petitboot bootloader, and Genesis
image) and out-of-band network interface (used by the BMC).

Depending on your network environment and configuration, the Management Node can use
different or shared network interfaces for the Management and Service Networks. This is an
important consideration because the dynamic range is defined per network interface in the
configuration file of the DHCP server.

� For different network interfaces, set the dynamicrange attribute on both the Management
and Service Networks.

� For shared network interface, set the dynamicrange attribute in either one of the
Management or Service Networks.

To set the dynamic range, complete the following steps:

1. Set the dynamicrange attribute for the Management Network with the chdef command.

For the scenario adopted in this chapter:

chdef -t network net-mgmt dynamicrange=10.1.254.1-10.1.254.254
1 object definitions have been created or modified.

You can verify it with the lsdef command:

lsdef -t network net-mgmt -i dynamicrange
Object name: net-mgmt
 dynamicrange=10.1.254.1-10.1.254.254

2. Set the dynamicrange attribute for the Service Network with the chdef command (only
required for different network interfaces).

This step is not required for the scenario in this chapter.

Tip: To increase the verbosity of the node discovery in the nodes (useful for educational
and debugging purposes), remove the quiet argument from the append line in the
network boot configuration file. You can do that with the following command:

sed 's/quiet//' -i /tftpboot/pxelinux.cfg/p/10.1.0.0_16
Chapter 5. Software deployment 93

For example:

chdef -t network net-svc dynamicrange=<start-address>-<end-address>

You can verify it with the lsdef command:

lsdef -t network net-svc -i dynamicrange

3. Generate the configuration file for the DHCP server with the makedhcp -n command.

makedhcp -n
Renamed existing dhcp configuration file to /etc/dhcp/dhcpd.conf.xcatbak

Warning: No dynamic range specified for 10.2.0.0. If hardware discovery is
being used, a dynamic range is required.

4. Verify the dynamic range in the configuration of the DHCP server:

grep 'network\|subnet\|_end\|range' /etc/dhcp/dhcpd.conf
shared-network enP3p3s0f2 {
 subnet 10.1.0.0 netmask 255.255.0.0 {
 range dynamic-bootp 10.1.254.1 10.1.254.254;
 } # 10.1.0.0/255.255.0.0 subnet_end

subnet 10.2.0.0 netmask 255.255.0.0 {
 } # 10.2.0.0/255.255.0.0 subnet_end
} # enP3p3s0f2 nic_end

5.5.3 Configuration of BMCs to DHCP mode

The xCAT node discovery requires the BMCs’ network configuration to occur in DHCP mode
(until the association with the respective node objects, and permanent network configuration
occur).

In order to set the network configuration of the BMCs to DHCP mode, perform the following
steps:

� For BMCs already in DHCP mode:

No action required.

� For BMCs with Static (IP) Address mode and known IP address:

a. Set the IP Address Source attribute to DHCP with the ipmitool command.

Notice that the IP Address Source attribute is currently set to Static Address:

ipmitool -I lanplus -H <ip> -U <user> -P <pass> lan print 1
<...>
IP Address Source : Static Address
IP Address : 192.168.101.29
Subnet Mask : 255.255.255.0
MAC Address : 70:e2:84:14:02:54
<...>

Note: If the BMCs’ network configuration cannot be changed (for example, due to network
restrictions or maintenance requirements), skip the steps required for the BMC network
configuration in the node discovery process. For more information, see 5.5.3,
“Configuration of BMCs to DHCP mode” on page 94, and 5.5.4, “Definition of temporary
BMC objects” on page 96. Then manually set the bmc attribute of one or more nodes to the
respective BMC IP address.
94 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Set it to DHCP:

ipmitool -I lanplus -H <ip> -U <user> -P <pass> lan set 1 ipsrc dhcp

Notice the network configuration changes do not take effect immediately:

ipmitool -I lanplus -H <ip> -U <user> -P <pass> lan print 1
<...>
IP Address Source : DHCP Address
IP Address : 192.168.101.29
Subnet Mask : 255.255.255.0
MAC Address : 70:e2:84:14:02:54
<...>

b. Reboot the BMC with the ipmitool command, which is required for the network
configuration changes to take effect:

ipmitool -I lanplus -H <ip> -U <user> -P <pass> mc reset cold

c. Wait for the BMC to perform initialization and network configuration.

In order to determine when the BMC is back online and acquired an IP address
through DHCP, you can watch the /var/log/messages file for DHCP server log
messages.

For example:

tail -f /var/log/messages
<...>
<...> dhcpd: DHCPDISCOVER from 70:e2:84:14:02:54 via enP3p3s0f2
<...> dhcpd: DHCPOFFER on 10.1.254.1 to 70:e2:84:14:02:54 via enP3p3s0f2
<...> dhcpd: DHCPREQUEST for 10.1.254.1 (10.1.0.1) from 70:e2:84:14:02:54
via enP3p3s0f2
<...> dhcpd: DHCPACK on 10.1.254.1 to 70:e2:84:14:02:54 via enP3p3s0f2
<...>

It is also possible to determine when the BMC is back online with an approach based
on its IPv6 link-local address, which does not change across power cycles, network
configuration steps, and so on (Example 5-18). To identify the IPv6 link-local address
of each BMC in a local network, refer to the next bullet (For BMCs with unknown IP
address).

Example 5-18 Waiting for the BMC with the ping6 command and IPv6 link-local address

while ! ping6 -c 1 <IPv6-link-local-address>%<network-interface>; do echo
Waiting; done; echo Finished
PING fe80::72e2:84ff:fe14:254%enP3p3s0f2(fe80::72e2:84ff:fe14:254) ...
<...>
Waiting
PING fe80::72e2:84ff:fe14:254%enP3p3s0f2(fe80::72e2:84ff:fe14:254)...
<...>
Waiting
<...>
PING fe80::72e2:84ff:fe14:254%enP3p3s0f2(fe80::72e2:84ff:fe14:254) ...
64 bytes from fe80::72e2:84ff:fe14:254: icmp_seq=1 ttl=64 time=0.669 ms
<...>
Finished

d. Verify that the network configuration changes are in effect with the ipmitool command:

ipmitool -I lanplus -H <ip> -U <user> -P <pass> lan print 1
<...>
Chapter 5. Software deployment 95

IP Address Source : DHCP Address
IP Address : 10.1.254.1
Subnet Mask : 255.255.0.0
MAC Address : 70:e2:84:14:02:54
<...>

� For BMCs with unknown IP address (either in DHCP or Static Address mode):

a. Install the nmap package:

yum install nmap

b. Discover one or more IPv6 link-local addresses of one or more BMCs with the nmap
command (Example 5-19).

Example 5-19 Discovering the IPv6 link-local address of BMCs with the nmap command

nmap -6 --script=targets-ipv6-multicast-echo -e enP3p3s0f2

Starting Nmap 6.40 (http://nmap.org) at <...>
Pre-scan script results:
| targets-ipv6-multicast-echo:
| IP: fe80::9abe:94ff:fe59:f0f2 MAC: 98:be:94:59:f0:f2 IFACE: enP3p3s0f2
| IP: fe80::280:e5ff:fe1b:fc99 MAC: 00:80:e5:1b:fc:99 IFACE: enP3p3s0f2
| IP: fe80::280:e5ff:fe1c:9c3 MAC: 00:80:e5:1c:09:c3 IFACE: enP3p3s0f2
| IP: fe80::72e2:84ff:fe14:259 MAC: 70:e2:84:14:02:59 IFACE: enP3p3s0f2
| IP: fe80::72e2:84ff:fe14:254 MAC: 70:e2:84:14:02:54 IFACE: enP3p3s0f2
|_ Use --script-args=newtargets to add the results as targets
WARNING: No targets were specified, so 0 hosts scanned.
Nmap done: 0 IP addresses (0 hosts up) scanned in 2.37 seconds

c. Perform the steps that are described in the Static (IP) Address mode and known IP
address case. Replace the BMC’s IPv4 address in the ipmitool command for the IPv6
link-local address with the network interface as zone index, separated by the percent
symbol. For example, (also described in Example 5-18 on page 95):

<IPv6-link-local-address>%<network-interface>

5.5.4 Definition of temporary BMC objects

The xCAT node discovery requires temporary node objects for BMCs until the association
with the respective node objects, and permanent network configuration occurs.

The temporary BMC objects are created by the bmcdiscover command, which scans an IP
address range for BMCs, and collects information such as machine type and model, serial
number, and IP address. It can provide that information as either objects in the xCAT
database or the respective stanzas (a text-based description format with object name, type,
and attributes). The objects are named after their MTM and SN information (obtained through
IPMI).

The temporary BMC objects are automatically removed during the node discovery process
after the respective node objects are matched and ready to refer to the BMCs. It is a simple
means to have xCAT objects to refer to the BMCs still using temporary IP addresses (not yet
associated with the respective node objects). This configuration allows for running xCAT
commands (for example, power management, and console sessions) before the network
configuration of the BMC occurs.
96 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

The bmcdiscover command has the following requirements:

� The BMCs’ IP addresses to be within a known range (satisfied with the dynamic range
configuration, in 5.5.2, “Configuration of the DHCP dynamic range” on page 93, and BMCs
in DHCP mode, in 5.5.3, “Configuration of BMCs to DHCP mode” on page 94).

� The IPMI authentication credentials to be defined either in the passwd table (satisfied in
5.4.8, “IPMI authentication credentials” on page 91) or by using command arguments.

The bmcdiscover command can be used with the following arguments:

� -z: Provides object definition stanza.

� -t: Provides object with attributes for BMC node type and hardware type.

� -w: Writes objects to the xCAT database.

To define temporary objects for the BMCs, complete the following steps:

1. Run the bmcdiscover command on the dynamic range of IP addresses:

bmcdiscover --range 10.1.254.1-254 -t -w
node-8335-gta-0000000000000000:
 objtype=node
 groups=all
 bmc=10.1.254.1
 cons=ipmi
 mgt=ipmi
 mtm=8335-GTA
 serial=0000000000000000
 nodetype=mp
 hwtype=bmc

2. Verify that the BMC objects are listed as node objects with the lsdef command.

Note the attributes/values nodetype=mp and hwtype=bmc.

lsdef
node-8335-gta-0000000000000000 (node)

lsdef node-8335-gta-0000000000000000
Object name: node-8335-gta-0000000000000000
 bmc=10.1.254.1
 cons=ipmi
 groups=all
 hwtype=bmc
 mgt=ipmi
 mtm=8335-GTA
 nodetype=mp
 postbootscripts=otherpkgs
 postscripts=syslog,remoteshell,syncfiles
 serial=0000000000000000

Note: The serial number is set to zeroes in the early system revision that is used for this
book. This information is present on other systems (for example, from normal customer
orders).
Chapter 5. Software deployment 97

When BMC objects, and IPMI authentication credentials are defined, you can run xCAT
commands on the BMC objects, such as these examples:

� rpower for power management
� rcons for console sessions (requires the makeconservercf command first)
� rsetboot for boot-method selection

5.5.5 Definition of node objects

The xCAT node discovery requires minimal node objects that can match the Machine Type
and Model, and Serial Number information, which can be collected either automatically by the
Genesis image (with the mtm and serial attributes) or manually. For more information, see
5.2.2, “Frequently used commands with the IPMItool” on page 55. The node discovery also
tries to match the information with the temporary BMC objects to associate the node objects
with their respective BMCs, and perform the network configuration of the BMCs.

This section covers creating a node group to set the attributes that are common among nodes
or based on regular expressions.

To define a node group, complete the following steps:

1. Create the s822lc node group with the mkdef command:

mkdef -t group s822lc \
ip='|p8r(\d+)n(\d+)|10.1.($1+0).($2+0)|' \
bmc='|p8r(\d+)n(\d+)|10.2.($1+0).($2+0)|' \
mgt=ipmi \
cons=ipmi

Warning: Cannot determine a member list for group 's822lc'.
1 object definitions have been created or modified.

2. Verify the node group with the lsdef command:

lsdef -t group s822lc
Object name: s822lc
 bmc=|p8r(\d+)n(\d+)|10.2.($1+0).($2+0)|
 cons=ipmi
 grouptype=static
 ip=|p8r(\d+)n(\d+)|10.1.($1+0).($2+0)|
 members=
 mgt=ipmi

To create a node that is part of the node group, complete the following steps:

1. Create a node with the mkdef command, and include the node group in the groups
attribute. Similarly, you can also modify an existing node, and make it part of a group with
the chdef command.

mkdef p8r1n1 groups=all,s822lc
1 object definitions have been created or modified.

To create many nodes at the same time, you can use a node range, for example:

mkdef p8r[1-5]n[1-6] groups=all,s822lc
30 object definitions have been created or modified.

Note: It is always possible to run ipmitool commands to the BMC IP address as well.
98 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

2. Verify that the node inherits the node group’s attributes with the lsdef command. Notice
the attributes based on regular expressions are evaluated according to the name of the
node. Some other attributes are set by xCAT by default.

lsdef p8r1n1
Object name: p8r1n1
 bmc=10.2.1.1
 cons=ipmi
 groups=all,s822lc
 ip=10.1.1.1
 mgt=ipmi
 postbootscripts=otherpkgs
 postscripts=syslog,remoteshell,syncfiles

To set the mtm and serial attributes to match the BMC object, complete the following steps:

1. Set the attributes with the chdef command. Similarly, you can also set the attributes when
creating the node object with the mkdef command.

chdef p8r1n1 mtm=8335-GTA serial=0000000000000000
1 object definitions have been created or modified.

2. Verify the attributes with the lsdef command:

lsdef p8r1n1
Object name: p8r1n1
 bmc=10.2.1.1
 cons=ipmi
 groups=all,s822lc
 ip=10.1.1.1
 mgt=ipmi
 mtm=8335-GTA
 postbootscripts=otherpkgs
 postscripts=syslog,remoteshell,syncfiles
 serial=0000000000000000

Note: The mtm and serial attributes are case-sensitive.

Note: By default, the network mask of the BMC might be configured incorrectly due to an
issue in xCAT 2.11. The value might be set to 255.255.255.0 regardless of the value in the
object definition.

This is reported to be a problem with the rspconfig script, and the bmcsetup script is used
for BMC-based servers. To enable the bmcsetup script for all nodes in the s822lc group,
issue the following command:

chdef s822lc chain="runcmd=bmcsetup"

For more details, see the following xCAT issue and documentation page:

https://github.com/xcat2/xcat-core/issues/494
http://xcat-docs.readthedocs.io/en/2.11/guides/admin-guides/manage_clusters/ppc
64le/discovery/mtms_discovery.html
Chapter 5. Software deployment 99

http://xcat-docs.readthedocs.io/en/2.11/guides/admin-guides/manage_clusters/ppc64le/discovery/mtms_discovery.html
http://xcat-docs.readthedocs.io/en/2.11/guides/admin-guides/manage_clusters/ppc64le/discovery/mtms_discovery.html
https://github.com/xcat2/xcat-core/issues/494

5.5.6 Configuration of host table, DNS, and DHCP servers

The xCAT requires the node objects to be present and up-to-date in configuration files for the
host table, DNS server, and DHCP server.

It is required to update the configuration files after changes such as the following, which are
reflected in the configuration files:

� Adding or removing node objects
� Adding, modifying, or removing hostnames, IP addresses, or aliases for network interfaces

The order of the commands is relevant, as some commands depend on changes performed
by other commands. For more information and details, see the manual pages of the
makehosts, makedns, and makedhcp commands:

man makehosts
man makedns
man makedhcp

To update the configuration files with the node objects, complete the following steps:

1. Update the host table with the makehosts command.

makehosts s822lc

2. Verify that the node objects are present on the host table:

cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
10.1.0.1 xcat-mn.xcat-cluster xcat-mn
10.1.1.1 p8r1n1 p8r1n1.xcat-cluster

3. Update the DNS server configuration with the makedns command:

makedns -n s822lc
Handling p8r1n1 in /etc/hosts.
Getting reverse zones, this take several minutes for a large cluster.
Completed getting reverse zones.
Updating zones.
Completed updating zones.
Restarting named
Restarting named complete
Updating DNS records, this take several minutes for a large cluster.
Completed updating DNS records.

4. Verify that the DNS server can resolve the name of the node with the host command:

host p8r1n1 10.1.0.1
Using domain server:
Name: 10.1.0.1
Address: 10.1.0.1#53
Aliases:

p8r1n1.xcat-cluster has address 10.1.1.1

5. Update the DHCP server’s configuration file with the makedhcp command:

makedhcp -n

Note: This is particularly important for the node discovery process, which otherwise can
show errors that are difficult to trace to specific misconfiguration steps.
100 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

6. Update the DHCP server’s leases file with the makedhcp command:

makedhcp -a

5.5.7 Boot into Node discovery

Finally, you can boot the nodes into node discovery with power on (or cycle), provided the
boot order configuration is correct. For more information, see 5.2.3, “Boot order configuration”
on page 57.

You can watch the progress of the node discovery process in the /var/log/messages file,
which is described with comments as shown in Example 5-20.

Example 5-20 Contents and comments for the /var/log/messages file during node discovery

tail -f /var/log/messages
...

Petitboot (DHCP client acquires an IP address, and releases it before booting):

... dhcpd: DHCPDISCOVER from 98:be:94:59:f0:f2 via enP3p3s0f2

... dhcpd: DHCPOFFER on 10.1.254.4 to 98:be:94:59:f0:f2 via enP3p3s0f2

... dhcpd: DHCPREQUEST for 10.1.254.4 (10.1.0.1) from 98:be:94:59:f0:f2 via
enP3p3s0f2
... dhcpd: DHCPACK on 10.1.254.4 to 98:be:94:59:f0:f2 via enP3p3s0f2
... dhcpd: DHCPRELEASE of 10.1.254.4 from 98:be:94:59:f0:f2 via enP3p3s0f2 (found)

Genesis (DHCP client acquires an IP address):

... dhcpd: DHCPDISCOVER from 98:be:94:59:f0:f2 via enP3p3s0f2

... dhcpd: DHCPOFFER on 10.1.254.5 to 98:be:94:59:f0:f2 via enP3p3s0f2

... dhcpd: DHCPREQUEST for 10.1.254.5 (10.1.0.1) from 98:be:94:59:f0:f2 via
enP3p3s0f2
... dhcpd: DHCPACK on 10.1.254.5 to 98:be:94:59:f0:f2 via enP3p3s0f2

Genesis (Communication with the xCAT Management Node; some error messages and
duplicated steps are apparently OK):

... xcat[30280]: xCAT: Allowing getcredentials x509cert

... xcat[17646]: xcatd: Processing discovery request from 10.1.254.5

... xcat[17646]: Discovery Error: Could not find any node.

... xcat[17646]: Discovery Error: Could not find any node.

... xcat[17646]: xcatd: Processing discovery request from 10.1.254.5

Genesis (The respective BMC object is identified, used for configuring the BMC
according to the node object, and then removed):

... xcat[17646]: Discovery info: configure password for
pbmc_node:node-8335-gta-0000000000000000.
... xcat[39159]: xCAT: Allowing rspconfig to node-8335-gta-0000000000000000
password= for root from localhost
... xcat[39168]: xCAT: Allowing chdef node-8335-gta-0000000000000000 bmcusername=
bmcpassword= for root from localhost
... xcat[17646]: Discover info: configure ip:10.2.1.1 for
pbmc_node:node-8335-gta-0000000000000000.
Chapter 5. Software deployment 101

... xcat[39175]: xCAT: Allowing rspconfig to node-8335-gta-0000000000000000
ip=10.2.1.1 for root from localhost
... xcat[17646]: Discovery info: remove pbmc_node:node-8335-gta-0000000000000000.
... xcat[39184]: xCAT: Allowing rmdef node-8335-gta-0000000000000000 for root from
localhost
... xcatd: Discovery worker: fsp instance: nodediscover instance: p8r1n1 has been
discovered
... xcat[17646]: Discovery info: configure password for
pbmc_node:node-8335-gta-0000000000000000.
... xcat[39217]: xCAT: Allowing chdef node-8335-gta-0000000000000000 bmcusername=
bmcpassword= for root from localhost
... xcat[17646]: Discover info: configure ip:10.2.1.1 for
pbmc_node:node-8335-gta-0000000000000000.
... xcat[17646]: Discovery info: remove pbmc_node:node-8335-gta-0000000000000000.

Genesis (DHCP client releases the temporary IP address, and acquires the permanent
IP address):

... dhcpd: DHCPRELEASE of 10.1.254.5 from 98:be:94:59:f0:f2 via enP3p3s0f2 (found)

... dhcpd: DHCPDISCOVER from 98:be:94:59:f0:f2 via enP3p3s0f2

... dhcpd: DHCPOFFER on 10.1.1.1 to 98:be:94:59:f0:f2 via enP3p3s0f2

... dhcpd: DHCPREQUEST for 10.1.1.1 (10.1.0.1) from 98:be:94:59:f0:f2 via
enP3p3s0f2
... dhcpd: DHCPACK on 10.1.1.1 to 98:be:94:59:f0:f2 via enP3p3s0f2

Genesis (Cleanup of the BMC discovery):

... xcat[39230]: xCAT: Allowing rmdef node-8335-gta-0000000000000000 for root from
localhost
... xcatd: Discovery worker: fsp instance: nodediscover instance: Failed to notify
10.1.254.5 that it's actually p8r1n1.

Genesis (Further communication with the xCAT Management Node):

... xcat[39233]: xCAT: Allowing getcredentials x509cert from p8r1n1

... xcat: credentials: sending x509cert

The Genesis image remains waiting for further instructions from the xCAT Management
Node, and is accessible through SSH.

The steps to reset the BMC by using in-band IPMI on the Genesis image, and wait for the
BMC to come back online are described in Example 5-21.

Example 5-21 Resetting the BMC via in-band IPMI on the Genesis image

Reset the BMC via in-band IPMI on the Genesis image:

ssh p8r1n1 'ipmitool mc reset cold'

Wait for the BMC to come back online:

Note: During the BMC network configuration steps, it can lose network connectivity
(including the IPv6 link-local address). In this case, reset it by using in-band IPMI with the
ipmitool command included in the Genesis image. This limitation might be addressed in a
future xCAT or firmware version.
102 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

(This example is based on the link-local IPv6 address; you can also use the IPv4
address assigned on node discovery; e.g., ping 10.2.1.1)

while ! ping6 -c 1 -q fe80::72e2:84ff:fe14:254%enP3p3s0f2; do echo Waiting;
done; echo; echo Finished
PING fe80::72e2:84ff:fe14:254%enP3p3s0f2(fe80::72e2:84ff:fe14:254) 56 data bytes

--- fe80::72e2:84ff:fe14:254%enP3p3s0f2 ping statistics ---
1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0ms

Waiting
PING fe80::72e2:84ff:fe14:254%enP3p3s0f2(fe80::72e2:84ff:fe14:254) 56 data bytes

--- fe80::72e2:84ff:fe14:254%enP3p3s0f2 ping statistics ---
1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0ms

<...>
Waiting
PING fe80::72e2:84ff:fe14:254%enP3p3s0f2(fe80::72e2:84ff:fe14:254) 56 data bytes

--- fe80::72e2:84ff:fe14:254%enP3p3s0f2 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.606/0.606/0.606/0.000 ms

Finished

You can watch the node discovery on the node console through IPMI. The BMC IP address
can change as a result of the process. Therefore, use the BMC IPv6 link-local address (which
does not change) for that purpose (Example 5-22).

Example 5-22 Node discovery on the console via IPMI with the rcons on ipmitool commands

With the rcons command:
(require initial configuration w/ the makeconservercf command):
makeconservercf
rcons node-8335-gta-0000000000000000

With the ipmitol command (via IPv6 link-local address):
ipmitool -I lanplus -H fe80::72e2:84ff:fe14:254%enP3p3s0f2 -U ADMIN -P admin sol
activate

You can verify that the node object now contains attributes obtained during node discovery
(for example, hardware characteristics), and other xCAT attributes with the lsdef command
(Example 5-23).

Example 5-23 Node object with attributes obtained during node discovery

lsdef p8r1n1
Object name: p8r1n1
 arch=ppc64
 bmc=10.2.1.1
 cons=ipmi
 cpucount=160
 cputype=POWER8 (raw), altivec supported
 disksize=sda:1000GB,sdb:1000GB
 groups=all,s822lc
Chapter 5. Software deployment 103

 ip=10.1.1.1
 mac=98:be:94:59:f0:f2
 memory=261482MB
 mgt=ipmi
 mtm=8335-GTA
 netboot=petitboot
 nodetype=mp
 postbootscripts=otherpkgs
 postscripts=syslog,remoteshell,syncfiles
 serial=0000000000000000
 status=standingby
 statustime=11-25-2015 23:13:50
 supportedarchs=ppc64

5.6 xCAT Compute Nodes

This section describes the deployment of an xCAT Compute Node with the IBM High
Performance Computing (HPC) software running on RHEL Server 7.2 for PowerPC 64-bit
Little-Endian (ppc64le) in non-virtualized (or bare-metal) mode on the IBM Power System
S822LC server.

The steps described in this section cover the diskful installation. They install all the software
stack (except for Spectrum LSF) in a single provisioning stage (that is, with the nodeset
command after all components are marked for installation). You can install the software stack
incrementally by first provisioning the Linux distribution (with the nodeset command), and
later installing each component of the software stack (with the updatenode command).

5.6.1 Network interfaces

The network interface associated with the management network is known as primary network
interface (or adapter). The network interfaces associated with other networks are known as
secondary (or additional) network interfaces (or adapters).

For more information and details, see the following xCAT documentation page:

http://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_clusters/ppc
64le/diskless/customize_image/cfg_second_adapter.html

Primary network interface
The primary network interface is the network interface connected to the Management
Network. Two attributes are important for this network interface:

� primarynic: Identifies the primary network interface. Set it to mac to use the network
interface with the MAC address specified by the mac attribute (collected during node
discovery).

� installnic: Identifies the network interface used for OS installation, which is usually the
primary network interface, so set it to mac.

To set the attributes for the primary network interface to mac, issue the following commands:

1. Set the primarynic and installnic with the chdef command:

chdef -t group s822lc \
installnic=mac \
104 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskless/customize_image/cfg_second_adapter.html

primarynic=mac
1 object definitions have been created or modified.

2. Verify the attributes with the lsdef command:

lsdef -t group s822lc -i installnic,primarynic
Object name: s822lc
 installnic=mac
 primarynic=mac

Secondary network interfaces
The xCAT employs the information from the nics table to configure the network interfaces in
the nodes to be part of the xCAT networks that are defined in the networks table. For
example, the following attributes are used:

� nicips for IP addresses
� nicnetworks for xCAT networks (defined in the networks table)
� nictypes for the type of networks (for example, Ethernet or InfiniBand)
� nichostnamesuffixes (optional) for appending per-network suffixes to hostnames

The attribute format for the nics table uses several types of field separators, which allows for
each field to relate to multiple network interfaces with multiple values per network interface
(for example, IP addresses and hostnames). The format is a comma-separated list of
interface!values pairs (that is, one pair per network interface), where values is a
pipe-separated list of values (that is, all values assigned to that network interface). For values
with regular expressions, include the xCAT regular expression delimiters/pattern around the
value (that is, leading pipe, regular expression pattern, separator pipe, value, and trailing
pipe).

For an illustration, consider the following example:

� Two network interfaces: eth0 and eth1

� Two IP addresses each (eth0 with 192.168.0.1 and 192.168.0.2; eth1 with 192.168.0.3
and 192.168.0.4):

nicips='eth0!192.168.0.1|192.168.0.2,eth1!192.168.0.3|192.168.0.4'

� Two hostname suffixes each (eth0 with -port0ip1 and -port0ip2; eth1 with -port1ip1 and
-port1ip2):

nichostnamesuffixes='eth0!-port0ip1|-port0ip2,eth1!-port1ip1|-port1ip2'

To configure the network interfaces of the compute nodes, complete the following steps:

1. Set the attributes of the nics table in the node group with the chdef command:

chdef -t group s822lc \
nictypes='enP3p3s0f0!Ethernet,enP3p3s0f1!Ethernet,ib0!Infiniband,ib1!Infini

band' \
nicnetworks='enP3p3s0f0!net-app-10gbe-port1,enP3p3s0f1!net-app-10gbe-port2,

ib0!net-app-ib-port1,ib1!net-app-ib-port2' \
nichostnamesuffixes='enP3p3s0f0!-10gbe-1,enP3p3s0f1!-10gbe-2,ib0!-ib-1,ib1!

-ib-2' \
nicips='|p8r(\d+)n(\d+)|enP3p3s0f0!10.3.($1+0).($2+0),enP3p3s0f1!10.4.($1+0

).($2+0),ib0!10.5.($1+0).($2+0),ib1!10.6.($1+0).($2+0)|'
1 object definitions have been created or modified.
Chapter 5. Software deployment 105

2. Verify the attributes with the lsdef command. They are represented with per-interface
subattributes (that is, <attribute>.<interface>=<values-for-the-interface>):

lsdef -t group s822lc
Object name: s822lc
 <...>
 nichostnamesuffixes.enP3p3s0f0=-10gbe-1
 nichostnamesuffixes.enP3p3s0f1=-10gbe-2
 nichostnamesuffixes.ib0=-ib-1
 nichostnamesuffixes.ib1=-ib-2
 nicips.|p8r(\d+)n(\d+)|enP3p3s0f0=10.3.($1+0).($2+0)
 nicips.enP3p3s0f1=10.4.($1+0).($2+0)
 nicips.ib0=10.5.($1+0).($2+0)
 nicips.ib1=10.6.($1+0).($2+0)|
 nicnetworks.enP3p3s0f0=net-app-10gbe-port1
 nicnetworks.enP3p3s0f1=net-app-10gbe-port2
 nicnetworks.ib0=net-app-ib-port1
 nicnetworks.ib1=net-app-ib-port2
 nictypes.enP3p3s0f0=Ethernet
 nictypes.enP3p3s0f1=Ethernet
 nictypes.ib0=Infiniband
 nictypes.ib1=Infiniband

<...>

Notice that the nicips per-interface subattributes for the node group include the head and
tail of the regular expression in the first and last interfaces. This issue is expected to be
resolved in a future xCAT version (xCAT issue #476).

3. Verify the attributes based on regular expressions have correct values on a particular node
with the lsdef command:

lsdef p8r1n1
Object name: p8r1n1
<...>

nichostnamesuffixes.enP3p3s0f0=-10gbe-1
 nichostnamesuffixes.enP3p3s0f1=-10gbe-2
 nichostnamesuffixes.ib0=-ib-1
 nichostnamesuffixes.ib1=-ib-2
 nicips.enP3p3s0f0=10.3.1.1
 nicips.enP3p3s0f1=10.4.1.1
 nicips.ib0=10.5.1.1
 nicips.ib1=10.6.1.1
 nicnetworks.enP3p3s0f0=net-app-10gbe-port1
 nicnetworks.enP3p3s0f1=net-app-10gbe-port2
 nicnetworks.ib0=net-app-ib-port1
 nicnetworks.ib1=net-app-ib-port2
 nictypes.enP3p3s0f0=Ethernet
 nictypes.enP3p3s0f1=Ethernet
 nictypes.ib0=Infiniband
 nictypes.ib1=Infiniband
<...>

4. Update the configuration files for the host table, DNS server, and DHCP server with the
makehosts, makedns, and makedhcp commands:

makehosts s822lc

cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
106 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
10.1.0.1 xcat-mn.xcat-cluster xcat-mn
10.1.1.1 p8r1n1 p8r1n1.xcat-cluster
10.5.1.1 p8r1n1-ib-1 p8r1n1-ib-1.xcat-cluster
10.6.1.1 p8r1n1-ib-2 p8r1n1-ib-2.xcat-cluster
10.4.1.1 p8r1n1-10gbe-2 p8r1n1-10gbe-2.xcat-cluster
10.3.1.1 p8r1n1-10gbe-1 p8r1n1-10gbe-1.xcat-cluster

makedns -n s822lc
Handling p8r1n1-10gbe-2 in /etc/hosts.
Handling p8r1n1 in /etc/hosts.
Handling p8r1n1-10gbe-1 in /etc/hosts.
Handling p8r1n1-ib-2 in /etc/hosts.
Handling p8r1n1-ib-1 in /etc/hosts.
Getting reverse zones, this take several minutes for a large cluster.
Completed getting reverse zones.
Updating zones.
Completed updating zones.
Restarting named
Restarting named complete
Updating DNS records, this take several minutes for a large cluster.
Completed updating DNS records.

makedhcp -n
makedhcp -a

5. Add the confignics script to the list of postscripts for configuring the network interfaces.
The InfiniBand network interfaces (2-port adapter) require the argument --ibaports=2.

chdef -t group s822lc --plus postscripts='confignics --ibaports=2'
1 object definitions have been created or modified.

lsdef -t group s822lc -i postscripts
Object name: s822lc
 postscripts=confignics --ibaports=2

For more information and details about the confignics script and the configuration of
InfiniBand adapters, see the following xCAT documentation pages:

– http://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_cluster
s/ppc64le/diskless/customize_image/cfg_second_adapter.html

– http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/index
.html

– http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/netwo
rk_configuration.html

Note: If a network interface prefix/suffix is renamed or removed, you can update the
host table by removing the node entry (or nodes, or group entries), and adding it (them)
back with the following commands:

makehosts -d nodes
makehosts nodes
Chapter 5. Software deployment 107

http://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskless/customize_image/cfg_second_adapter.html
http://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskless/customize_image/cfg_second_adapter.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/index.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/index.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/network_configuration.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/network_configuration.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/network_configuration.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/network_configuration.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/index.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/index.html
http://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskless/customize_image/cfg_second_adapter.html
http://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskless/customize_image/cfg_second_adapter.html

Public or site network connectivity (optional)
The connectivity to the public or site networks for the compute nodes can be provided by one
of these methods:

� By way of the Management Node: By using network address translation (NAT).

� By way of Compute Nodes: By using an additional xCAT network.

To perform the required network configuration, follow the steps of either method:

� By way of the Management Node
� By way of Compute Nodes

By way of the Management Node
This method requires that the gateway attribute of the xCAT Management Network be set to
the Management node (default setting, with value “<xcatmaster>”), and NAT rules be
configured in the firewall. To connect, complete these steps:

1. Verify that the gateway attribute of the Management Network is set to <xcatmaster> with
the lsdef command:

lsdef -t network net-mgmt -i gateway
Object name: net-mgmt
 gateway=<xcatmaster>

If not, set it with the chdef command:

chdef -t network net-mgmt gateway='<xcatmaster>'

2. Verify the routers option of the DHCP server configuration file (based on the gateway
attribute) in the Management Network reflects the IP address of the Management Node:

grep 'subnet\|routers' /etc/dhcp/dhcpd.conf
 subnet 10.1.0.0 netmask 255.255.0.0 {
 option routers 10.1.0.1;
 } # 10.1.0.0/255.255.0.0 subnet_end
 subnet 10.2.0.0 netmask 255.255.0.0 {
 option routers 10.2.0.1;
 } # 10.2.0.0/255.255.0.0 subnet_end

If not, regenerate the DHCP server configuration files with the makedhcp command:

makedhcp -n
makedhcp -a

3. Verify the default route on the compute nodes is set to the IP address of the Management
Node with the ip command:

xdsh p8r1n1 'ip route show | grep default'
p8r1n1: default via 10.1.0.1 dev enP3p3s0f1

If not, restart the network service with the systemctl command:

xdsh p8r1n1 'systemctl restart network'

4. Configure the iptables firewall rules for NAT in the rc.local script, configure it to start
automatically on boot, and start the service manually this time.

For the network scenario adopted in this chapter:

– Management network on network interface enP3p3s0f2 in the management node

– Public/site network on network interface enP3p3s0f3 in the management node

cat <<EOF >>/etc/rc.d/rc.local
iptables -t nat --append POSTROUTING --out-interface enP3p3s0f3 -j MASQUERADE
iptables --append FORWARD --in-interface enP3p3s0f2 -j ACCEPT
108 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

EOF

chmod +x /etc/rc.d/rc.local
systemctl start rc-local

5. You can verify the network connectivity on an already running node (if any) with the ping
command:

xdsh p8r1n1 'ping -c1 example.com'
p8r1n1: PING example.com (93.184.216.34) 56(84) bytes of data.
p8r1n1: 64 bytes from 93.184.216.34: icmp_seq=1 ttl=46 time=4.07 ms
<...>

By way of Compute Nodes
This method requires the gateway attribute of the xCAT Management Network not to be set,
and an additional xCAT network (for the public or site network) to define the network interface,
address, and gateway to be used.

1. Reset the gateway attribute of the Management Network with the chdef command:

chdef -t network net-mgmt gateway=''

lsdef -t network net-mgmt -i gateway
Object name: net-mgmt
 gateway=

2. Define a new xCAT network for the public or site network (for example, net-site):

mkdef -t network net-site net=9.114.37.0 mask=255.255.255.0
1 object definitions have been created or modified.

lsdef -t network
net-app-10gbe-port1 (network)
net-app-10gbe-port2 (network)
net-app-ib-port1 (network)
net-app-ib-port2 (network)
net-mgmt (network)
net-site (network)
net-svc (network)

lsdef -t network net-site
Object name: net-site
 mask=255.255.255.0
 net=9.114.37.0

3. Modify the nics table to include the attributes of the new xCAT network with either the
tabedit command or the chdef command. The network scenario described in this chapter
uses a public or site network on network interface enP3p3s0f3 in the compute nodes.

tabedit nics

OR:

Note: The default firewall in RHEL Server 7.2 is firewalld, which is disabled by xCAT.

For more information and details about firewalld, see the following RHEL
documentation page:

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/htm
l/Security_Guide/sec-Using_Firewalls.html
Chapter 5. Software deployment 109

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/sec-Using_Firewalls.html

chdef -t group s822lc \
nictypes='enP3p3s0f0!Ethernet,enP3p3s0f1!Ethernet,enP3p3s0f3!Ethernet,ib0!I

nfiniband,ib1!Infiniband' \
nicnetworks='enP3p3s0f0!net-app-10gbe-port1,enP3p3s0f1!net-app-10gbe-port2,

enP3p3s0f3!net-site,ib0!net-app-ib-port1,ib1!net-app-ib-port2' \
nichostnamesuffixes='enP3p3s0f0!-10gbe-1,enP3p3s0f1!-10gbe-2,enP3p3s0f3!-si

te,ib0!-ib-1,ib1!-ib-2' \
nicips='|p8r(\d+)n(\d+)|enP3p3s0f0!10.3.($1+0).($2+0),enP3p3s0f1!10.4.($1+0

).($2+0),enP3p3s0f3!9.114.37.(181-$2),ib0!10.5.($1+0).($2+0),ib1!10.6.($1+0).($
2+0)|' \

nicextraparams='enP3p3s0f3!GATEWAY=9.114.37.254'
1 object definitions have been created or modified.

4. Verify the attributes with either the tabdump or the lsdef commands:

tabdump nics
#node,nicips,nichostnamesuffixes,nichostnameprefixes,nictypes,niccustomscripts,
nicnetworks,nicaliases,nicextraparams,comments,disable
"s822lc","|p8r(\d+)n(\d+)|enP3p3s0f0!10.3.($1+0).($2+0),enP3p3s0f1!10.4.($1+0).
($2+0),enP3p3s0f3!9.114.37.(181-$2),ib0!10.5.($1+0).($2+0),ib1!10.6.($1+0).($2+
0)|","enP3p3s0f0!-10gbe-1,enP3p3s0f1!-10g
be-2,enP3p3s0f3!-site,ib0!-ib-1,ib1!-ib-2",,"enP3p3s0f0!Ethernet,enP3p3s0f1!Eth
ernet,enP3p3s0f3!Ethernet,ib0!Infiniband,ib1!Infiniband",,"enP3p3s0f0!net-app-1
0gbe-port1,enP3p3s0f1!net-app-10gbe-port2
,enP3p3s0f3!net-site,ib0!net-app-ib-port1,ib1!net-app-ib-port2",,"enP3p3s0f3!GA
TEWAY=9.114.37.254",,

lsdef -t group s822lc
Object name: s822lc
<...>
 nicextraparams.enP3p3s0f3=GATEWAY=9.114.37.254
<...>

nichostnamesuffixes.enP3p3s0f3=-site
<...>
 nicips.enP3p3s0f3=9.114.37.(181-$2)
<...>
 nicnetworks.enP3p3s0f3=net-site
<...>
 nictypes.enP3p3s0f3=Ethernet
<...>

lsdef p8r1n1
Object name: p8r1n1
<...>
 nicextraparams.enP3p3s0f3=GATEWAY=9.114.37.254
<...>
 nichostnamesuffixes.enP3p3s0f3=-site
<...>
 nicips.enP3p3s0f3=9.114.37.180
<...>
 nicnetworks.enP3p3s0f3=net-site
<...>
 nictypes.enP3p3s0f3=Ethernet
<...>
110 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

5. Update the host table with the makehosts command:

makehosts -d s822lc
makehosts s822lc

cat /etc/hosts
<...>
10.1.1.1 p8r1n1 p8r1n1.xcat-cluster
10.5.1.1 p8r1n1-ib-1 p8r1n1-ib-1.xcat-cluster
10.6.1.1 p8r1n1-ib-2 p8r1n1-ib-2.xcat-cluster
10.4.1.1 p8r1n1-10gbe-2 p8r1n1-10gbe-2.xcat-cluster
9.114.37.180 p8r1n1-site p8r1n1-site.xcat-cluster
10.3.1.1 p8r1n1-10gbe-1 p8r1n1-10gbe-1.xcat-cluster
<...>

6. Update the DNS server configuration with the makedns command:

makedns -n s822lc
<...>
Handling p8r1n1-site in /etc/hosts.
<...>
Completed updating DNS records.

7. Update the DHCP server configuration with the makedhcp command:

makedhcp -n
makedhcp -a

8. You can update the network configuration on an already running node (if any) with the
confignics script of the updatenode command:

updatenode p8r1n1 -P confignics

9. You can verify the network connectivity on an already running node (if any) with the ping
command:

xdsh p8r1n1 'ping -c1 example.com'
p8r1n1: PING example.com (93.184.216.34) 56(84) bytes of data.
p8r1n1: 64 bytes from 93.184.216.34: icmp_seq=1 ttl=46 time=3.94 ms
<...>

5.6.2 RHEL Server

The xCAT stores the configuration for installing operating systems in objects of type osimage
(that is, operating system image). The copycds command can be used to create osimage
objects based on an OS installation disc image (for example, an ISO file).

Set the password for the root user
To set the root password, complete the following steps:

1. Set the username and password attributes of the system key/row in the passwd table with the
chtab command:

chtab key=system passwd.username=root passwd.password=cluster

2. Verify the attributes with the tabdump command:

tabdump -w key==system passwd
#key,username,password,cryptmethod,authdomain,comments,disable
"system","root","cluster",,,,
Chapter 5. Software deployment 111

Create an osimage object
Initially, there are no osimage objects:

lsdef -t osimage
Could not find any object definitions to display.

To create osimage objects for the RHEL Server 7.2 installation disc image, complete the
following steps:

1. Run the copycds command on the RHEL Server 7.2 ISO file:

copycds /mnt/RHEL-7.2-20151030.0-Server-ppc64le-dvd1.iso
Copying media to /install/rhels7.2/ppc64le
Media copy operation successful

2. Verify that the osimage objects are present with the lsdef command.

lsdef -t osimage
rhels7.2-ppc64le-install-compute (osimage)
rhels7.2-ppc64le-install-service (osimage)
rhels7.2-ppc64le-netboot-compute (osimage)
rhels7.2-ppc64le-stateful-mgmtnode (osimage)

For more information about the osimage objects, see 5.3.6, “xCAT operating system
installation types: Disks and state” on page 66.

3. Create a copy of the original osimage object, named rh72-hpc-diskful.

It is optional, but useful in case multiple osimage objects are maintained (for example, for
multiple/different configurations of the same OS).

You can use the lsdef -z command, which provides the object stanza, modify it (for
example, with the sed command), and create an object based on it with the mkdef -z
command.

osimage=rh72-hpc-diskful

lsdef -t osimage rhels7.2-ppc64le-install-compute -z \
| sed "s/^[^#].*:/$osimage:/" \
| mkdef -z

1 object definitions have been created or modified.

4. Verify the copy osimage object with the lsdef command:

lsdef -t osimage
rh72-hpc-diskful (osimage)
rhels7.2-ppc64le-install-compute (osimage)
rhels7.2-ppc64le-install-service (osimage)
rhels7.2-ppc64le-netboot-compute (osimage)
rhels7.2-ppc64le-stateful-mgmtnode (osimage)

Note: If the attributes are not correctly set, the nodeset command shows the following
error message:

nodeset p8r1n1 osimage=rh72-hpc-diskful
p8r1n1: Error: Unable to find requested filed <password> from table
<passwd>, with key <key=system,username=root>
Error: Some nodes failed to set up install resources on server
xcat-mn.xcat-cluster, aborting
112 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Change the pkglist attribute
The usage of multiple package lists is convenient for independently organizing the required
packages for each component of the software stack. However, the xCAT currently does not
support multiple package lists in the pkglist attribute, but it does support a package list to
reference the contents of other package lists. This feature provides a way to achieve multiple
package lists.

To change the pkglist attribute for a different package list, complete the following steps:

1. Verify the current pkglist attribute, and assign it to the old_list variable:

lsdef -t osimage rh72-hpc-diskful -i pkglist
Object name: rh72-hpc-diskful
 pkglist=/opt/xcat/share/xcat/install/rh/compute.rhels7.pkglist

old_list=/opt/xcat/share/xcat/install/rh/compute.rhels7.pkglist

2. Create a new list that includes the old list:

new_list=/install/custom/install/rh/rh72-hpc.pkglist

mkdir -p $(dirname $new_list)
echo "# RHEL Server 7.2 (original pkglist)" > $new_list
echo "#INCLUDE:${old_list}#" >> $new_list

3. Verify the contents of the new list:

cat $new_list
RHEL Server 7.2 (original pkglist)
#INCLUDE:/opt/xcat/share/xcat/install/rh/compute.rhels7.pkglist#

4. Change the pkglist attribute to the new list with the chdef command:

chdef -t osimage rh72-hpc-diskful pkglist=$new_list
1 object definitions have been created or modified.

5. Verify the pkglist attribute with the lsdef command:

lsdef -t osimage rh72-hpc-diskful -i pkglist
Object name: rh72-hpc-diskful
 pkglist=/install/custom/install/rh/rh72-hpc.pkglist

5.6.3 CUDA Toolkit

The CUDA Toolkit can be installed with the RPM packages that are contained in the local
repository package available for download in the NVIDIA website. The packages are marked
for installation with the pkgdir and pkglist mechanism so to be installed during the Linux
distribution installation. This setting ensures that a reboot occurs between installation and
utilization (requirement).

For more information, see the following xCAT documentation page:

http://xcat-docs.readthedocs.org/en/latest/advanced/gpu/nvidia/osimage/rhels.html

Note: It is already possible to install the OS (without other components of the software
stack) with the nodeset command:

nodeset p8r1n1 osimage=rh72-hpc-diskful
Chapter 5. Software deployment 113

http://xcat-docs.readthedocs.org/en/latest/advanced/gpu/nvidia/osimage/rhels.html

To install the CUDA Toolkit, complete the following steps:

1. Install the createrepo package for creating package repositories:

yum install createrepo

2. Download and extract the CUDA Toolkit RPM package:

dir=/tmp/cuda
mkdir -p $dir
cd $dir

curl -sOL http://.../cuda-repo-rhel7-7-5-local-7.5-23.ppc64le.rpm
rpm2cpio cuda-repo-rhel7-7-5-local-7.5-23.ppc64le.rpm | cpio -id
2043179 blocks

3. Create a package repository for its contents with the createrepo command:

dir=/install/post/otherpkgs/rhels7.2/ppc64le/cuda/7.5/
mkdir -p $dir

cp -r var/cuda-repo-7-5-local/* $dir
createrepo $dir
<...>

ls -1d $dir/*
/install/post/otherpkgs/rhels7.2/ppc64le/cuda/7.5/cuda-7.5-23.ppc64le.rpm

<...>
/install/post/otherpkgs/rhels7.2/ppc64le/cuda/7.5/repodata
<...>

4. Include the package repository’s directory in the pkgdir attribute of the osimage with the
chdef command:

lsdef -t osimage rh72-hpc-diskful -i pkgdir
Object name: rh72-hpc-diskful
 pkgdir=/install/rhels7.2/ppc64le

chdef -t osimage rh72-hpc-diskful --plus pkgdir=$dir
1 object definitions have been created or modified.

lsdef -t osimage rh72-hpc-diskful -i pkgdir
Object name: rh72-hpc-diskful

pkgdir=/install/rhels7.2/ppc64le,/install/post/otherpkgs/rhels7.2/ppc64le/c
uda/7.5/

5. Download the dkms RPM package (dependency of the CUDA Toolkit):

dir=/install/post/otherpkgs/rhels7.2/ppc64le/cuda/deps/
mkdir -p $dir
cd $dir

Note: The CUDA Toolkit is available for download at the following location and
navigation steps:

https://developer.nvidia.com/cuda-downloads

(Operating Systems) Linux → (Architecture) ppc64le → (Distribution) RHEL →
(Version) 7 → (Installer Type) rpm (local) → Download.
114 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

https://developer.nvidia.com/cuda-downloads

repo_url='http://download.fedoraproject.org/pub/epel/7/ppc64/'
dkms_path="$(curl -sL ${repo_url}/repoview/dkms.html | grep -o
'href=".*/dkms-.*.noarch.rpm"' | cut -d'"' -f2)"
curl -sOL ${repo_url}/${dkms_path}

ls -1
dkms-2.2.0.3-30.git.7c3e7c5.el7.noarch.rpm

6. Create a package repository for it with the createrepo command:

createrepo .
<...>

ls -1
dkms-2.2.0.3-30.git.7c3e7c5.el7.noarch.rpm
repodata

7. Include the package repository’s directory in the pkgdir attribute of the osimage with the
chdef command:

chdef -t osimage rh72-hpc-diskful --plus pkgdir=$dir
1 object definitions have been created or modified.

lsdef -t osimage rh72-hpc-diskful -i pkgdir
Object name: rh72-hpc-diskful

pkgdir=/install/rhels7.2/ppc64le,/install/post/otherpkgs/rhels7.2/ppc64le/c
uda/7.5/,/install/post/otherpkgs/rhels7.2/ppc64le/cuda/deps/

8. Include one of the two CUDA Toolkit package lists in the osimage package list.

The following package lists are available for the CUDA Toolkit:

– cudafull.rhels7.ppc64le.pkglist: Includes runtime and development tools

– cudaruntime.rhels7.ppc64le.pkglist: Includes runtime only

cuda_list=/opt/xcat/share/xcat/install/rh/cudafull.rhels7.ppc64le.pkglist

lsdef -t osimage rh72-hpc-diskful -i pkglist
Object name: rh72-hpc-diskful
 pkglist=/install/custom/install/rh/rh72-hpc.pkglist

pkglist=/install/custom/install/rh/rh72-hpc.pkglist

cat <<EOF >>$pkglist

CUDA Toolkit 7.5 for RHEL 7.2 (original pkglist)
#INCLUDE:${cuda_list}#
EOF

cat $pkglist
RHEL Server 7.2 (original pkglist)
#INCLUDE:/opt/xcat/share/xcat/install/rh/compute.rhels7.pkglist#

CUDA Toolkit 7.5 for RHEL 7.2 (original pkglist)
#INCLUDE:/opt/xcat/share/xcat/install/rh/cudafull.rhels7.ppc64le.pkglist#
Chapter 5. Software deployment 115

9. Create this work-around package list because of the relative addressing that is used in the
CUDA Toolkit package lists:

list=/install/custom/install/rh/compute.rhels7.pkglist

cat <<EOF >$list
Empty list for fixing the INCLUDE from CUDA list.
EOF

cat $list
Empty list for fixing the INCLUDE from CUDA list.

This step is necessary due to the following #INCLUDE# line currently present in the CUDA
package list:

cat /opt/xcat/share/xcat/install/rh/cudafull.rhels7.ppc64le.pkglist
#INCLUDE:compute.rhels7.pkglist#

#For Cuda 7.5
kernel-devel
gcc
pciutils
dkms
cuda

10.Create a script to configure features such as persistence mode and power limit for the
GPUs during boot:

script=/install/postscripts/nvidia-power-limit

cat <<"EOF" >$script
#!/bin/bash

RC_LOCAL='/etc/rc.d/rc.local'

cat <<EORCLOCAL >>$RC_LOCAL
nvidia-smi --persistence-mode=1
nvidia-smi --power-limit=175
EORCLOCAL

chmod +x $RC_LOCAL

exit 0

Note: If the work-around package list is not in place, the ospkgs script in the updatenode
command can fail with the following error message (as listed in the /var/log/messages
log file), which causes some of the packages not to be installed:

<...> xcat:
OSPKGS=wget,ntp,nfs-utils,net-snmp,rsync,yp-tools,openssh-server,util-linux,
net-tools,#INCLUDEBAD:cannot open
/install/custom/install/rh/compute.rhels7.pkglist#,kernel-devel,gcc,pciutils
,dkms,cuda,pciutils-libs,pciutils,tcl,tk,tcsh,gcc-gfortran,lsof,libnl,libxml
2-python,python-devel,redhat-rpm-config,rpm-build,kernel-devel,gtk2,atk,cair
o,ksh

This problem is reported in xCAT issue #484.
116 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

EOF

chmod +x $script

11.Include the script in the list of postscripts of the osimage object with the chdef command:

lsdef -t osimage rh72-hpc-diskful -i postscripts
Object name: rh72-hpc-diskful
 postscripts=

chdef -t osimage rh72-hpc-diskful --plus postscripts="$(basename $script)"
1 object definitions have been created or modified.

lsdef -t osimage rh72-hpc-diskful -i postscripts
Object name: rh72-hpc-diskful
 postscripts=nvidia-power-limit

5.6.4 Mellanox OFED for Linux

To install the Mellanox OFED for Linux, complete the following steps.

For more information and details, see the following xCAT documentation pages:

� http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/mlnxofed_
ib_install_v2_preparation.html

� http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/network_c
onfiguration.html

1. Download and copy the ISO file to the xCAT installation directory:

dir=/install/mofed/rh/ppc64le/
mkdir -p $dir

curl -sOL http://.../MLNX_OFED_LINUX-3.2-1.0.1.1-rhel7.2-ppc64le.iso
cp MLNX_OFED_LINUX-3.2-1.0.1.1-rhel7.2-ppc64le.iso $dir

2. Copy the mlnxofed_ib_install.v2 script into the postscripts directory (with the required
file name mlnxofed_ib_install):

script=/install/postscripts/mlnxofed_ib_install
cp /opt/xcat/share/xcat/ib/scripts/Mellanox/mlnxofed_ib_install.v2 $script
chmod +x $script
ls -l $script
-rwxr-xr-x 1 root root 14747 Feb 13 13:11
/install/postscripts/mlnxofed_ib_install

Note: The Mellanox OFED is available for download at the following location and
navigation steps:

http://www.mellanox.com/

Products → InfiniBand/VPI Drivers (under Software) → Mellanox OFED Linux
(MLNX_OFED) → Download → (Version) 3.2-1.0.1.1 → (OS Distribution)
RHEL/CentOS → (OS Distribution Version) RHEL/CentOS 7.2 → (Architecture)
ppc64le → (Download/Documentation) ISO MLNX_OFED_LINUX-<...>.iso.
Chapter 5. Software deployment 117

http://www.mellanox.com/
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/mlnxofed_ib_install_v2_preparation.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/mlnxofed_ib_install_v2_preparation.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/network_configuration.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/network_configuration.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/mlnxofed_ib_install_v2_preparation.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/mlnxofed_ib_install_v2_preparation.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/network_configuration.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/network_configuration.html

3. Include the script in the list of postbootscripts of the node group.

Include the --add-kernel-support argument to the list of default arguments
(--without-32bit --without-fw-update --force, according to the xCAT documentation)
to rebuild kernel modules for the installed kernel version.

lsdef -t group s822lc -i postbootscripts
Object name: s822lc
 postbootscripts=

file=MLNX_OFED_LINUX-3.2-1.0.1.1-rhel7.2-ppc64le.iso
args='--add-kernel-support --without-32bit --without-fw-update --force'

chdef -t group s822lc --plus postbootscripts="mlnxofed_ib_install -p
$dir/$file -m $args -end-"
1 object definitions have been created or modified.

lsdef -t group s822lc -i postbootscripts
Object name: s822lc
 postbootscripts=mlnxofed_ib_install -p
/install/mofed/rh/ppc64le//MLNX_OFED_LINUX-3.2-1.0.1.1-rhel7.2-ppc64le.iso -m
--add-kernel-support --without-32bit --without-fw-update --force -end-

4. Add the InfiniBand package list (and createrepo package dependency) to the package list:

ib_list=/opt/xcat/share/xcat/ib/netboot/rh/ib.rhels7.ppc64le.pkglist

lsdef -t osimage rh72-hpc-diskful -i pkglist
Object name: rh72-hpc-diskful
 pkglist=/install/custom/install/rh/rh72-hpc.pkglist

pkglist=/install/custom/install/rh/rh72-hpc.pkglist

cat <<EOF >>$pkglist

Infiniband with Mellanox OFED for RHEL 7.2 (original pkglist)
createrepo
#INCLUDE:${ib_list}#
EOF

cat $pkglist
RHEL Server 7.2 (original pkglist)
#INCLUDE:/opt/xcat/share/xcat/install/rh/compute.rhels7.pkglist#

CUDA Toolkit 7.5 for RHEL 7.2 (original pkglist)
#INCLUDE:/opt/xcat/share/xcat/install/rh/cudafull.rhels7.ppc64le.pkglist#

Infiniband with Mellanox OFED for RHEL 7.2 (original pkglist)
createrepo
#INCLUDE:/opt/xcat/share/xcat/ib/netboot/rh/ib.rhels7.ppc64le.pkglist#

Note: If the createrepo package is not specified in the list, the following error message
is shown during the Mellanox OFED installation:

ERROR: createrepo is not installed!
createrepo package is needed for building a repository from MLNX_OFED rpms
118 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

5.6.5 XL C/C++ Compiler

To install the XL C/C++ Compiler xCAT kit, complete the following steps. For more information
and details, see the following xCAT documentation page:

http://xcat-docs.readthedocs.org/en/2.11/advanced/kit/hpc/software/compilers.html

1. Download the partial kit (distributed by the xCAT project):

mkdir /tmp/xlc
cd /tmp/xlc

curl -sOL
http://xcat.org/files/kits/hpckits/2.11/rhels7.2/ppc64le/xlc-13.1.2-0-ppc64le.N
EED_PRODUCT_PKGS.tar.bz2

2. Build the complete kit by combining the partial kit and the product packages with the
buildkit command:

dir=/path/to/xlc-rpm-packages/

ls -1 $dir
libxlc-13.1.2.0-150526a.ppc64le.rpm
libxlc-devel.13.1.2-13.1.2.0-150526a.ppc64le.rpm
libxlmass-devel.8.1.2-8.1.2.0-150526.ppc64le.rpm
libxlsmp-4.1.2.0-150526.ppc64le.rpm
libxlsmp-devel.4.1.2-4.1.2.0-150526.ppc64le.rpm
xlc.13.1.2-13.1.2.0-150526a.ppc64le.rpm
xlc-license.13.1.2-13.1.2.0-150526a.ppc64le.rpm

buildkit addpkgs xlc-13.1.2-0-ppc64le.NEED_PRODUCT_PKGS.tar.bz2 --pkgdir $dir
Extracting tar file /tmp/xlc/xlc-13.1.2-0-ppc64le.NEED_PRODUCT_PKGS.tar.bz2.
<...>
Kit tar file /tmp/xlc/xlc-13.1.2-0-ppc64le.tar.bz2 successfully built.

ls -1
xlc-13.1.2-0-ppc64le.NEED_PRODUCT_PKGS.tar.bz2
xlc-13.1.2-0-ppc64le.tar.bz2

3. Add the kit to xCAT with the addkit command:

lsdef -t kit
Could not find any object definitions to display.

addkit xlc-13.1.2-0-ppc64le.tar.bz2
Adding Kit xlc-13.1.2-0-ppc64le
Kit xlc-13.1.2-0-ppc64le was successfully added.

lsdef -t kit
xlc-13.1.2-0-ppc64le (kit)

4. Verify its kitcomponent objects (and description fields) with the lsdef command:

lsdef -t kitcomponent -w kitname==xlc-13.1.2-0-ppc64le -i description
Object name: xlc.compiler-compute-13.1.2-0-rhels-7.2-ppc64le
 description=XLC13 for compiler kitcomponent
Object name: xlc.license-compute-13.1.2-0-rhels-7.2-ppc64le
 description=XLC13 license kitcomponent
Object name: xlc.rte-compute-13.1.2-0-rhels-7.2-ppc64le
 description=XLC13 for runtime kitcomponent
Chapter 5. Software deployment 119

http://xcat-docs.readthedocs.org/en/2.11/advanced/kit/hpc/software/compilers.html

5. Add the following kitcomponent (and dependencies) to the osimage object with the
addkitcomp command:

lsdef -t osimage rh72-hpc-diskful -i kitcomponents,otherpkglist
Object name: rh72-hpc-diskful
 kitcomponents=
 otherpkglist=

addkitcomp --adddeps -i rh72-hpc-diskful \
xlc.compiler-compute-13.1.2-0-rhels-7.2-ppc64le

Assigning kit component xlc.compiler-compute-13.1.2-0-rhels-7.2-ppc64le to
osimage rh72-hpc-diskful
Kit components xlc.compiler-compute-13.1.2-0-rhels-7.2-ppc64le were added to
osimage rh72-hpc-diskful successfully

lsdef -t osimage rh72-hpc-diskful -i kitcomponents,otherpkglist
Object name: rh72-hpc-diskful

kitcomponents=xlc.license-compute-13.1.2-0-rhels-7.2-ppc64le,xlc.rte-comput
e-13.1.2-0-rhels-7.2-ppc64le,xlc.compiler-compute-13.1.2-0-rhels-7.2-ppc64le

otherpkglist=/install/osimages/rh72-hpc-diskful/kits/KIT_DEPLOY_PARAMS.othe
rpkgs.pkglist,/install/osimages/rh72-hpc-diskful/kits/KIT_COMPONENTS.otherpkgs.
pkglist

5.6.6 XL Fortran Compiler

To install the XL Fortran Compiler xCAT kit, complete the following steps. For more
information and details, see the following xCAT documentation page:

http://xcat-docs.readthedocs.org/en/2.11/advanced/kit/hpc/software/compilers.html

1. Download the partial kit (distributed by the xCAT project):

mkdir /tmp/xlf
cd /tmp/xlf

curl -sOL
http://xcat.org/files/kits/hpckits/2.11/rhels7.2/ppc64le/xlf-15.1.2-0-ppc64le.N
EED_PRODUCT_PKGS.tar.bz2

2. Build the complete kit by combining the partial kit and the product packages distributed in
the installation media with the buildkit command:

dir=/path/to/xlf-rpm-packages/

ls -1 $dir
libxlf-15.1.2.0-150526a.ppc64le.rpm
libxlf-devel.15.1.2-15.1.2.0-150526a.ppc64le.rpm
libxlmass-devel.8.1.2-8.1.2.0-150526.ppc64le.rpm
libxlsmp-4.1.2.0-150526.ppc64le.rpm
libxlsmp-devel.4.1.2-4.1.2.0-150526.ppc64le.rpm
xlf.15.1.2-15.1.2.0-150526a.ppc64le.rpm
xlf-license.15.1.2-15.1.2.0-150526a.ppc64le.rpm

buildkit addpkgs xlf-15.1.2-0-ppc64le.NEED_PRODUCT_PKGS.tar.bz2 --pkgdir $dir
Extracting tar file /tmp/xlf/xlf-15.1.2-0-ppc64le.NEED_PRODUCT_PKGS.tar.bz2.
<...>
Kit tar file /tmp/xlf/xlf-15.1.2-0-ppc64le.tar.bz2 successfully built.
120 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://xcat-docs.readthedocs.org/en/2.11/advanced/kit/hpc/software/compilers.html

ls -1
xlf-15.1.2-0-ppc64le.NEED_PRODUCT_PKGS.tar.bz2
xlf-15.1.2-0-ppc64le.tar.bz2

3. Add the kit to xCAT with the addkit command:

addkit xlf-15.1.2-0-ppc64le.tar.bz2
Adding Kit xlf-15.1.2-0-ppc64le
Kit xlf-15.1.2-0-ppc64le was successfully added.

lsdef -t kit
xlc-13.1.2-0-ppc64le (kit)
xlf-15.1.2-0-ppc64le (kit)

4. Verify its kitcomponent objects (and description fields) with the lsdef command:

lsdef -t kitcomponent -w kitname==xlf-15.1.2-0-ppc64le -i description
Object name: xlf.compiler-compute-15.1.2-0-rhels-7.2-ppc64le
 description=XLF15 for compiler kitcomponent
Object name: xlf.license-compute-15.1.2-0-rhels-7.2-ppc64le
 description=XLF15 license kitcomponent
Object name: xlf.rte-compute-15.1.2-0-rhels-7.2-ppc64le
 description=XLF15 for runtime kitcomponent

5. Add the following kitcomponent (and dependencies) to the osimage object with the
addkitcomp command:

addkitcomp --adddeps -i rh72-hpc-diskful \
xlf.compiler-compute-15.1.2-0-rhels-7.2-ppc64le

Assigning kit component xlf.compiler-compute-15.1.2-0-rhels-7.2-ppc64le to
osimage rh72-hpc-diskful
Kit components xlf.compiler-compute-15.1.2-0-rhels-7.2-ppc64le were added to
osimage rh72-hpc-diskful successfully

lsdef -t osimage rh72-hpc-diskful -i kitcomponents
Object name: rh72-hpc-diskful

kitcomponents=xlc.license-compute-13.1.2-0-rhels-7.2-ppc64le,xlc.rte-comput
e-13.1.2-0-rhels-7.2-ppc64le,xlc.compiler-compute-13.1.2-0-rhels-7.2-ppc64le,xl
f.license-compute-15.1.2-0-rhels-7.2-ppc64le,xlf.rte-compute-15.1.2-0-rhels-7.2
-ppc64le,xlf.compiler-compute-15.1.2-0-rhels-7.2-ppc64le

5.6.7 Advance Toolchain

To install the Advance Toolchain, complete the following steps:

1. Download the product packages:

dir=/install/post/otherpkgs/rhels7.2/ppc64le/at8.0/
mkdir -p $dir
cd $dir

wget
'ftp://ftp.unicamp.br/pub/linuxpatch/toolchain/at/redhat/RHEL7/at8.0/advance-to
olchain-at8.0-*-8.0-5.ppc64le.rpm'
<...>
=> advance-toolchain-at8.0-devel-8.0-5.ppc64le.rpm
<...>
=> advance-toolchain-at8.0-mcore-libs-8.0-5.ppc64le.rpm
<...>
Chapter 5. Software deployment 121

=> advance-toolchain-at8.0-perf-8.0-5.ppc64le.rpm
<...>
=> advance-toolchain-at8.0-runtime-8.0-5.ppc64le.rpm
<...>
=> advance-toolchain-at8.0-selinux-8.0-5.ppc64le.rpm
<...>

2. Create a package repository with the createrepo command:

createrepo .
<...>

3. Create a package list with a combination of the rpm, awk, sed, and grep commands:

list=/install/custom/rhels7.2/at8.0.otherpkgs.pkglist

mkdir -p $(dirname $list)
rpm -qip *.rpm | awk '/^Name/ { print $3 }' | sed "s:^:$(basename $(pwd))/:"
| grep -v selinux >$list
<...>

cat $list
at8.0/advance-toolchain-at8.0-devel
at8.0/advance-toolchain-at8.0-mcore-libs
at8.0/advance-toolchain-at8.0-perf
at8.0/advance-toolchain-at8.0-runtime

4. Include the package list in the osimage object with the chdef command:

chdef -t osimage rh72-hpc-diskful --plus otherpkglist=$list
1 object definitions have been created or modified.

lsdef -t osimage rh72-hpc-diskful -i otherpkglist
Object name: rh72-hpc-diskful

otherpkglist=/install/osimages/rh72-hpc-diskful/kits/KIT_DEPLOY_PARAMS.othe
rpkgs.pkglist,/install/osimages/rh72-hpc-diskful/kits/KIT_COMPONENTS.otherpkgs.
pkglist,/install/custom/rhels7.2/at8.0.otherpkgs.pkglist

5.6.8 PE RTE

To install PE RTE, complete the following steps:

1. Add the kit (distributed with the product media) to xCAT with the addkit command:

addkit /path/to/pe-rte-files/pperte-2.3.0.0-1547a-ppc64le.tar.bz2
Adding Kit pperte-2.3.0.0-1547a-ppc64le
Kit pperte-2.3.0.0-1547a-ppc64le was successfully added.

lsdef -t kit
pperte-2.3.0.0-1547a-ppc64le (kit)
xlc-13.1.2-0-ppc64le (kit)
xlf-15.1.2-0-ppc64le (kit)

2. Verify its kitcomponent objects (and description fields) with the lsdef command:

lsdef -t kitcomponent -w kitname==pperte-2.3.0.0-1547a-ppc64le -i description
Object name: min-pperte-compute-2.3.0.0-1547a-rhels-7.2-ppc64le
 description=Minimal PE RTE for compute nodes
Object name: pperte-compute-2.3.0.0-1547a-rhels-7.2-ppc64le
 description=PE RTE for compute nodes
122 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Object name: pperte-license-2.3.0.0-1547a-rhels-7.2-ppc64le
 description=PE RTE License
Object name: pperte-login-2.3.0.0-1547a-rhels-7.2-ppc64le
 description=PE RTE for login nodes

3. Add the following kitcomponent (and dependencies) to the osimage object with the
addkitcomp command:

addkitcomp --adddeps -i rh72-hpc-diskful \
pperte-compute-2.3.0.0-1547a-rhels-7.2-ppc64le

Assigning kit component pperte-compute-2.3.0.0-1547a-rhels-7.2-ppc64le to
osimage rh72-hpc-diskful
Kit components pperte-compute-2.3.0.0-1547a-rhels-7.2-ppc64le were added to
osimage rh72-hpc-diskful successfully

lsdef -t osimage rh72-hpc-diskful -i kitcomponents
Object name: rh72-hpc-diskful

kitcomponents=xlc.license-compute-13.1.2-0-rhels-7.2-ppc64le,xlc.rte-comput
e-13.1.2-0-rhels-7.2-ppc64le,xlc.compiler-compute-13.1.2-0-rhels-7.2-ppc64le,xl
f.license-compute-15.1.2-0-rhels-7.2-ppc6
4le,xlf.rte-compute-15.1.2-0-rhels-7.2-ppc64le,xlf.compiler-compute-15.1.2-0-rh
els-7.2-ppc64le,pperte-license-2.3.0.0-1547a-rhels-7.2-ppc64le,pperte-compute-2
.3.0.0-1547a-rhels-7.2-ppc64le

4. Create a script to perform the configuration changes suggested by the pe_node_diag
utility (distributed with PE RTE):

script=/install/postscripts/config_pe_node_diag

cat <<"EOF" >$script
#!/bin/sh

Script: config_pe_node_diag: fix issues reported by pe_node_diag
Author: Mauricio Faria de Oliveira <mauricfo@linux.vnet.ibm.com>
Changelog:
- 20151121: initial version; support for RHEL Server 7.2 LE.

Sample output:
#
/opt/ibmhpc/pecurrent/ppe.poe/bin/pe_node_diag
#
Issue 1: net.core.wmem_max is 229376 but 1048576 is recommended.
(A) sysctl -w net.core.wmem_max=1048576
#
Issue 2: net.core.rmem_max is 229376 but 8388608 is recommended.
(A) sysctl -w net.core.rmem_max=8388608
#
Issue 3: net.ipv4.ipfrag_high_thresh is 4194304 but 8388608 is
recommended.
(A) sysctl -w net.ipv4.ipfrag_high_thresh=8388608
#
ATTENTION: kernel.shmall is calculated by dividing kernel.shmmax by
the system default memory page size of 65536 bytes.
If parallel jobs will be using a different page size,
kernel.shmall must be adjusted accordingly.
#
Issue 4: ulimit for nofile is 1024 but 4096 is recommended.
(M) Update nofile to be 4096 in /etc/security/limits.conf.
Chapter 5. Software deployment 123

#
Issue 5: ulimit for nproc is 977056 but 2067554 is recommended.
(M) Update nproc to be 2067554 in /etc/security/limits.conf.
#
Issue 6: ulimit for memlock is 64 but unlimited is recommended.
(M) Update memlock to be unlimited in /etc/security/limits.conf.
(M) Restart xinetd with 'service xinetd restart'.
#
Issue 7: per_source is 10 in /etc/xinetd.conf but 160 is recommended.
(M) Change per_source to 160 in /etc/xinetd.conf.
(M) Restart xinetd with 'service xinetd restart'.

PE_NODE_DIAG='/opt/ibmhpc/pecurrent/ppe.poe/bin/pe_node_diag'

Config files
SYSCTL_CONF='/etc/sysctl.d/90-ibm-pe-rte.conf'
LIMITS_CONF='/etc/security/limits.d/90-ibm-pe-rte.conf'
XINETD_CONF='/etc/xinetd.conf' # no effect with /etc/xinetd.d/
XINETD_CONF_ORIG="$XINETD_CONF.orig"

remove() {
echo "$(basename $0) :: Removing changes.."
rm -f $SYSCTL_CONF
rm -f $LIMITS_CONF
[-f "${XINETD_CONF_ORIG}"] && mv ${XINETD_CONF_ORIG} $XINETD_CONF || true

}

Error handling
error() {

echo "$(basename $0) :: Error on line $1."
remove
echo "$(basename $0) :: Exiting."
exit 1

}

trap 'error $LINENO' ERR
set -e

Remove option
if ["$1" = '-r']; then

remove
exit 0

fi

sysctl.conf

$PE_NODE_DIAG | sed -n "s/.*sysctl -w //p" > $SYSCTL_CONF

echo "Changes on $SYSCTL_CONF"
cat $SYSCTL_CONF
echo

echo 'Loading changes..'
sysctl --system
124 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

limits.conf

$PE_NODE_DIAG | awk '/limits.conf/ { print "* - " $3 " " $6 }' > $LIMITS_CONF

echo "Changes on $LIMITS_CONF"
cat $LIMITS_CONF
echo

xinetd.conf

cp -a $XINETD_CONF ${XINETD_CONF_ORIG}
$PE_NODE_DIAG \

| awk "/Change [^]+ to [^]+ in \/etc\/xinetd.conf/ { print \$3, \$5 }" \
| while read variable value; do

sed "/[\t]*${variable}/ { H; s/^/#/; p; x; s/= .*/= ${value}/; } " -i
$XINETD_CONF

done

echo "Changes on $XINETD_CONF"
diff ${XINETD_CONF_ORIG} $XINETD_CONF || true

echo 'Restarting xinetd..'
systemctl restart xinetd.service

exit 0
EOF

chmod +x $script

ls -l $script
-rwxr-xr-x 1 root root 3098 Feb 13 14:35
/install/postscripts/config_pe_node_diag

5. Include the script in the postbootscripts list.

chdef -t osimage rh72-hpc-diskful --plus postbootscripts=$(basename $script)
1 object definitions have been created or modified.

lsdef -t osimage rh72-hpc-diskful -i postbootscripts
Object name: rh72-hpc-diskful

Note: The postbootscripts are executed after postscripts (the point at which kits are
installed during the osimage installation). Therefore, the PE RTE contents are already
installed by the time the script runs.

For more information and details, see the following xCAT documentation page:

http://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_cluste
rs/common/deployment/prepostscripts/post_script.html
Chapter 5. Software deployment 125

http://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_clusters/common/deployment/prepostscripts/post_script.html

postbootscripts=KIT_pperte-compute-2.3.0.0-1547a-rhels-7.2-ppc64le_pperte_p
ostboot,config_pe_node_diag

6. Include the ksh package dependency (for the PE RTE Installation Verification Program) in
the package list:

list=/install/custom/install/rh/rh72-hpc.pkglist

cat <<"EOF" >>$list

PE RTE IVP
ksh
EOF

cat /install/custom/install/rh/rh72-hpc.pkglist
RHEL Server 7.2 (original pkglist)
#INCLUDE:/opt/xcat/share/xcat/install/rh/compute.rhels7.pkglist#

CUDA Toolkit 7.5 for RHEL 7.2 (original pkglist)
#INCLUDE:/opt/xcat/share/xcat/install/rh/cudafull.rhels7.ppc64le.pkglist#

Infiniband with Mellanox OFED for RHEL 7.2 (original pkglist)
createrepo
#INCLUDE:/opt/xcat/share/xcat/ib/netboot/rh/ib.rhels7.ppc64le.pkglist#

PE RTE IVP
ksh

5.6.9 PE DE

To install PE DE, complete the following steps:

1. Add the kit (distributed with the product media) to xCAT with the addkit command:

addkit /path/to/pe-de-files/ppedev-2.2.0-0.tar.bz2
Adding Kit ppedev-2.2.0-0
Kit ppedev-2.2.0-0 was successfully added.

lsdef -t kit
ppedev-2.2.0-0 (kit)
pperte-2.3.0.0-1547a-ppc64le (kit)
xlc-13.1.2-0-ppc64le (kit)
xlf-15.1.2-0-ppc64le (kit)

2. Verify its kitcomponent objects (and description fields) with the lsdef command:

lsdef -t kitcomponent -w kitname==ppedev-2.2.0-0 -i description
Object name: ppedev.compute-2.2.0-0-rhels-7.2-ppc64le
 description=Parallel Environment Developer Edition for compute nodes
Object name: ppedev.license-2.2.0-0-rhels-7.2-ppc64le
 description=Parallel Environment Developer Edition license package
Object name: ppedev.login-2.2.0-0-rhels-7.2-ppc64le
 description=Parallel Environment Developer Edition for login nodes
126 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

3. Add the following kitcomponent (and dependencies) to the osimage object with the
addkitcomp command:

addkitcomp --adddeps -i rh72-hpc-diskful \
ppedev.compute-2.2.0-0-rhels-7.2-ppc64le

Assigning kit component ppedev.compute-2.2.0-0-rhels-7.2-ppc64le to osimage
rh72-hpc-diskful
Kit components ppedev.compute-2.2.0-0-rhels-7.2-ppc64le were added to osimage
rh72-hpc-diskful successfully

lsdef -t osimage rh72-hpc-diskful -i kitcomponents
Object name: rh72-hpc-diskful

kitcomponents=xlc.license-compute-13.1.2-0-rhels-7.2-ppc64le,xlc.rte-comput
e-13.1.2-0-rhels-7.2-ppc64le,xlc.compiler-compute-13.1.2-0-rhels-7.2-ppc64le,xl
f.license-compute-15.1.2-0-rhels-7.2-ppc6
4le,xlf.rte-compute-15.1.2-0-rhels-7.2-ppc64le,xlf.compiler-compute-15.1.2-0-rh
els-7.2-ppc64le,pperte-license-2.3.0.0-1547a-rhels-7.2-ppc64le,pperte-compute-2
.3.0.0-1547a-rhels-7.2-ppc64le,ppedev.license-2.2.0-0-rhels-7.2-ppc64le,ppedev.
compute-2.2.0-0-rhels-7.2-ppc64le

5.6.10 ESSL

To install ESSL, complete the following steps:

1. Add the kit (distributed with the product media) to xCAT with the addkit command:

addkit /path/to/essl-files/essl-5.4.0-0-ppc64le.tar.bz2
Adding Kit essl-5.4.0-0-ppc64le
Kit essl-5.4.0-0-ppc64le was successfully added.

lsdef -t kit
essl-5.4.0-0-ppc64le (kit)
ppedev-2.2.0-0 (kit)
pperte-2.3.0.0-1547a-ppc64le (kit)
xlc-13.1.2-0-ppc64le (kit)
xlf-15.1.2-0-ppc64le (kit)

2. Verify its kitcomponent objects (and description fields) with the lsdef command:

lsdef -t kitcomponent -w kitname==essl-5.4.0-0-ppc64le -i description
Object name: essl-computenode-3264rte-5.4.0-0-rhels-7.2-ppc64le
 description=essl for compute nodes with 3264 rte only
Object name: essl-computenode-3264rtecuda-5.4.0-0-rhels-7.2-ppc64le
 description=essl for compute nodes with 3264 rte cuda only
Object name: essl-computenode-5.4.0-0-rhels-7.2-ppc64le
 description=essl for compute nodes
Object name: essl-computenode-6464rte-5.4.0-0-rhels-7.2-ppc64le
 description=essl for compute nodes with 6464 rte only
Object name: essl-license-5.4.0-0-rhels-7.2-ppc64le
 description=essl license for compute nodes

Note: To perform development/profiling tasks on a compute node, install the following
kitcomponent: ppedev.login-2.2.0-0-rhels-7.2-ppc64le.

You can also install an official RHEL package update to the glibc packages to avoid the
monstartup: out of memory error when running debug applications (not covered in this
book).
Chapter 5. Software deployment 127

Object name: essl-loginnode-5.4.0-0-rhels-7.2-ppc64le
 description=essl for login nodes

3. Add the following kitcomponent (and dependencies) to the osimage object with the
addkitcomp command:

addkitcomp --adddeps -i rh72-hpc-diskful \
essl-computenode-5.4.0-0-rhels-7.2-ppc64le

Assigning kit component essl-computenode-5.4.0-0-rhels-7.2-ppc64le to osimage
rh72-hpc-diskful
Kit components essl-computenode-5.4.0-0-rhels-7.2-ppc64le were added to osimage
rh72-hpc-diskful successfully

lsdef -t osimage rh72-hpc-diskful -i kitcomponents
Object name: rh72-hpc-diskful

kitcomponents=xlc.license-compute-13.1.2-0-rhels-7.2-ppc64le,xlc.rte-comput
e-13.1.2-0-rhels-7.2-ppc64le,xlc.compiler-compute-13.1.2-0-rhels-7.2-ppc64le,xl
f.license-compute-15.1.2-0-rhels-7.2-ppc6
4le,xlf.rte-compute-15.1.2-0-rhels-7.2-ppc64le,xlf.compiler-compute-15.1.2-0-rh
els-7.2-ppc64le,pperte-license-2.3.0.0-1547a-rhels-7.2-ppc64le,pperte-compute-2
.3.0.0-1547a-rhels-7.2-ppc64le,ppedev.lic
ense-2.2.0-0-rhels-7.2-ppc64le,ppedev.compute-2.2.0-0-rhels-7.2-ppc64le,essl-li
cense-5.4.0-0-rhels-7.2-ppc64le,essl-computenode-5.4.0-0-rhels-7.2-ppc64le

5.6.11 PESSL

To install PESSL, complete the following steps:

1. Add the kit (distributed with the product media) to xCAT with the addkit command:

addkit /path/to/pessl-files/pessl-5.2.0-0-ppc64le.tar.bz2
Adding Kit pessl-5.2.0-0-ppc64le
Kit pessl-5.2.0-0-ppc64le was successfully added.

lsdef -t kit
essl-5.4.0-0-ppc64le (kit)
pessl-5.2.0-0-ppc64le (kit)
ppedev-2.2.0-0 (kit)
pperte-2.3.0.0-1547a-ppc64le (kit)
xlc-13.1.2-0-ppc64le (kit)
xlf-15.1.2-0-ppc64le (kit)

2. Verify its kitcomponent objects (and description fields) with the lsdef command:

lsdef -t kitcomponent -w kitname==pessl-5.2.0-0-ppc64le -i description
Object name: pessl-computenode-3264rtempich-5.2.0-0-rhels-7.2-ppc64le
 description=pessl for compute nodes with ESSL non-cuda runtime
Object name: pessl-computenode-5.2.0-0-rhels-7.2-ppc64le
 description=pessl for compute nodes
Object name: pessl-license-5.2.0-0-rhels-7.2-ppc64le
 description=pessl license for compute nodes
Object name: pessl-loginnode-5.2.0-0-rhels-7.2-ppc64le
 description=pessl for login nodes

3. Add the following kitcomponent (and dependencies) to the osimage object with the
addkitcomp command:

addkitcomp --adddeps -i rh72-hpc-diskful \
pessl-computenode-5.2.0-0-rhels-7.2-ppc64le
128 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Assigning kit component pessl-computenode-5.2.0-0-rhels-7.2-ppc64le to osimage
rh72-hpc-diskful
Kit components pessl-computenode-5.2.0-0-rhels-7.2-ppc64le were added to
osimage rh72-hpc-diskful successfully

lsdef -t osimage rh72-hpc-diskful -i kitcomponents
Object name: rh72-hpc-diskful

kitcomponents=xlc.license-compute-13.1.2-0-rhels-7.2-ppc64le,xlc.rte-comput
e-13.1.2-0-rhels-7.2-ppc64le,xlc.compiler-compute-13.1.2-0-rhels-7.2-ppc64le,xl
f.license-compute-15.1.2-0-rhels-7.2-ppc6
4le,xlf.rte-compute-15.1.2-0-rhels-7.2-ppc64le,xlf.compiler-compute-15.1.2-0-rh
els-7.2-ppc64le,pperte-license-2.3.0.0-1547a-rhels-7.2-ppc64le,pperte-compute-2
.3.0.0-1547a-rhels-7.2-ppc64le,ppedev.lic
ense-2.2.0-0-rhels-7.2-ppc64le,ppedev.compute-2.2.0-0-rhels-7.2-ppc64le,essl-li
cense-5.4.0-0-rhels-7.2-ppc64le,essl-computenode-5.4.0-0-rhels-7.2-ppc64le,pess
l-license-5.2.0-0-rhels-7.2-ppc64le,pessl-computenode-5.2.0-0-rhels-7.2-ppc64le

5.6.12 Spectrum Scale (formerly GPFS)

This section provides the instructions to install the packages for Spectrum Scale 4.1.1.0, the
package updates for Spectrum Scale 4.1.1.3, and to build and install the GPFS Portability
Layer (GPL) packages.

The process to build the GPL requires an already provisioned node (for example, compute,
login, or management node) with Spectrum Scale packages installed (specifically, gpfs.gpl).
Therefore, if not using the management node to build the GPL, you cannot install Spectrum
Scale with the GPL (requirement) in a single provisioning stage for one of the nodes, which is
used to build the GPL. It is possible, afterward, provided the built GPL package is made
available for download in the management node (like other Spectrum Scale packages) for
installation on other nodes.

For more information and details about the installation process, see the Installing GPFS on
Linux nodes page in the Knowledge Center:

http://www.ibm.com/support/knowledgecenter/STXKQY_4.1.1/com.ibm.spectrum.scale.v4r
11.ins.doc/bl1ins_loosein.htm

In order to install Spectrum Scale 4.1.1.3 (on top of 4.1.1.0), perform the following steps:

� Install a script for environment configuration
� Install the packages for Spectrum Scale 4.1.1.0
� Install the packages for Spectrum Scale 4.1.1.3
� Perform the GPL build

Install a script for environment configuration
To install the script for environment configuration, complete these steps:

1. Create a script to set the PATH environment variable:

script=/install/postscripts/gpfs-path

cat <<EOF >$script
#!/bin/bash

profile='/etc/profile.d/gpfs.sh'
echo 'export PATH=\$PATH:/usr/lpp/mmfs/bin' >\$profile
EOF
Chapter 5. Software deployment 129

http://www.ibm.com/support/knowledgecenter/STXKQY_4.1.1/com.ibm.spectrum.scale.v4r11.ins.doc/bl1ins_loosein.htm

chmod +x $script

ls -l $script
-rwxr-xr-x 1 root root 99 Nov 30 17:24 /install/postscripts/gpfs-path

2. Include it in the postscripts list of the osimage object with the chdef command:

lsdef -t osimage rh72-hpc-diskful -i postscripts
Object name: rh72-hpc-diskful

postscripts=nvidia-power-limit

chdef -t osimage rh72-hpc-diskful --plus postscripts='gpfs-path'
1 object definitions have been created or modified.

lsdef -t osimage rh72-hpc-diskful -i postscripts
Object name: rh72-hpc-diskful

postscripts=nvidia-power-limit,gpfs-path

Install the packages for Spectrum Scale 4.1.1.0
To install the packages, complete the following steps:

1. Extract the product packages of Spectrum Scale 4.1.1.0:

dir=/install/post/otherpkgs/rhels7.2/ppc64le/gpfs-4110
mkdir -p $dir

/path/to/Spectrum_Scale_install-4.1.1.0_ppc64le_standard --silent --dir $dir
<...>
Extracting Product RPMs to /install/post/otherpkgs/rhels7.2/ppc64le/gpfs-4110
<...>

2. Create the respective package repository with the createrepo command:

createrepo $dir
<...>

ls -1 $dir
gpfs.base_4.1.1-0_ppc64el.deb
gpfs.base-4.1.1-0.ppc64le.rpm
gpfs.docs_4.1.1-0_all.deb
gpfs.docs-4.1.1-0.noarch.rpm
gpfs.ext_4.1.1-0_ppc64el.deb
gpfs.ext-4.1.1-0.ppc64le.rpm
gpfs.gpl_4.1.1-0_all.deb
gpfs.gpl-4.1.1-0.noarch.rpm
gpfs.gskit_8.0.50-40_ppc64el.deb
gpfs.gskit-8.0.50-40.ppc64le.rpm
gpfs.hadoop-2-connector-4.1.1-0.ppc64le.rpm
gpfs.msg.en-us_4.1.1-0_all.deb
gpfs.msg.en_US-4.1.1-0.noarch.rpm
license
manifest
repodata
130 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

3. Create the respective package list with a combination of commands:

list=/install/custom/rhels7.2/gpfs-4110.otherpkgs.pkglist

rpm -qip $dir/*.rpm | awk '/^Name/ { print $3 }' | sed "s:^:$(basename
$dir)/:" | grep -v hadoop >$list

cat $list
gpfs-4110/gpfs.base
gpfs-4110/gpfs.docs
gpfs-4110/gpfs.ext
gpfs-4110/gpfs.gpl
gpfs-4110/gpfs.gskit
gpfs-4110/gpfs.msg.en_US

4. Include the respective package list in the otherpkglist attribute of the osimage object with
the chdef command:

chdef -t osimage rh72-hpc-diskful --plus otherpkglist=$list
1 object definitions have been created or modified.

lsdef -t osimage rh72-hpc-diskful -i otherpkglist
Object name: rh72-hpc-diskful

otherpkglist=/install/osimages/rh72-hpc-diskful/kits/KIT_DEPLOY_PARAMS.othe
rpkgs.pkglist,/install/osimages/rh72-hpc-diskful/kits/KIT_COMPONENTS.otherpkgs.
pkglist,/install/custom/rhels7.2/at8.0.otherpkgs.pkglist,/install/custom/rhels7
.2/gpfs-4110.otherpkgs.pkglist

Install the packages for Spectrum Scale 4.1.1.3
To install the packages, complete the following steps:

1. Extract the product packages of Spectrum Scale 4.1.1.3:

dir=/install/post/otherpkgs/rhels7.2/ppc64le/gpfs-4113
mkdir -p $dir

/root/software/gpfs/Spectrum_Scale_Standard-4.1.1.3-ppc64LE-Linux-update
--silent --dir $dir
<...>
Product rpms successfully extracted to
/install/post/otherpkgs/rhels7.2/ppc64le/gpfs-4113

2. Create the respective package repository with the createrepo command:

createrepo $dir
<...>

ls -1 $dir
gpfs.base_4.1.1-3_ppc64el_update.deb
gpfs.base-4.1.1-3.ppc64le.update.rpm
gpfs.docs_4.1.1-3_all.deb
gpfs.docs-4.1.1-3.noarch.rpm
gpfs.ext_4.1.1-3_ppc64el_update.deb
gpfs.ext-4.1.1-3.ppc64le.update.rpm
gpfs.gpl_4.1.1-3_all.deb
gpfs.gpl-4.1.1-3.noarch.rpm
gpfs.gskit_8.0.50-47_ppc64el.deb
gpfs.gskit-8.0.50-47.ppc64le.rpm
gpfs.hadoop-connector_2.7.0-2_ppc64el.deb
Chapter 5. Software deployment 131

gpfs.hadoop-connector-2.7.0-2.ppc64le.rpm
gpfs.msg.en-us_4.1.1-3_all.deb
gpfs.msg.en_US-4.1.1-3.noarch.rpm
manifest
repodata

3. Create the respective package list with a combination of commands:

list=/install/custom/rhels7.2/gpfs-4113.otherpkgs.pkglist

echo '#NEW_INSTALL_LIST#' > $list
rpm -qip $dir/*.rpm | awk '/^Name/ { print $3 }' | sed "s:^:$(basename
$dir)/:" | grep -v hadoop >>$list

cat $list
#NEW_INSTALL_LIST#
gpfs-4113/gpfs.base
gpfs-4113/gpfs.docs
gpfs-4113/gpfs.ext
gpfs-4113/gpfs.gpl
gpfs-4113/gpfs.gskit
gpfs-4113/gpfs.msg.en_US

4. Include the respective package list in the otherpkglist attribute of the osimage object with
the chdef command:

chdef -t osimage rh72-hpc-diskful --plus otherpkglist=$list
1 object definitions have been created or modified.

lsdef -t osimage rh72-hpc-diskful -i otherpkglist
Object name: rh72-hpc-diskful

otherpkglist=/install/osimages/rh72-hpc-diskful/kits/KIT_DEPLOY_PARAMS.othe
rpkgs.pkglist,/install/osimages/rh72-hpc-diskful/kits/KIT_COMPONENTS.otherpkgs.
pkglist,/install/custom/rhels7.2/at8.0.otherpkgs.pkglist,/install/custom/rhels7
.2/gpfs-4110.otherpkgs.pkglist,/install/custom/rhels7.2/gpfs-4113.otherpkgs.pkg
list

Perform the GPL build
The process to build the GPL requires a working node (for example, a management, login, or
compute node) with Spectrum Scale packages (specifically, gpfs.gpl) installed.

The node must be capable of building out-of-tree kernel modules (that is, with development
packages such as gcc, make, and kernel-devel installed, for example), and run the same
kernel packages version and processor architecture as the target compute nodes for the GPL
produced binaries.

Note: Use the #NEW_INSTALL_LIST# directive to perform package installation of
Spectrum Scale 4.1.1.0 and 4.1.1.3 in different stages to ensure the update process
(from version 4.1.1.0 to version 4.1.1.3) occurs correctly.

For more information and details, see the following xCAT documentation page:

http://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_cluste
rs/common/deployment/additionalpkg/nonubuntu_os_other_pkg.html#file-format-f
or-otherpkgs-pkglist-file
132 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_clusters/common/deployment/additionalpkg/nonubuntu_os_other_pkg.html#file-format-for-otherpkgs-pkglist-file

For example, you can build the GPL in the management node or an already installed compute
node (if any), if it is a system based on POWER8 running RHEL Server 7.2 for ppc64le, and
matches the kernel packages version of the target compute nodes. This section describes the
build process with an already installed compute node.

To perform the GPL build, complete the following steps:

1. Verify the Spectrum Scale installation (PATH environment variable and RPM packages):

xdsh p8r2n2 'echo $PATH' | grep mmfs
p8r2n2: /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/usr/lpp/mmfs/bin:
/opt/ibutils/bin

xdsh p8r2n2 'rpm -qa | grep ^gpfs'
p8r2n2: gpfs.msg.en_US-4.1.1-3.noarch
p8r2n2: gpfs.gpl-4.1.1-3.noarch
p8r2n2: gpfs.gskit-8.0.50-47.ppc64le
p8r2n2: gpfs.docs-4.1.1-3.noarch
p8r2n2: gpfs.ext-4.1.1-3.ppc64le
p8r2n2: gpfs.base-4.1.1-3.ppc64le

2. Build the GPL.

Verify that the build process writes the resulting GPL binary RPM package
(gpfs.gplbin-<kernel version>.<architecture>-<spectrum scale version>.rpm), and
finishes with an exit code of zero (success).

xdsh p8r2n2 --stream 'cd /usr/lpp/mmfs/src && make Autoconfig && make World
&& make InstallImages && make rpm'
<...>
p8r2n2: Verifying that tools to build the portability layer exist....
p8r2n2: cpp present
p8r2n2: gcc present
p8r2n2: g++ present
p8r2n2: ld present
<...>
p8r2n2: Wrote:
/root/rpmbuild/RPMS/ppc64le/gpfs.gplbin-3.10.0-327.el7.ppc64le-4.1.1-3.ppc64le.
rpm
<...>
p8r2n2: + exit 0

3. Copy the package and create the respective package repository with the createrepo
command:

dir=/install/post/otherpkgs/rhels7.2/ppc64le/gpfs-gpl
mkdir -p $dir

scp p8r2n2:/root/rpmbuild/RPMS/ppc64le/gpfs.gplbin-*.rpm $dir
gpfs.gplbin-3.10.0-327.el7.ppc64le-4.1.1-3.ppc64le.rpm <...>

createrepo $dir
<...>

ls -1 $dir

Note: The GPL must be rebuilt and reinstalled in the event of updates to the kernel
packages. This process requires the kernel-devel package for the respective update
version.
Chapter 5. Software deployment 133

gpfs.gplbin-3.10.0-327.el7.ppc64le-4.1.1-3.ppc64le.rpm
repodata

4. Create the respective package list with these commands:

list=/install/custom/rhels7.2/gpfs-gpl.otherpkgs.pkglist

echo '#NEW_INSTALL_LIST#' >$list
rpm -qip $dir/*.rpm | awk '/^Name/ { print $3 }' | sed "s:^:$(basename
$dir)/:" >>$list

cat $list
#NEW_INSTALL_LIST#
gpfs-gpl/gpfs.gplbin-3.10.0-327.el7.ppc64le

5. Include the respective package list in the otherpkglist attribute of the osimage object with
the chdef command.

This step allows the GPL package to be installed automatically (without rebuild steps)
during the provisioning stage of other nodes.

chdef -t osimage rh72-hpc-diskful --plus otherpkglist=$list
1 object definitions have been created or modified.

lsdef -t osimage rh72-hpc-diskful -i otherpkglist
Object name: rh72-hpc-diskful

otherpkglist=/install/osimages/rh72-hpc-diskful/kits/KIT_DEPLOY_PARAMS.othe
rpkgs.pkglist,/install/osimages/rh72-hpc-diskful/kits/KIT_COMPONENTS.otherpkgs.
pkglist,/install/custom/rhels7.2/at8.0.otherpkgs.pkglist,/install/custom/rhels7
.2/gpfs-4110.otherpkgs.pkglist,/install/custom/rhels7.2/gpfs-4113.otherpkgs.pkg
list,/install/custom/rhels7.2/gpfs-gpl.otherpkgs.pkglist

For more information about configuration and usage, see the Steps to establishing and
starting your GPFS cluster page in the Knowledge Center:

http://www.ibm.com/support/knowledgecenter/STXKQY_4.1.1/com.ibm.spectrum.scale.v4r
11.ins.doc/bl1ins_estart.htm

5.6.13 IBM Spectrum LSF

This section provides instructions to install, update, and enable Spectrum LSF (formerly
Platform LSF) on the compute nodes, and to configure some features. The Spectrum LSF
installation and the user applications (run by using jobs) need to be available on a parallel file
system in order for all nodes to concurrently access the same code and data correctly. For the
scenario described in this section, a Spectrum Scale file system is available at
/gpfs/gpfs_fs0.

Note: You can install the GPL in an already installed and running compute node with
the otherpkgs script of the updatenode command:

updatenode p8r3n3 -P otherpkgs
<...>
p8r3n3: pkgsarray: gpfs-gpl/gpfs.gplbin-3.10.0-327.el7.ppc64le, 2
<...>

xdsh p8r3n3 'rpm -qa | grep ^gpfs.gpl'
p8r3n3: gpfs.gpl-4.1.1-3.noarch
p8r3n3: gpfs.gplbin-3.10.0-327.el7.ppc64le-4.1.1-3.ppc64le
134 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/support/knowledgecenter/STXKQY_4.1.1/com.ibm.spectrum.scale.v4r11.ins.doc/bl1ins_estart.htm

The process consists of installing and updating Spectrum LSF in one node (that is, only
once), and then enabling it on all nodes. The install/update is only required in one node
because it is available in the parallel file system accessible by all nodes. The enablement,
however, is required on all nodes because it performs configuration steps and enables startup
services.

Therefore, the process to install/update Spectrum LSF requires an already provisioned node
(for example, a compute or login node) with access to the parallel file system that is available
to the other nodes. It is not possible to install and enable Spectrum LSF in a single
provisioning stage for one of the nodes, which is used to install Spectrum LSF to the parallel
file system. It is possible afterward if it is already installed and available in the parallel file
system for access by other nodes, which only need to enable Spectrum LSF and be added to
the Spectrum LSF cluster. The option with single provisioning stage is not covered in this
section, which still requires enabling Spectrum LSF and adding the nodes to the cluster
manually.

To install Spectrum LSF, complete the following steps:

� Install Spectrum LSF
� Update Spectrum LSF
� Enable Spectrum LSF
� Add more nodes
� Configure extra HPC and IBM PE support features
� Configure GPU support features

Install Spectrum LSF
The following steps are performed on the management node, targeting an already
provisioned compute node (for example, p8r1n1, defined as lsf_master):

1. Create the directories for the installation and distribution directories of Spectrum LSF to be
mounted from a Spectrum Scale file system (for example, /gpfs/gpfs_fs0):

gpfs_dir='/gpfs/gpfs_fs0/lsf'
gpfs_top="$gpfs_dir/top"
gpfs_distrib="$gpfs_dir/distrib"

lsf_top='/usr/share/lsf'
lsf_distrib='/usr/share/lsf_distrib'

lsf_master='p8r1n1'

xdsh $lsf_master "mkdir -p $lsf_top $gpfs_top && echo '$gpfs_top $lsf_top
none defaults,bind 0 0' >>/etc/fstab && mount -v $lsf_top"
p8r1n1: mount: /gpfs/gpfs_fs0/lsf/top bound on /usr/share/lsf.

xdsh $lsf_master "mkdir -p $lsf_distrib $gpfs_distrib && echo '$gpfs_distrib
$lsf_distrib none defaults,bind 0 0' >>/etc/fstab && mount -v $lsf_distrib"
p8r1n1: mount: /gpfs/gpfs_fs0/lsf/distrib bound on /usr/share/lsf_distrib.

2. Copy the installation tarballs and the entitlement file to the distribution directory:

cd /path/to/lsf-install-files

ls -1
lsf9.1.3_lnx310-lib217-ppc64le.tar.Z
lsf9.1.3_lsfinstall_linux_ppc64le.tar.Z
lsf.entitlement
Chapter 5. Software deployment 135

scp \
lsf9.1.3_lsfinstall_linux_ppc64le.tar.Z \
lsf9.1.3_lnx310-lib217-ppc64le.tar.Z \
lsf.entitlement \
$lsf_master:$lsf_distrib

lsf9.1.3_lsfinstall_linux_ppc64le.tar.Z
100% 116MB 58.2MB/s 00:02
lsf9.1.3_lnx310-lib217-ppc64le.tar.Z
100% 228MB 76.1MB/s 00:03
lsf.entitlement
100% 167 0.2KB/s 00:00

Verify the files are present in the correct directory:

ssh $lsf_master "cd $lsf_distrib; pwd; ls -1"
/usr/share/lsf_distrib
lsf9.1.3_lnx310-lib217-ppc64le.tar.Z
lsf9.1.3_lsfinstall_linux_ppc64le.tar.Z
lsf.entitlement

3. Create the administrator user for Spectrum LSF:

lsf_username='lsfadmin'
lsf_password='<password>'

xdsh $lsf_master "useradd -m -s /bin/bash $lsf_username && echo
"$lsf_username:$lsf_password" | chpasswd; su -l $lsf_username -c whoami"
p8r1n1: lsfadmin

xdsh $lsf_master "su -l $lsf_username -c 'cat ~/.profile >> ~/.bash_profile'"

4. Create the configuration file for the installation (install.config):

It must be placed in the same directory as the install_lsf and lsf_startup scripts.

For the scenario adopted in this chapter:

– Top directory: /usr/share/lsf

– Distribution directory: /usr/share/lsf_distrib

– Entitlement file: lsf.entitlement (in the distribution directory)

– Administrator username: lsfadmin

– Cluster name: lsf-cluster

– Master/server nodes: p8r1n1 (that is, $lsf_master)

– Non-master/server nodes: none at this time

lsf_cluster='lsf-cluster'
lsf_entitlement="$lsf_distrib/lsf.entitlement"

cat <<EOF >/install/postscripts/install.config
LSF_TOP="$lsf_top"
LSF_TARDIR="$lsf_distrib"
LSF_ENTITLEMENT_FILE="$lsf_entitlement"
LSF_ADMINS="$lsf_username"
LSF_CLUSTER_NAME="$lsf_cluster"
LSF_MASTER_LIST="$lsf_master"
LSF_ADD_SERVERS=""
EOF
136 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Verify the file contents are correct:

cat /install/postscripts/install.config
LSF_TOP="/usr/share/lsf"
LSF_TARDIR="/usr/share/lsf_distrib"
LSF_ENTITLEMENT_FILE="/usr/share/lsf_distrib/lsf.entitlement"
LSF_ADMINS="lsfadmin"
LSF_CLUSTER_NAME="lsf-cluster"
LSF_MASTER_LIST="p8r1n1"
LSF_ADD_SERVERS=""

5. Include the ed package in the package list:

lsdef -t osimage rh72-hpc-diskful -i pkglist
Object name: rh72-hpc-diskful

pkglist=/install/custom/install/rh/rh72-hpc.pkglist

list=/install/custom/install/rh/rh72-hpc.pkglist

cat <<EOF >>$list

Spectrum LSF
ed
EOF

Verify the package list is correct:

cat $list
RHEL Server 7.2 (original pkglist)
#INCLUDE:/opt/xcat/share/xcat/install/rh/compute.rhels7.pkglist#

CUDA Toolkit 7.5 for RHEL 7.2 (original pkglist)
#INCLUDE:/opt/xcat/share/xcat/install/rh/cudafull.rhels7.ppc64le.pkglist#

Infiniband with Mellanox OFED for RHEL 7.2 (original pkglist)
createrepo
#INCLUDE:/opt/xcat/share/xcat/ib/netboot/rh/ib.rhels7.ppc64le.pkglist#

PE RTE IVP
ksh

Spectrum LSF
ed

6. Install the packages from the pkglist attribute with the ospkgs script for the updatenode
command:

updatenode $lsf_master --scripts ospkgs
p8r1n1: xcatdsklspost: downloaded postscripts successfully
p8r1n1: <...> Running postscript: ospkgs
<...>
p8r1n1: Postscript: ospkgs exited with code 0
p8r1n1: Running of postscripts has completed.

Verify the ed command is available:

xdsh $lsf_master 'ed --version | head -n1'
p8r1n1: GNU Ed 1.9
Chapter 5. Software deployment 137

7. Install Spectrum LSF on the node with the install_lsf script for the updatenode
command.

Verify that the exit code of the script is zero (success).

updatenode $lsf_master --scripts install_lsf
p8r1n1: xcatdsklspost: downloaded postscripts successfully
p8r1n1: <...> Running postscript: install_lsf
<...>
p8r1n1: INFO: Installation script DONE.
p8r1n1: INFO: Updating LSF Cluster Configuration Files lsf.conf and lsb.hosts
p8r1n1: Postscript: install_lsf exited with code 0
p8r1n1: Running of postscripts has completed.

Update Spectrum LSF
Several updates can be available for Spectrum LSF in the form of fixes (or patches).

For more information and details about applying fixes to Spectrum LSF, see the following
Knowledge Center page:

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_unix_install/lsf_patch
_version_manage.dita

To download and apply fixes for Spectrum LSF, complete the following steps.

1. Download the fixes:

a. Go to the IBM Support page:

http://ibm.com/support

b. In Product Finder, type LSF.

c. In the results list, select LSF 9.1.3.

d. Under Downloads, select Downloads (fixes & PTFs).

e. The page opens a window inside it (title: Refine my fix list; subtitle: LSF 9.1.3)

f. In Version fix level, select 9.1.3.

g. In Filter by operating system, select Linux Power PC 64 Little Endian

h. Click Continue.

The list of fixes is presented, and more details are available in Show fix details. For
example, these details were shown at the time of writing):

• interim fix: lsf-9.1.3-build347817

Abstract: P101215. Fix to enhance Nvidia GPU integration with LSF 9.1.3 in Linux
x64 environment. LSF makes use of the cgroup device subsystem to enforce the

Note: If the ed command is not available, the following error can happen:

updatenode $lsf_master --scripts install_lsf
<...>
p8r1n1: ERROR: Fail to install LSF. Check Install.log and Install.err in
/usr/share/lsf_distrib/lsf9.1.3_lsfinstall.
<...>

xdsh $lsf_master "cat /usr/share/lsf_distrib/*/Install.err"
<...>
p8r1n1: Cannot find UNIX command " ed".
<...>
138 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_unix_install/lsf_patch_version_manage.dita
http://ibm.com/support

GPU in this patch. LSF can disable auto boost for the job with exclusive
thread/process multi-GPU requirements. LSF can power off the GPU if it is not in
use.

• interim fix: lsf-9.1.3-build368515

Abstract: P101357. This fix updates the lsb_readjobinfo API to set a job

• fix pack: lsf-9.1.3.3-spk-2015-Jun-build346694

Abstract: LSF Version 9.1.3 Fix Pack 3. This Fix Pack includes all fixed issues and
solutions included in previous LSF Version 9.1.3 Fix Packs and addresses new
issues and solutions between 1 February 2015 and 8 June 2015. For detailed
descriptions of the issues and solutions in this Fix Pack, refer to the LSF 9.1.3 Fix
Pack 3 Fixed Bugs List (lsf9.1.3.3_fixed_bugs.pdf).

• interim fix: lsf-9.1.3-build362511

Abstract: P101353. Fix to ensure launch job run successfully over 32 nodes.

i. In the results list, select the desired fixes, and click Continue. Usually, all the fixes are
suggested for the general case.

j. Proceed with the sign-in process.

k. Select a download option (for example, HTTPS).

l. Copy the download link of each file (for HTTPS; for other methods, follow the
instructions that are provided in the website), or download the files and transfer to the
desired node later.

2. Apply the fixes.

Perform the following commands in one of the nodes with access to the parallel file system
with the Spectrum LSF installation (for example, open an SSH connection to p8r1n1):

a. Go to the patch installation directory:

patch_dir=/usr/share/lsf/9.1/install/patches/
mkdir -p $patch_dir
cd $patch_dir

b. Download (or copy) one or more fixes.

You can use the download links copied in an earlier step.

curl -sOL https://<...>/lsf9.1.3_linux3.10-glibc2.17-ppc64le-347817.tar.Z
curl -sOL https://<...>/lsf9.1.3_linux3.10-glibc2.17-ppc64le-368515.tar.Z
curl -sOL https://<...>/lsf9.1.3_lnx310-lib217-ppc64le-346694.tar.Z
curl -sOL https://<...>/lsf9.1.3_linux3.10-glibc2.17-ppc64le-362511.tar.Z

ls -1
lsf9.1.3_linux3.10-glibc2.17-ppc64le-347817.tar.Z
lsf9.1.3_linux3.10-glibc2.17-ppc64le-362511.tar.Z
lsf9.1.3_linux3.10-glibc2.17-ppc64le-368515.tar.Z
lsf9.1.3_lnx310-lib217-ppc64le-346694.tar.Z

c. Run the patchinstall command on the fixes:

../patchinstall *-362511.* *-346694.* *-368515.* *-347817.*
<...>
Installing package
"/usr/share/lsf/9.1/install/patches/lsf9.1.3_linux3.10-glibc2.17-ppc64le-362
511.tar.Z"...
<...>
Are you sure you want to update your cluster with this patch? (y/n) [y]
Chapter 5. Software deployment 139

<...>
Done installing
/usr/share/lsf/9.1/install/patches/lsf9.1.3_linux3.10-glibc2.17-ppc64le-3625
11.tar.Z.
<...>
Installing package
"/usr/share/lsf/9.1/install/patches/lsf9.1.3_lnx310-lib217-ppc64le-346694.ta
r.Z"...
<...>
Are you sure you want to update your cluster with this patch? (y/n) [y]
<...>
Done installing
/usr/share/lsf/9.1/install/patches/lsf9.1.3_lnx310-lib217-ppc64le-346694.tar
.Z.
<...>
Installing package
"/usr/share/lsf/9.1/install/patches/lsf9.1.3_linux3.10-glibc2.17-ppc64le-368
515.tar.Z"...
<...>
Are you sure you want to update your cluster with this patch? (y/n) [y]
<...>
Done installing
/usr/share/lsf/9.1/install/patches/lsf9.1.3_linux3.10-glibc2.17-ppc64le-3685
15.tar.Z.
<...>
Installing package
"/usr/share/lsf/9.1/install/patches/lsf9.1.3_linux3.10-glibc2.17-ppc64le-347
817.tar.Z"...
<...>
Are you sure you want to update your cluster with this patch? (y/n) [y]
<...>

Done installing
/usr/share/lsf/9.1/install/patches/lsf9.1.3_linux3.10-glibc2.17-ppc64le-3478
17.tar.Z.

This patch has updated binaries or library files that affect running
daemons.
To make the changes take effect, you must restart your cluster.

Exiting...

d. Verify the installed fixes with the pversions command:

/usr/share/lsf/9.1/install/pversions

IBM Platform LSF 9.1.3

 binary type: linux3.10-glibc2.17-ppc64le, Apr 01 2015, Build 335772
 installed: Nov 30 2015
 patched: Fix P101353, build 362511, installed Dec 01 2015
 Fix , build 346694, installed Dec 01 2015
 Fix P101357, build 368515, installed Dec 01 2015
 Fix P101215, build 347817, installed Dec 01 2015

e. Restart several services in the master node:

lsadmin limrestart all
<...>
140 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Do you really want to restart LIMs on all hosts? [y/n] y
<...>

lsadmin resrestart all
Do you really want to restart RES on all hosts? [y/n] y
<...>

badmin hrestart all
<...>
Restart slave batch daemon on all the hosts? [y/n] y
<...>

badmin mbdrestart
<...>
Do you want to restart MBD? [y/n] y
<...>

Enable Spectrum LSF
The following steps are performed on the management node and target all compute nodes.

1. Modify the lsf_startup script to correctly find the Spectrum LSF version based on its
installation path.

This is done only once, in the management node.

This issue is expected to be resolved in a future xCAT version (xCAT issue #495).

a. Create a copy of the original script

cp -a /install/postscripts/lsf_startup
/install/postscripts/lsf_startup.bkp

b. Modify the script with the following expression to the sed command. The expression is
a single, long line (without line breaks).

sed \
'/^LSF_VERSION=/ a LSF_VERSION="$(find /$LSF_TOP -path "*/install/hostsetup"
| grep -o "/[^/]\\+/install/hostsetup" | cut -d/ -f2)"' \
-i /install/postscripts/lsf_startup

c. Verify the differences between the original and the modified scripts:

diff /install/postscripts/lsf_startup.bkp /install/postscripts/lsf_startup
34a35
> LSF_VERSION="$(find /$LSF_TOP -path "*/install/hostsetup" | grep -o
"/[^/]\+/install/hostsetup" | cut -d/ -f2)"

2. Run the lsf_startup script in the nodes with the updatenode command (Example 5-24).

You can use a node group (for example, s822lc) instead of the $lsf_master variable after
the nodes in the group are online.

Verify that the exit code of the script is zero (success).

Example 5-24 Running the lsf_startup script with the updatenode command

updatenode $lsf_master --scripts lsf_startup
p8r1n1: xcatdsklspost: downloaded postscripts successfully
p8r1n1: <...> Running postscript: lsf_startup
p8r1n1: INFO: Run hostsetup on each node.
p8r1n1: Logging installation sequence in /usr/share/lsf/log/Install.log
p8r1n1:
p8r1n1: --
Chapter 5. Software deployment 141

p8r1n1: L S F H O S T S E T U P U T I L I T Y
p8r1n1: --
p8r1n1: This script sets up local host (LSF server, client or slave)
environment.
p8r1n1: Setting up LSF server host "p8r1n1" ...
p8r1n1: Checking LSF installation for host "p8r1n1.xcat-cluster" ... Done
p8r1n1: Installing LSF RC scripts on host "p8r1n1.xcat-cluster" ... Done
p8r1n1: LSF service ports are defined in /usr/share/lsf/conf/lsf.conf.
p8r1n1: Checking LSF service ports definition on host "p8r1n1.xcat-cluster" ...
Done
p8r1n1: You are installing IBM Platform LSF - Standard Edition.
p8r1n1:
p8r1n1: ... Setting up LSF server host "p8r1n1" is done
p8r1n1: ... LSF host setup is done.
p8r1n1: INFO: Set LSF environment for root and LSF_ADMINS
p8r1n1: INFO: Start LSF Cluster.
p8r1n1: Starting up LIM on <p8r1n1> done
p8r1n1: Starting up RES on <p8r1n1> done
p8r1n1: Starting up slave batch daemon on <p8r1n1> done
p8r1n1: Postscript: lsf_startup exited with code 0
p8r1n1: Running of postscripts has completed.

3. Verify that the Spectrum LSF commands are available for the LSF administrator user, and
that the cluster is listed with the lsclusters command:

xdsh $lsf_master "su -l $lsf_username -c lsclusters"
p8r1n1: CLUSTER_NAME STATUS MASTER_HOST ADMIN HOSTS SERVERS
p8r1n1: lsf-cluster ok p8r1n1 lsfadmin 1 1

Add more nodes
To add more nodes to the cluster, complete the following steps.

The following steps are performed on the management node, targeting an already
provisioned compute node (for example, p8r3n2, defined as lsf_node).

For more information and details, see the following Knowledge Center page:

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_admin/host_add_lsf.dita

1. Create the directories for the installation and distribution directories of Spectrum LSF to be
mounted from a Spectrum Scale file system (for example, /gpfs/gpfs_fs0):

gpfs_dir='/gpfs/gpfs_fs0/lsf' # then /top and /distrib
gpfs_top="$gpfs_dir/top"
gpfs_distrib="$gpfs_dir/distrib"

lsf_top='/usr/share/lsf'
lsf_distrib='/usr/share/lsf_distrib'

lsf_node='p8r3n2'

xdsh $lsf_node "mkdir -p $lsf_top $gpfs_top && echo '$gpfs_top $lsf_top none
defaults,bind 0 0' >>/etc/fstab && mount -v $lsf_top"
p8r3n2: mount: /gpfs/gpfs_fs0/lsf/top bound on /usr/share/lsf.
142 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_admin/host_add_lsf.dita

xdsh $lsf_node "mkdir -p $lsf_distrib $gpfs_distrib && echo '$gpfs_distrib
$lsf_distrib none defaults,bind 0 0' >>/etc/fstab && mount -v $lsf_distrib"
p8r3n2: mount: /gpfs/gpfs_fs0/lsf/distrib bound on /usr/share/lsf_distrib.

2. Add the node to the lsf.cluster.<cluster-name> file.

You can edit the file from any node that can access the parallel file system with the
Spectrum LSF installation directory.

You can add a line for the new node (p8r3n2) based on an existing node (p8r2n2), for
example.

vi /usr/share/lsf/conf/lsf.cluster.lsf-cluster
<...>
Begin Host
HOSTNAME model type server r1m mem swp RESOURCES #Keywords
<...>
p8r1n1 ! ! 1 3.5 () () (mg)
p8r3n2 ! ! 1 3.5 () () (mg)
End Host

3. Restart the services on a master node (for example, p8r1n1):

<management-node> # lsf_master=p8r1n1
<management-node> # ssh $lsf_master

<master-node> # su lsfadmin

<master-node> $ lsadmin reconfig

Checking configuration files ...
No errors found.

Restart only the master candidate hosts? [y/n] y
Restart LIM on <p8r1n1> done

<master-node> $ badmin mbdrestart

Checking configuration files ...

There are warning errors.

Do you want to see detailed messages? [y/n] y
Checking configuration files ...
<...>

No fatal errors found.
<...>
Do you want to restart MBD? [y/n] y
MBD restart initiated

Verify the new node is listed by the lshosts command (with no hardware details yet):

<master-node> $ lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
p8r1n1 LINUXPP POWER8 250.0 160 256G 3.9G Yes (mg)
p8r3n2 UNKNOWN UNKNOWN_ 1.0 - - - Yes (mg)
Chapter 5. Software deployment 143

4. Create the administrator user for Spectrum LSF:

lsf_username='lsfadmin'
lsf_password='<password>'

xdsh $lsf_node "useradd -m -s /bin/bash $lsf_username && echo
"$lsf_username:$lsf_password" | chpasswd; su -l $lsf_username -c whoami"
p8r3n2: lsfadmin

xdsh $lsf_node "su -l $lsf_username -c 'cat ~/.profile >> ~/.bash_profile'"

5. Run the lsf_startup script in the nodes with the updatenode command.

updatenode $lsf_node --scripts lsf_startup

6. Start the services on the node.

You can reboot the node, instead.

xdsh $lsf_node "su -l $lsf_username -c 'lsadmin limstartup' "
p8r3n2: Starting up LIM on <p8r3n2> done

xdsh $lsf_node "su -l $lsf_username -c 'lsadmin resstartup' "
p8r3n2: Starting up RES on <p8r3n2> done

xdsh $lsf_node "su -l $lsf_username -c 'badmin hstartup' "
p8r3n2: Starting up slave batch daemon on <p8r3n2> done

7. Verify that the new node is listed by issuing the lshosts command (with hardware details
now):

lsf_master=p8r1n1

xdsh $lsf_master "su -l $lsf_username -c lshosts"
p8r1n1: HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
p8r1n1: p8r1n1 LINUXPP POWER8 250.0 160 256G 3.9G Yes (mg)
p8r1n1: p8r3n2 LINUXPP POWER8 250.0 160 256G 3.9G Yes (mg)

Configure extra HPC and IBM PE support features
When installing Spectrum LSF you can set the CONFIGURATION_TEMPLATE property on
install.config file to use one of the following configuration templates:

� DEFAULT: Use for mixed type of work loads. It provides good performance overall but it is
not tuned for any specific type of cluster

� PARALLEL: Adds extra support to large parallel jobs, including specific configurations to IBM
Parallel Environment (PE)

� HIGH_THROUGHPUT: Tunes for high throughput (high rate of mainly short jobs)

As an alternative, you can use DEFAULT template but afterwards configure manually according
to your needs. The following configuration tasks, for instance, enables the cluster just like it
was installed with a PARALLEL template. As the Spectrum LSF administrator user, do:

1. Edit the lsf.shared configuration file to add following resources in the Resource section:

ibmmpi Boolean () () (IBM POE MPI)
adapter_windows Numeric 30 N (free adapter windows on css0 on IBM SP)
nrt_windows Numeric 30 N (The number of free nrt windows on IBM
systems)
poe Numeric 30 N (poe availability)
css0 Numeric 30 N (free adapter windows on css0 on IBM SP)
144 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

csss Numeric 30 N (free adapter windows on csss on IBM SP)
dedicated_tasks Numeric () Y (running dedicated tasks)
ip_tasks Numeric () Y (running IP tasks)
us_tasks Numeric () Y (running US tasks)

2. Map out new resources on the lsf.cluster.<cluster_name> configuration file, in the
ResourceMap section:

poe [default]
adapter_windows [default]
nrt_windows [default]
dedicated_tasks (0@[default])
ip_tasks (0@[default])
us_tasks (0@[default])

3. Reconfigure and restart LIM daemons:

$ lsadmin reconfig

4. Configure reservation usage of adapter and nrt windows in the lsb.resources
configuration file. In the ReservationUsage section:

Begin ReservationUsage
RESOURCE METHOD
adapter_windows PER_TASK
nrt_windows PER_TASK
End ReservationUsage

5. Optionally, create a new queue for PE jobs in the lsb.queues configuration file. The
following sample includes the hpc_ibm and hpc_ibm_tv queues:

Begin Queue
QUEUE_NAME = hpc_ibm
PRIORITY = 30
NICE = 20
#RUN_WINDOW = 5:19:00-1:8:30 20:00-8:30
#r1m = 0.7/2.0 # loadSched/loadStop
#r15m = 1.0/2.5
#pg = 4.0/8
#ut = 0.2
#io = 50/240
#CPULIMIT = 180/hostA # 3 hours of host hostA
#FILELIMIT = 20000
#DATALIMIT = 20000 # jobs data segment limit
#CORELIMIT = 20000
#TASKLIMIT = 5 # job processor limitEnd of change
#USERS = all # users who can submit jobs to this queue
#HOSTS = all # hosts on which jobs in this queue can run
#PRE_EXEC = /usr/local/lsf/misc/testq_pre >> /tmp/pre.out
#POST_EXEC = /usr/local/lsf/misc/testq_post |grep -v Hey
RES_REQ = select[poe > 0]
EXCLUSIVE = Y
REQUEUE_EXIT_VALUES = 133 134 135
DESCRIPTION = IBM Platform LSF 9.1 for IBM. This queue is to run POE jobs
ONLY.
End Queue

Begin Queue
QUEUE_NAME = hpc_ibm_tv
PRIORITY = 30
Chapter 5. Software deployment 145

NICE = 20
#RUN_WINDOW = 5:19:00-1:8:30 20:00-8:30
#r1m = 0.7/2.0 # loadSched/loadStop
#r15m = 1.0/2.5
#pg = 4.0/8
#ut = 0.2
#io = 50/240
#CPULIMIT = 180/hostA # 3 hours of host hostA
#FILELIMIT = 20000
#DATALIMIT = 20000 # jobs data segment limit
#CORELIMIT = 20000
#TASKLIMIT = 5 # job processor limitEnd of change
#USERS = all # users who can submit jobs to this queue
#HOSTS = all # hosts on which jobs in this queue can run
#PRE_EXEC = /usr/local/lsf/misc/testq_pre >> /tmp/pre.out
#POST_EXEC = /usr/local/lsf/misc/testq_post |grep -v Hey
RES_REQ = select[poe > 0]
REQUEUE_EXIT_VALUES = 133 134 135
TERMINATE_WHEN = LOAD PREEMPT WINDOW
RERUNNABLE = NO
INTERACTIVE = NO
DESCRIPTION = IBM Platform LSF 9.1 for IBM debug queue. This queue is to run
POE jobs ONLY.
End Queue

6. Reconfigure and restart batch daemons:

$ badmin reconfig

You can see further details about the above configuration in the Spectrum LSF manuals at
following website:

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_unix_install/lsfinstal
l_about.dita

Configure GPU support features
Spectrum LSF can be configured to manage graphics orocessing unit (GPU) resources so
that they can be used on areas like monitoring, requirement expressions, and usage
reservation on job submission.

The following resources are exposed as external load indices by the elim.gpu External Load
Information Manager (ELIM) program:

� ngpus: Total number of GPUs
� ngpus_shared: Number of GPUs in share mode
� ngpus_excl_t: Number of GPUs in exclusive thread mode
� ngpus_excl_p: Number of GPUs in exclusive process mode

Before you proceed with configuration to export those resources, verify the elim.gpu program
is deployed on the directory pointed to by the LSF_SERVERDIR environment variable. This is
automatically started by the LIM daemon, and can be checked with following command:

$ ps -aux | grep elim.gpu

Configure Spectrum LSF with the following steps:

1. Edit the lsf.shared configuration file to add following resources in the Resource section:

ngpus Numeric 60 N (Number of GPUs)
ngpus_shared Numeric 60 N (Number of GPUs in Shared Mode)
146 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_unix_install/lsfinstall_about.dita

ngpus_excl_t Numeric 60 N (Number of GPUs in Exclusive Thread Mode)
ngpus_excl_p Numeric 60 N (Number of GPUs in Exclusive Process
Mode)

2. Map out new resources in the lsf.cluster.<cluster_name> configuration file, in the
ResourceMap section:

ngpus ([default])
ngpus_shared ([default])
ngpus_excl_t ([default])
ngpus_excl_p ([default])

3. Enable reservation usage of those resources in the lsb.resources configuration file and in
the ReservationUsage section:

ngpus_shared PER_HOST N
ngpus_excl_t PER_HOST N
ngpus_excl_p PER_HOST N

4. Reconfigure and restart LIM and the batch daemons:

$ lsadmin reconfig
$ badmin reconfig

5. Check if LIM now collects the information about GPUs:

$ lshosts -l

Other GPU-specific resources exposed by the elim.gpu.ext and elim.gpu.topology elim
programs are not configured in this section. See the following website to read how to
configure those too:

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_admin/define_gpu_resou
rces.dita

5.6.14 Node provisioning

To start provisioning a compute node (or node group), and install the operating system and
software stack according to the osimage and node group objects, complete the following
steps:

1. Define the osimage attribute of a node (or node group) with the nodeset command:

nodeset p8r1n1 osimage=rh72-hpc-diskful
p8r1n1: install rhels7.2-ppc64le-compute

2. You can verify the changes to the nodes attributes with the lsdef command:

lsdef p8r1n1
Object name: p8r1n1
 <...>
 initrd=xcat/osimage/rh72-hpc-diskful/initrd.img
 <...>
 kcmdline=quiet inst.repo=http://!myipfn!:80/install/rhels7.2/ppc64le
inst.ks=http://!myipfn!:80/install/autoinst/p8r1n1 BOOTIF=98:be:94:59:f0:f2
ip=dhcp
 kernel=xcat/osimage/rh72-hpc-diskful/vmlinuz
 <...>
 os=rhels7.2
 <...>
 profile=compute
Chapter 5. Software deployment 147

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_admin/define_gpu_resources.dita

 provmethod=rh72-hpc-diskful
 <...>

3. Set the boot method to network with the rsetboot command (optional):

rsetboot p8r1n1 net

4. Reboot the node (or node group) with the rpower command (optional):

rpower p8r1n1 reset

5. You can watch the node’s console with the rcons command:

rcons p8r1n1

6. You can monitor the node provisioning progress in the node object and the
/var/log/messages log file.

After the OS installation finishes and the node reboots, it performs additional package
installations and postscripts execution for some time.

lsdef p8r1n1 -i status
Object name: p8r1n1
 status=booting

lsdef p8r1n1 -i status
Object name: p8r1n1
 status=booted

tail -f /var/log/messages
<...>
<...> p8r1n1 xcat: ready
<...> p8r1n1 xcat: done
<...> p8r1n1 xcat: /xcatpost/mypostscript.post return
<...>

5.6.15 Post-installation verification

To verify that the software stack is correctly provisioned, complete the following steps:

Verify the CUDA Toolkit

Complete these steps to verify that the CUDA Toolkit is installed:

1. Verify all GPUs are listed with the nvidia-smi command:

xdsh p8r1n1 'nvidia-smi --list-gpus'
p8r1n1: GPU 0: Tesla K80 (UUID: GPU-7f8d1ae1-14ed-147a-7596-c93305614055)
p8r1n1: GPU 1: Tesla K80 (UUID: GPU-f2d61b72-f838-c880-c5d5-53e73c8bb21c)
p8r1n1: GPU 2: Tesla K80 (UUID: GPU-592d8b70-88b0-4157-0960-20d806ccdd0e)
p8r1n1: GPU 3: Tesla K80 (UUID: GPU-416ff17c-745e-bddf-2888-3963de3511bc)

Note: This is performed automatically by the nodeset command, and is not actually
required if the bootloader configuration for automatic boot is correct. For more
information, see 5.2.3, “Boot order configuration” on page 57.

Note: This is performed automatically (within some time) if the Genesis image for node
discovery is still running in the compute node (waiting for instructions from the
Management Node).
148 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

2. Verify that the persistence mode is enabled, and power limit value is correct (according to
the script in 5.6.3, “CUDA Toolkit” on page 113) with the nvidia-smi command:

xdsh p8r1n1 'nvidia-smi --query-gpu=persistence_mode,power.limit
--format=csv'
p8r1n1: persistence_mode, power.limit [W]
p8r1n1: Enabled, 175.00 W
p8r1n1: Enabled, 175.00 W
p8r1n1: Enabled, 175.00 W
p8r1n1: Enabled, 175.00 W

Verify the Mellanox OFED
To verify the installation of Mellanox OFED, complete these steps:

1. Verify that the openibd service is correctly loaded and active with the systemctl command:

xdsh p8r1n1 'systemctl status openibd'
p8r1n1: * openibd.service - openibd - configure Mellanox devices
p8r1n1: Loaded: loaded (/usr/lib/systemd/system/openibd.service; enabled;
vendor preset: disabled)
p8r1n1: Active: active (exited) since <...>
<...>
p8r1n1: <...> systemd[1]: Starting openibd - configure Mellanox devices...
p8r1n1: <...> openibd[3991]: Unloading HCA driver:[OK]
p8r1n1: <...> openibd[3991]: Loading HCA driver and Access Layer:[OK]
p8r1n1: <...> systemd[1]: Started openibd - configure Mellanox devices.

2. Verify the information and status of the InfiniBand adapter/ports with the ibstat command:

xdsh p8r1n1 ibstat
p8r1n1: CA 'mlx5_0'
p8r1n1: CA type: MT4115
p8r1n1: Number of ports: 1
p8r1n1: Firmware version: 12.100.6440
p8r1n1: Hardware version: 0
p8r1n1: Node GUID: 0xe41d2d0300ff4910
p8r1n1: System image GUID: 0xe41d2d0300ff4910
p8r1n1: Port 1:
p8r1n1: State: Initializing

Note: The openibd service might fail on the first boot due to unloading problems with
the non-Mellanox OFED kernel modules, for example:

xdsh p8r1n1 'systemctl status openibd'
<...>
p8r1n1: Active: inactive (dead)
<...>
p8r1n1: <...> openibd[131953]: rmmod: ERROR: Module rdma_cm is in use by:
xprtrdma
<...>

To resolve this issue, you can use either one of these methods:

� Reboot the node.

� Try to unload the problematic modules and restart the openibd service, for example:

xdsh p8r1n1 'modprobe -r ib_isert xprtrdma ib_srpt; systemctl restart
openibd'
Chapter 5. Software deployment 149

p8r1n1: Physical state: LinkUp
p8r1n1: Rate: 40
p8r1n1: Base lid: 65535
p8r1n1: LMC: 0
p8r1n1: SM lid: 0
p8r1n1: Capability mask: 0x2651e848
p8r1n1: Port GUID: 0xe41d2d0300ff4910
p8r1n1: Link layer: InfiniBand
p8r1n1: CA 'mlx5_1'
p8r1n1: CA type: MT4115
p8r1n1: Number of ports: 1
p8r1n1: Firmware version: 12.100.6440
p8r1n1: Hardware version: 0
p8r1n1: Node GUID: 0xe41d2d0300ff4911
p8r1n1: System image GUID: 0xe41d2d0300ff4910
p8r1n1: Port 1:
p8r1n1: State: Initializing
p8r1n1: Physical state: LinkUp
p8r1n1: Rate: 40
p8r1n1: Base lid: 65535
p8r1n1: LMC: 0
p8r1n1: SM lid: 0
p8r1n1: Capability mask: 0x2651e848
p8r1n1: Port GUID: 0xe41d2d0300ff4911
p8r1n1: Link layer: InfiniBand

Verify the XL C/C++ Compiler
Verify the installed version with the xlc command:

xdsh p8r1n1 'xlc -qversion'
p8r1n1: IBM XL C/C++ for Linux, V13.1.2 (5725-C73, 5765-J08)
p8r1n1: Version: 13.01.0002.0000

Verify the XL Fortran Compiler
Verify the installed version with the xlf command:

xdsh p8r1n1 'xlf -qversion'
p8r1n1: IBM XL Fortran for Linux, V15.1.2 (5725-C75, 5765-J10)
p8r1n1: Version: 15.01.0002.0000

Verify Advance Toolchain
To verify the installation of Advance Toolchain, complete these steps:

1. Verify the installed version with the Advance Toolchain gcc command:

xdsh p8r1n1 '/opt/at8.0/bin/gcc --version | head -n1'
p8r1n1: gcc (GCC) 4.9.4 20150824 (Advance-Toolchain-at8.0) [ibm/gcc-4_9-branch,
revision: 227153 merged from gcc-4_9-branch, revision 227151]

2. Verify the integration with the XL C/C++ Compiler with the xlc_at command:

xdsh p8r1n1 'xlc_at -qversion'
p8r1n1: IBM XL C/C++ for Linux, V13.1.2 (5725-C73, 5765-J08)
p8r1n1: Version: 13.01.0002.0000
150 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Verify the GNU Compiler Collection
Verify the installed version of the Linux distribution with the gcc command:

xdsh p8r1n1 'gcc --version | head -n1'
p8r1n1: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-4)

Verify the PE RTE
Complete these steps to verify the installation of PE RTE:

1. Verify the installed version of the Korn shell with the ksh command:

xdsh p8r1n1 'ksh --version'
p8r1n1: version sh (AT&T Research) 93u+ 2012-08-01

2. Create a user account with SSH-based authentication:

xdsh p8r1n1 'useradd pe-user && su pe-user -c "ssh-keygen -t rsa -f
~/.ssh/id_rsa -N \"\" && cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys"'
<...>
p8r1n1: Your identification has been saved in /home/pe-user/.ssh/id_rsa.
p8r1n1: Your public key has been saved in /home/pe-user/.ssh/id_rsa.pub.
<...>

3. Verify the PE RTE Installation Verification Program (IVP).

xdsh p8r1n1 'su pe-user -c "cd &&
/opt/ibmhpc/pecurrent/ppe.samples/ivp/ivp.linux.script"'
p8r1n1: Verifying the existence of the Binaries
p8r1n1: Partition Manager daemon /etc/pmdv23 is executable
p8r1n1: PE RTE files seem to be in order
<...>
p8r1n1: POE IVP: running as task 1 on node p8r1n1
p8r1n1: POE IVP: running as task 0 on node p8r1n1
p8r1n1: POE IVP: there are 2 tasks running
<...>
p8r1n1: Parallel program ivp.out return code was 0
p8r1n1:
p8r1n1:
p8r1n1: If the test returns a return code of 0, POE IVP
p8r1n1: is successful. To test message passing,
<...>

Verify ESSL and PESSL
To verify the installation of ESSL and PESSL, complete these steps:

1. Verify the PESSL IVP (exercises ESSL as well) on an individual compute node, for the
permutations of available compilers/programming languages and ESSL SMP libraries:

xdsh p8r1n1 --stream 'IVP="/opt/ibmmath/pessl/5.2/ivps/pesslivp64";
NUM_NODES="2"; HOST_LIST="/tmp/host.list"; rm -f $HOST_LIST; for i in $(seq 1
$NUM_NODES); do hostname --long >> $HOST_LIST; done; grep . $HOST_LIST; for
language in fortran c C++ gcc g++; do for library in esslsmp esslsmpcuda; do
echo; echo PESSL IVP $language $library; su pe-user -c "cd && $IVP $language
$NUM_NODES $HOST_LIST $library"; done; done'
p8r1n1: p8r1n1.xcat-cluster
p8r1n1: p8r1n1.xcat-cluster

p8r1n1: PESSL IVP fortran esslsmp
Chapter 5. Software deployment 151

p8r1n1: /opt/ibmmath/pessl/5.2/ivps/pesslivp64: Parallel ESSL installation
verification program was successful.

p8r1n1: PESSL IVP fortran esslsmpcuda
p8r1n1: /opt/ibmmath/pessl/5.2/ivps/pesslivp64: Parallel ESSL installation
verification program was successful.

p8r1n1: PESSL IVP c esslsmp
p8r1n1: PARALLEL ESSL installed successfully
p8r1n1: /opt/ibmmath/pessl/5.2/ivps/pesslivp64: Parallel ESSL installation
verification program was successful.

p8r1n1: PESSL IVP c esslsmpcuda
p8r1n1: PARALLEL ESSL installed successfully
p8r1n1: /opt/ibmmath/pessl/5.2/ivps/pesslivp64: Parallel ESSL installation
verification program was successful.

p8r1n1: PESSL IVP C++ esslsmp
p8r1n1: PARALLEL ESSL installed successfully
p8r1n1: /opt/ibmmath/pessl/5.2/ivps/pesslivp64: Parallel ESSL installation
verification program was successful.

p8r1n1: PESSL IVP C++ esslsmpcuda
p8r1n1: PARALLEL ESSL installed successfully
p8r1n1: /opt/ibmmath/pessl/5.2/ivps/pesslivp64: Parallel ESSL installation
verification program was successful.

p8r1n1: PESSL IVP gcc esslsmp
p8r1n1: PARALLEL ESSL installed successfully
p8r1n1: /opt/ibmmath/pessl/5.2/ivps/pesslivp64: Parallel ESSL installation
verification program was successful.

p8r1n1: PESSL IVP gcc esslsmpcuda
p8r1n1: PARALLEL ESSL installed successfully
p8r1n1: /opt/ibmmath/pessl/5.2/ivps/pesslivp64: Parallel ESSL installation
verification program was successful.

p8r1n1: PESSL IVP g++ esslsmp
p8r1n1: PARALLEL ESSL installed successfully
p8r1n1: /opt/ibmmath/pessl/5.2/ivps/pesslivp64: Parallel ESSL installation
verification program was successful.

p8r1n1: PESSL IVP g++ esslsmpcuda
p8r1n1: PARALLEL ESSL installed successfully
p8r1n1: /opt/ibmmath/pessl/5.2/ivps/pesslivp64: Parallel ESSL installation
verification program was successful.

Verify Spectrum Scale
1. Verify the Spectrum Scale packages are installed with the rpm command:

xdsh p8r1n1 'rpm -qa | grep ^gpfs'
p8r1n1: gpfs.gskit-8.0.50-47.ppc64le
p8r1n1: gpfs.gpl-4.1.1-3.noarch
p8r1n1: gpfs.ext-4.1.1-3.ppc64le
p8r1n1: gpfs.docs-4.1.1-3.noarch
152 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

p8r1n1: gpfs.msg.en_US-4.1.1-3.noarch
p8r1n1: gpfs.base-4.1.1-3.ppc64le

2. Verify the node does not yet belong to any cluster with the mmlscluster command:

xdsh p8r1n1 'mmlscluster'
p8r1n1: mmlscluster: This node does not belong to a GPFS cluster.
p8r1n1: mmlscluster: Command failed. Examine previous error messages to
determine cause.

Check public and site network connectivity (optional)
Verify the connectivity to external and non-cluster nodes with the ping command:

xdsh p8r1n1 'ping -c1 example.com'
p8r1n1: PING example.com (93.184.216.34) 56(84) bytes of data.
p8r1n1: 64 bytes from 93.184.216.34: icmp_seq=1 ttl=46 time=3.94 ms
<...>

5.7 xCAT Login Nodes

The deployment of an xCAT Login Node is procedurally the same as that of an xCAT
Compute Node. The main difference is the particular software stack components used on
each node type.

Accordingly, this section does not cover the deployment instructions explicitly for login nodes.
Rather, it describes some examples of the differences in the software stack components
between login and compute nodes.

The following differences are typically considered for the login nodes:

� Device drivers and related software (for example, CUDA Toolkit, and Mellanox OFED for
Linux): Usually not required because the additional compute-related hardware is not
present on login nodes.

� Compilers and runtime libraries (XL C/C++ and Fortran Compilers): The compilers use the
login nodes to compile applications. The compiler-related runtime libraries are not usually
required because the applications are not executed on login nodes, but rather on compute
nodes.

� HPC software: The kits for PE RTE, PE DE, ESSL, and PESSL provide kit components
specifically for login nodes, for example:

Object name: pperte-login-2.3.0.0-1547a-rhels-7.2-ppc64le
 description=PE RTE for login nodes

Object name: ppedev.login-2.2.0-0-rhels-7.2-ppc64le
 description=Parallel Environment Developer Edition for login nodes

Object name: essl-loginnode-5.4.0-0-rhels-7.2-ppc64le
 description=essl for login nodes

Object name: pessl-loginnode-5.2.0-0-rhels-7.2-ppc64le
 description=pessl for login nodes

� Parallel file system (Spectrum Scale): This system can allow the login node to access the
data provided to or produced by the applications running in the compute nodes.

� Job scheduler (Spectrum LSF): Typically required to submit jobs from the login nodes to
the compute nodes.
Chapter 5. Software deployment 153

154 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Chapter 6. Application development and
tuning

This chapter provides information about software and tools, which can be used for application
development and tuning on the IBM Power System S822LC. In addition, a few development
models are described.

The following topics are presented in this chapter:

� Compiler options
� Engineering and Scientific Subroutine Library
� Parallel ESSL
� Using POWER8 vectorization
� Development models
� GPU tuning
� Tools for development and tuning of applications

6

© Copyright IBM Corp. 2016. All rights reserved. 155

6.1 Compiler options

Compiler options are one of the main tools to debug and optimize performance of your code
during development. Several compilers, including the IBM XL compilers and the GNU
Compiler Collection (GCC), support the latest IBM POWER8 processor features.

6.1.1 XL compiler options

XL C/C++ for Linux, v13.1.2, and XL Fortran for Linux, v15.1.2 support POWER8 processors
with new features and enhancements, including compiler options for POWER8 processors
and built-in functions for POWER8 processors.

By default, these compilers generate code that runs on various Power Systems. Options can
be added to exclude older processor chips that are not supported by the target application.
Two major XL compiler options control this support:

� -qarch: Specifies the processor architecture for which code is generated.

� -qtune: Indicates the processor chip generation of most interest for performance. It tunes
instruction selection, scheduling, and other architecture-dependent performance
enhancements to run optimally on a specific hardware architecture.

The -qarch=pwr8 suboption produces object code that contains instructions that will run on
the POWER8 hardware platforms. With the -qtune=pwr8 suboption, optimizations are tuned
for the POWER8 hardware platforms. This configuration can enable better code generation
because the compiler takes advantage of capabilities that were not available on those older
systems.

For all production codes, it is imperative to enable a minimum level of compiler optimization by
adding the -O option for the XL compilers. Without optimization, the focus of the compiler is on
faster compilation and debug ability, and it generates code that performs poorly at run time.

For projects with increased focus on runtime performance, take advantage of the more
advanced compiler optimization. For numerical or compute-intensive codes, the XL compiler
options -O3 or -qhot -O3 enable loop transformations, which improve program performance
by restructuring loops to make their execution more efficient by the target system. These
options perform aggressive transformations that can sometimes cause minor differences in
the precision of floating point computations. If the minor differences are a concern, the
original program semantics can be fully recovered with the -qstrict option.

For more information about XL C/C++ support for POWER8 processor, see the following
website:

http://www.ibm.com/support/knowledgecenter/?lang=en#!/SSXVZZ_13.1.2/com.ibm.compil
ers.linux.doc/welcome.html

For more information about XL Fortran, see the following website:

http://www.ibm.com/support/knowledgecenter/?lang=en#!/SSAT4T_15.1.2/com.ibm.compil
ers.linux.doc/welcome.html

Optimization parameters
The strength of the XL compilers is in their optimization and ability to improve code
generation. Optimized code executes with greater speed, uses less machine resource, and
increases your productivity.
156 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.1/com.ibm.compilers.linux.doc/welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.1/com.ibm.compilers.linux.doc/welcome.html?lang=en

For XL C/C++ v13.1.2, the available compiler options to maximize application development
performance are described in Table 6-1.

Table 6-1 Optimization levels and options

Several options are used to control the optimization and tuning process, so users can improve
the performance of their application at run time.

When you compile programs with any of the following sets of options, the compiler
automatically attempts to vectorize calls to system math functions. It does so by calling the
equivalent vector functions in the Mathematical Acceleration Subsystem (MASS) libraries,
with the exceptions of functions vdnint, vdint, vcosisin, vscosisin, vqdrt, vsqdrt, vrqdrt,
vsrqdrt, vpopcnt4, and vpopcnt8:

� -qhot -qignerrno -qnostrict
� -qhot -O3
� -O4
� -O5

If the compiler cannot vectorize, it automatically tries to call the equivalent MASS scalar
functions. For automatic vectorization or scalarization, the compiler uses versions of the
MASS functions that are contained in the system library libxlopt.a.

In addition to any of the preceding sets of options, when the -qipa option is in effect, if the
compiler cannot vectorize, it tries to inline the MASS scalar functions before it decides to call
them.

Based optimization level Additional options that are
implied by level

Additional suggested
options

-O0 -qsimd=auto -qarch

-O2 -qmaxmem=8192
-qsimd=auto

-qarch
-qtune

-O3 -qnostrict
-qmaxmem=-1
-qhot=level=0
-qsimd=auto
-qinline=auto

-qarch
-qtune

-O4 All of -O3 plus:
-qhot
-qipa
-qarch=auto
-qtune=auto
-qcache=auto

-qarch
-qtune
-qcache

-O5 All of -O4 plus:
-qipa=level=2

-qarch
-qtune
-qcache
Chapter 6. Application development and tuning 157

Not all options benefit all applications. Trade-offs sometimes occur between an increase in
compile time, a reduction in debugging capability, and the improvements that optimization can
provide. In addition to the options that are listed in Table 6-2, consult the Optimization and
Programming Guide - XL C/C++ for Linux, V13.1, for big endian distributions, SC27-4251-01,
for details about the optimization and tuning process and writing optimization-friendly source
code.

Table 6-2 Optimization and tuning options

For more information about the XL compiler options, see the following websites:

http://www.ibm.com/support/knowledgecenter/?lang=en#!/SSXVZZ_13.1.2/com.ibm.xlcpp1
312.lelinux.doc/compiler_ref/fcat_optzn.html

http://www.ibm.com/support/knowledgecenter/?lang=en#!/SSAT4T_15.1.2/com.ibm.xlf151
2.lelinux.doc/compiler_ref/fcat_optzn.html

Option name Description

-qarch Specifies the processor architecture for which the code
(instructions) can be generated.

-qtune Tunes instruction selection, scheduling, and other
architecture-dependent performance enhancements to run best on
a specific hardware architecture.

-qcache Specifies the cache configuration for a specific execution machine.

-qhot Performs high-order loop analysis and transformations during
optimization.

-qipa Enables or customizes a class of optimizations that is known as
interprocedural analysis (IPA).

-qmaxmem Limits the amount of memory that the compiler allocates while it
performs specific, memory-intensive optimizations to the specified
number of kilobytes.

-qignerrno Allows the compiler to perform optimizations as though system
calls will not modify errno.

-qpdf1, -qpdf2 Tunes optimizations through profile-directed feedback (PDF),
where results from sample program execution are used to improve
optimization near conditional branches and in frequently executed
code sections.

-p, -pg, -qprofile Prepares the object files that are produced by the compiler for
profiling.

-qinline Attempts to inline functions instead of generating calls to those
functions, for improved performance.

-qstrict Ensures that optimizations that are performed by default at the -O3
and higher optimization levels, and, optionally at -O2, and do not
alter the semantics of a program.

-qsimd Controls whether the compiler can automatically take advantage of
vector instructions for processors that support them.

-qsmp Enables parallelization of program code.

-qunroll Controls loop unrolling for improved performance.
158 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/support/knowledgecenter/?lang=en#!/SSAT4T_15.1.2/com.ibm.xlf1512.lelinux.doc/compiler_ref/fcat_optzn.html
http://www.ibm.com/support/knowledgecenter/?lang=en#!/SSAT4T_15.1.2/com.ibm.xlf1512.lelinux.doc/compiler_ref/fcat_optzn.html
http://www.ibm.com/support/knowledgecenter/?lang=en#!/SSXVZZ_13.1.2/com.ibm.xlcpp1312.lelinux.doc/compiler_ref/fcat_optzn.html

6.1.2 GCC compiler options

For GCC, a minimum level of compiler optimization is -O2, and the suggested level of
optimization is -O3. The GCC default is a strict mode, but the -ffast-math option disables
strict mode. The -O fast option combines -O3 with -ffast-math in a single option. Other
important options include -fpeel-loops, -funroll-loops, -ftree-vectorize,
-fvect-cost-model, and -mcmodel=medium.

Support for the POWER8 processor is now available on GCC-4.8.5 through the -mcpu=power8
and -mtune=power8 options.

Specifying the -mveclibabi=mass option and linking to the MASS libraries enable more loops
for -ftree-vectorize. The MASS libraries support only static archives for linking. Therefore,
they require explicit naming and library search order for each platform/mode:

� POWER8 32 bit: -L<MASS-dir>/lib -lmassvp8 -lmass_simdp8 -lmass -lm
� POWER8 64 bit: -L<MASS-dir>/lib64 -lmassvp8_64 -lmass_simdp8_64 -lmass_64 -lm

For more information about GCC support on POWER8, see the following GCC website:

https://gcc.gnu.org/gcc-4.8/

Optimization parameters
The commonly used optimization options are shown in Table 6-3.

Table 6-3 Optimization options for GCC

Option name Description

-O, -O1 With the -O option, the compiler tries to reduce code size and
execution time without performing any optimizations that significant
compilation time.

-O2 The -O2 option turns on all optional optimizations except for loop
unrolling, function inlining, and register renaming. It also turns on
the -fforce-mem option on all machines and frame pointer
elimination on machines where frame pointer elimination does not
interfere with debugging.

-O3 The -O3 option turns on all optimizations that are specified by -O2
and also turns on the -finline-functions and
-frename-registers options.

-O0 Do not optimize.

-Os Optimize for size. The -Os option enables all -O2 optimizations that
do not typically increase code size. It also performs further
optimizations that are designed to reduce code size.

-ffast-math Sets -fno-math-errno, -funsafe-math-optimizations, and
-fno-trapping-math. This option causes the preprocessor macro
__FAST_MATH__ to be defined.

This option must never be turned on by any -O option because it
can result in incorrect output for programs that depend on an exact
implementation of IEEE or ISO rules/specifications for math
functions.
Chapter 6. Application development and tuning 159

https://gcc.gnu.org/gcc-4.9/

6.2 Engineering and Scientific Subroutine Library

IBM Engineering and Scientific Subroutine Library (ESSL) includes these runtime libraries:

� ESSL Serial Libraries and ESSL SMP Libraries
� ESSL SMP CUDA Library

The mathematical subroutines, in nine computational areas, are tuned for performance:

� Linear Algebra Subprograms

� Matrix Operations

� Linear Algebraic Equations

� Eigensystem Analysis

� Fourier Transforms, Convolutions and Correlations, and Related Computations v Sorting
and Searching

� Interpolation

� Numerical Quadrature

� Random Number Generation

6.2.1 Compilation and run

The ESSL subroutines are callable from programs, which are written in Fortran, C, and C++.
Table 6-4, Table 6-5 on page 161 and Table 6-6 on page 161 show how compilation on Linux
depends on type of ESSL library (serial, SMP, SMP CUDA), environment (32-bit integer,
64-bit pointer or 64-bit integer, or 64-bit pointer) and compiler (XLF, XLC/C++, gcc/g++).

Table 6-4 Fortran compilation commands for ESSL

-funroll-loops Unroll loops whose number of iterations can be determined at
compile time or upon entry to the loop. The -funroll-loops option
implies both the -fstrength-reduce and -frerun-cse-after-loop
option.

-fforce-mem Force memory operands to be copied into registers before
arithmetic is performed on them.

-fno-inline Do not pay attention to the inline keyword. Normally, this option is
used to keep the compiler from expanding any functions inline.

-fno-math-errno Do not set ERRNO after math functions are called that are executed
with a single instruction.

-finline-functions Integrate all simple functions into their callers. The compiler
heuristically decides the functions that are simple enough to be
worth integrating in this way.

Option name Description

Type of ESSL
library

Environment Compilation command

Serial
32-bit integer, 64-bit pointer xlf_r -O -qnosave program.f -lessl

64-bit integer, 64-bit pointer xlf_r -O -qnosave program.f -lessl6464
160 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Table 6-5 shows the compilation commands for XLC/C++.

Table 6-5 XLC/C++ compilation commands (cc_r for XLC, xlC_r for XLC++) for ESSL

Table 6-6 shows the compilation commands for gcc/g++.

Table 6-6 gcc/g++ compilation commands for ESSL

SMP
32-bit integer, 64-bit pointer xlf_r -O -qnosave -qsmp program.f -lesslsmp

64-bit integer, 64-bit pointer xlf_r -O -qnosave -qsmp program.f -lesslsmp6464

SMP CUDA 32-bit integer, 64-bit pointer
xlf_r -O -qnosave -qsmp program.f -lesslsmpcuda
-lcublas -lcudart
-L/usr/local/cuda/lib64 -R/usr/local/cuda/lib64

Type of ESSL
library

Environment Compilation command

Serial 32-bit integer, 64-bit pointer
cc_r(xlC_r) -O program.c -lessl -lxlf90_r -lxlfmath
-L/opt/ibm/xlsmp/<xlsmp_version>/lib
-L/opt/ibm/xlf/<xlf_version>/lib
-R/opt/ibm/lib

SMP 32-bit integer, 64-bit pointer
cc_r(xlC_r) -O program.c -lesslsmp -lxlf90_r -lxlsmp
-lxlfmath
-L/opt/ibm/xlsmp/<xlsmp_version>/lib
-L/opt/ibm/xlf/<xlf_version>/lib
-R/opt/ibm/lib

SMP CUDA 32-bit integer, 64-bit pointer

cc_r(xlC_r) -O program.c -lesslsmpcuda -lxlf90_r
-lxlsmp -lxlfmath -lcublas -lcudart
-L/usr/local/cuda/lib64 -R/usr/local/cuda/lib64
-L/opt/ibm/xlsmp/<xlsmp_version>/lib
-L/opt/ibm/xlf/<xlf_version>/lib
-R/opt/ibm/lib

Type of ESSL
library

Environment Compilation command

Serial 32-bit integer, 64-bit pointer
gcc(g++) program.c -lessl -lxlf90_r -lxl -lxlfmath -lm
-L/opt/ibm/xlsmp/<xlsmp_version>/lib
-L/opt/ibm/xlf/<xlf_version>/lib -R/opt/ibm/lib

SMP 32-bit integer, 64-bit pointer
gcc(g++) program.c -lesslsmp -lxlf90_r -lxl -lxlsmp
-lxlfmath -lm
-L/opt/ibm/xlsmp/<xlsmp_version>/lib
-L/opt/ibm/xlf/<xlf_version>/lib
-R/opt/ibm/lib

SMP CUDA 32-bit integer, 64-bit pointer

gcc(g++) program.c -lesslsmpcuda -lxlf90_r -lxl
-lxlsmp -lxlfmath -lm -lcublas -lcudart
-L/usr/local/cuda/lib64 -R/usr/local/cuda/lib64
-L/opt/ibm/xlsmp/<xlsmp_version>/lib
-L/opt/ibm/xlf/<xlf_version>/lib
-R/opt/ibm/lib

Type of ESSL
library

Environment Compilation command
Chapter 6. Application development and tuning 161

To compile C/C++ code for 64-bit integer, 64-bit pointer environments, add -D_ESV6464 to
your compile command.

Example 6-1 is a C sample source code that uses ESSL to multiply and generate 20000 by
20000 element matrixes. The examples use CBLAS interfaces to call ESSL routines. CBLAS
interfaces provide additional options to specify the matrix order: column-major or row-major.
For matrix multiplication, the examples use DGEMM, which works by using the following
formula:

C = alpha*A*B + beta*C

Here, alpha and beta are real scalar values, A, B, and C are matrixes of conforming shape.

The examples calculate only time of execution and performance of the DGEMM routine as
shown in Example 6-1.

Example 6-1 ESSL C example source code dgemm_sample.c

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <essl.h> //ESSL header for C/C++

//Function to calculate time in milleseconds
long timevaldiff(struct timeval *starttime, struct timeval *finishtime)
{
 long msec;
 msec=(finishtime->tv_sec-starttime->tv_sec)*1000;
 msec+=(finishtime->tv_usec-starttime->tv_usec)/1000;
 return msec;
}

int main()
{
 struct timeval start, end;
 double diff;
 long n, m, k;
 double *a, *b, *c;
 double rmax, rmin;
 double seed1, seed2, seed3;
 double flop;

 //Seeds for matrix generation
 seed1 = 5.0;
 seed2 = 7.0;
 seed3 = 9.0;

 //Maximum and minimum value elements of matrices
 rmax = 0.5;
 rmin = -0.5;

 //Size of matrices
 n = 20000; m = n; k =n;

 //Number of additions and multiplications
 flop = (double)(m*n*(2*(k-1)));
162 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

 //Memory allocation
 a = (double*)malloc(n*k*sizeof(double));
 b = (double*)malloc(k*m*sizeof(double));
 c = (double*)malloc(n*m*sizeof(double));

 //Matrix generation
 durand(&seed1,n*k,a); //DURAND are included to ESSL, not to CBLAS
 cblas_dscal(n*k,rmax-rmin,a,1);
 cblas_daxpy(n*k,1.0,&rmin,0,a,1);

 durand(&seed2,k*m,b);
 cblas_dscal(k*m,rmax-rmin,b,1);
 cblas_daxpy(k*m,1.0,&rmin,0,b,1);

 durand(&seed3,n*m,c);
 cblas_dscal(n*m,rmax-rmin,c,1);
 cblas_daxpy(n*m,1.0,&rmin,0,c,1);

 //Matrix multiplication (DGEMM)
 gettimeofday(&start,NULL);
 cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans,
 m,n,k,1.0,a,n,b,k,1.0,c,n);
 gettimeofday(&end,NULL);

 //Print results
 printf("%.3lf seconds, ",(double)timevaldiff(&start,&end)/1000);
 printf("%.3lf MFlops\n",flop/(double)timevaldiff(&start,&end)/1000.0);

 //Memory deallocation
 free(a);
 free(b);
 free(c);

 return 0;
}

Example 6-2 shows how to compile and execute Example 6-1 on page 162 using the serial
version of ESSL and the XLC compiler.

Example 6-2 Compilation and execution of dgemm_sample.c for serial ESSL

cc_r -O3 dgemm_sample.c -lessl -lxlf90_r -lxlfmath -L/opt/ibm/xlsmp/4.1.2/lib
-L/opt/ibm/xlf/15.1.2/lib -R/opt/ibm/lib -o dgemm_serial

./dgemm_serial
634.451 seconds, 25217.393 MFlops

Example 6-3 describes how to compile and execute Example 6-1 on page 162 using the SMP
version of ESSL and the XLC compiler. To set the number of SMP threads, XLSMPOPTS are
used.

Example 6-3 Compilation and execution of dgemm_sample.c for SMP ESSL

export XLSMPOPTS=parthds=20
cc_r -O3 dgemm_sample.c -lesslsmp -lxlf90_r -lxlsmp -lxlfmath
-L/opt/ibm/xlsmp/4.1.2/lib -L/opt/ibm/xlf/15.1.2/lib -R/opt/ibm/lib -o dgemm_smp
Chapter 6. Application development and tuning 163

./dgemm_smp
56.542 seconds, 282961.338 MFlops

You can see that performance improves by 11 times for SMP runs compared with serial runs.

You can try to improve performance more by using the SMP Compute Unified Device
Architecture (CUDA) version of ESSL, which enable usage of 4 GPU processors in the
machine as shown in Example 6-4.

Example 6-4 Compilation and execution of dgemm_sample.c for SMP CUDA ESSL

export XLSMPOPTS=parthds=20
cc_r -O3 dgemm_sample.c -lesslsmpcuda -lxlf90_r -lxlsmp -lxlfmath -lcublas
-lcudart -L/usr/local/cuda/lib64 -R/usr/local/cuda/lib64
-L/opt/ibm/xlsmp/4.1.2/lib -L/opt/ibm/xlf/15.1.2/lib -R/opt/ibm/lib -o dgemm_cuda

./dgemm_cuda
16.554 seconds, 966485.442 MFlops

Additionally, the time required for execution drops by a factor of 3.5 when you start to use
graphics processing unit (GPUs).

6.6.1, “Power Cap Limit” on page 196 describes the technique to adjust the Power Cap Limit,
which helps to improve the performance of GPU cards. Example 6-5 is the SMP CUDA run
after this workaround.

Example 6-5 SMP CUDA ESSL run after increase of Power Cap Limit

./dgemm_cuda
6.050 seconds, 2644495.868 MFlops

This technique is useful for your runs and increases performance by 2.5 times compared with
runs with the default Power Cap Limit.

For more information about how to use other ESSL options or routines such as FFTW, see
the following website:

http://www.ibm.com/support/knowledgecenter/#!/SSFHY8/essl_welcome.html

6.2.2 Run different SMT modes

Example 6-3 on page 163 shows how the operating system chooses CPUs, which are used
for the job run, by itself. However, you can use the environment variable XLSMPOPTS to
control it.

The example system has 20 physical POWER8 cores and 160 logical CPUs. Each 8 CPUs
depend on one physical core. By default the system is set to SMT-8 mode, which means that
all 8 CPUs per core can be used. In the first run of Example 6-6, the example uses CPUs
from 0 to 19. In the second run, only even numbers of CPUs are used, which simulates SMT-4
mode. The third and fourth runs work like SMT-2 and SMT-1 modes respectively.

Example 6-6 Different CPU binding for run with 20 SMP threads

export
XLSMPOPTS=parthds=20:PROCS=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
./dgemm_smp
164 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/support/knowledgecenter/#!/SSFHY8/essl_welcome.html

479.098 seconds, 33394.420 MFlops

export
XLSMPOPTS=parthds=20:PROCS=0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38
./dgemm_smp
195.006 seconds, 82044.655 MFlops

export
XLSMPOPTS=parthds=20:PROCS=0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,7
6
./dgemm_smp
62.399 seconds, 256401.545 MFlops

export
XLSMPOPTS=parthds=20:PROCS=0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120,128,13
6,144,152
./dgemm_smp
32.362 seconds, 494382.300 MFlops

For the fourth run with SMT-1 mode, running one thread on each POWER8 core helps to
double performance compared with runs without CPU binding.

6.2.3 ESSL SMP CUDA library options

The ESSL SMP CUDA library has the following options that are controlled by the user:

� Control which GPUs ESSL uses. By default, ESSL uses all available devices, but you
can change it using the environment variable CUDA_VISIBLE_DEVICES or the
SETGPUS subroutine. GPUs have numeration from 0 in operation system. For example, if
you want to use only second and third GPUs in your run, set the environment variable as
follows:

export CUDA_VISIBLE_DEVICES=1,2

or place the following call into the code:

int ids[2] = {1, 2}; //GPUs IDs

int ngpus = 2; //Number of GPUs

...

setgpus(ngpus, ids);

/*your ESSL SMP CUDA call*/

You can also specify a different order of devices. It can be useful in cases when you want
to reduce latency between specific CPUs and GPUs.

� Disable or enable hybrid mode. By default, ESSL runs in hybrid mode. It means that
ESSL routines will use both POWER8 CPUs and NVIDIA GPUs. To disable this mode and
start using only GPUs, you need to specify the following environment variable:

export ESSL_CUDA_HYBRID=no

To enable it back, unset this variable or set it to yes.
Chapter 6. Application development and tuning 165

� Pin host memory buffers. Different options are provided by ESSL:

– Not pin host memory buffers (default).

– Allow ESSL to pin buffers by itself. To do this, set the following environment variable:

export ESSL_CUDA_PIN=yes

– Provide information to ESSL that you will pin the buffers by yourself before the ESSL
routines calls:

export ESSL_CUDA_PIN=pinned

Example 6-7 shows runs of source code from Example 6-1 on page 162 with different ESSL
SMP CUDA library options. Note that the examples use the adjusted Power Cap Limit.

Example 6-7 dgemm_sample.c runs with different SMP CUDA options

export XLSMPOPTS=parthds=20
cc_r -O3 dgemm_sample.c -lesslsmpcuda -lxlf90_r -lxlsmp -lxlfmath -lcublas
-lcudart -L/usr/local/cuda/lib64 -R/usr/local/cuda/lib64
-L/opt/ibm/xlsmp/4.1.2/lib -L/opt/ibm/xlf/15.1.2/lib -R/opt/ibm/lib -o dgemm_cuda
VAR=`./dgemm_cuda`
echo "SMP CUDA run with 4 GPUs hybrid mode: $VAR"

export ESSL_CUDA_HYBRID=no
VAR=`./dgemm_cuda`
echo "SMP CUDA run with 4 GPUs non-hybrid mode: $VAR"

export ESSL_CUDA_HYBRID=yes
export CUDA_VISIBLE_DEVICES=0,1,2
VAR=`./dgemm_cuda`
echo "SMP CUDA run with 3 GPUs (1st, 2nd, 3rd) hybrid mode: $VAR"

export ESSL_CUDA_HYBRID=no

VAR=`./dgemm_cuda`
echo "SMP CUDA run with 3 GPUs (1st, 2nd, 3rd) non-hybrid mode: $VAR"

export ESSL_CUDA_HYBRID=yes
export CUDA_VISIBLE_DEVICES=0,1
VAR=`./dgemm_cuda`
echo "SMP CUDA run with 2 GPUs (1st, 2nd) hybrid mode: $VAR"

export ESSL_CUDA_HYBRID=no
VAR=`./dgemm_cuda`
echo "SMP CUDA run with 2 GPUs (1st, 2nd) non-hybrid mode: $VAR"

export ESSL_CUDA_HYBRID=yes
export CUDA_VISIBLE_DEVICES=1,2
VAR=`./dgemm_cuda`
echo "SMP CUDA run with 2 GPUs (2nd, 3rd) hybrid mode: $VAR"

export ESSL_CUDA_HYBRID=no
VAR=`./dgemm_cuda`
echo "SMP CUDA run with 2 GPUs (2nd, 3rd) non-hybrid mode: $VAR"

export ESSL_CUDA_HYBRID=yes
export CUDA_VISIBLE_DEVICES=0
166 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

VAR=`./dgemm_cuda`
echo "SMP CUDA run with 1 GPU (1st) hybrid mode: $VAR"

export ESSL_CUDA_HYBRID=no
VAR=`./dgemm_cuda`
echo "SMP CUDA run with 1 GPU (1st) non-hybrid mode: $VAR"

export ESSL_CUDA_HYBRID=yes
export CUDA_VISIBLE_DEVICES=3
VAR=`./dgemm_cuda`
echo "SMP CUDA run with 1 GPU (4th) hybrid mode: $VAR"

export ESSL_CUDA_HYBRID=no
VAR=`./dgemm_cuda`
echo "SMP CUDA run with 1 GPU (4th) non-hybrid mode: $VAR"

The results of the runs are shown in Example 6-8.

Example 6-8 Result of different ESSL SMP CUDA runs

SMP CUDA run with 4 GPUs hybrid mode: 6.050 seconds, 2644495.868 MFlops
SMP CUDA run with 4 GPUs non-hybrid mode: 6.799 seconds, 2353169.584 MFlops
SMP CUDA run with 3 GPUs (1st, 2nd, 3rd) hybrid mode: 7.322 seconds, 2185086.042
MFlops
SMP CUDA run with 3 GPUs (1st, 2nd, 3rd) non-hybrid mode: 7.762 seconds,
2061221.335 MFlops
SMP CUDA run with 2 GPUs (1st, 2nd) hybrid mode: 10.869 seconds, 1472002.944
MFlops
SMP CUDA run with 2 GPUs (1st, 2nd) non-hybrid mode: 11.107 seconds, 1440460.971
MFlops
SMP CUDA run with 2 GPUs (2nd, 3rd) hybrid mode: 10.910 seconds, 1466471.127
MFlops
SMP CUDA run with 2 GPUs (2nd, 3rd) non-hybrid mode: 11.524 seconds, 1388337.383
MFlops
SMP CUDA run with 1 GPU (1st) hybrid mode: 14.954 seconds, 1069894.343 MFlops
SMP CUDA run with 1 GPU (1st) non-hybrid mode: 19.319 seconds, 828158.807 MFlops
SMP CUDA run with 1 GPU (4th) hybrid mode: 15.179 seconds, 1054035.180 MFlops
SMP CUDA run with 1 GPU (4th) non-hybrid mode: 19.833 seconds, 806695.911 MFlops

Hybrid mode gives a performance increase of about 25% for runs with one GPU. For other
numbers of GPUs, it gives no so visible improvement. However, it can be useful for cases with
significant problems or large number of ESSL runs, where improvement of performance is
about 5% and gives many advantages.

For more information about the ESSL SMP CUDA library, see the following website:

http://www.ibm.com/support/knowledgecenter/#!/SSFHY8_5.4.0/com.ibm.cluster.essl.v5
r4.essl100.doc/am5gr_cuda.htm

6.3 Parallel ESSL

Parallel ESSL is highly optimized mathematical subroutine library for clusters of POWER8
processor nodes. Parallel ESSL supports the single program, multiple data (SPMD)
programming model using the Message Passing Interface (MPI) library. It also assumes that
Chapter 6. Application development and tuning 167

http://www.ibm.com/support/knowledgecenter/#!/SSFHY8_5.4.0/com.ibm.cluster.essl.v5r4.essl100.doc/am5gr_cuda.htm

your program is using the SPMD programming model. This configuration means that all
parallel tasks are identical and work on different sets of data.

Parallel ESSL supports only 32-bit integer, 64-bit pointer environment libraries, which need to
be used with IBM Parallel Environment (PE) Runtime Edition MPICH library.

Parallel ESSL subroutines cover following computational areas:

� Level 2 Parallel Basic Linear Algebra Subprograms (PBLAS)
� Level 3 PBLAS
� Linear Algebraic Equations
� Eigensystem Analysis and Singular Value Analysis
� Fourier Transforms
� Random Number Generation

Parallel ESSL uses calls of the ESSL subroutines for computational purposes.

For communication, Basic Linear Algebra Communications Subprograms (BLACS) is
included, which based on MPI.

6.3.1 Program development

During development of your program, the BLACS subroutines need to be used. To include
Parallel ESSL calls into the code of the program, you can use the following steps:

1. Initialize the process grid using the BLACS subroutines (BLACS_GET call and
BLACS_GRIDINIT or BLACS_GRIDMAP after it).

2. Distribute data across process grid. Try to use different block sizes to improve
performance of program. For example, some Parallel ESSL subroutines start to use GPU
for large sizes of blocks (about 2000 by 2000).

3. Call the Parallel ESSL subroutine on all processes of the BLACS process grid.

4. Aggregate results of Parallel ESSL runs from all processes.

5. Call the BLACS subroutines to clean the process grid and exit, such as
BLACS_GRIDEXIT, BLACS_EXIT,

Example 6-9 shows a sample Fortran program that uses the Parallel ESSL version of
PDGEMM subroutine for a 20000 by 20000 matrix size. PDGEMM works by using the
following formula:

C = alpha*A*B + beta*C

Here, alpha and beta are real scalar values, A, B, and C are matrices of conforming shape.

Example 6-9 PESSL Fortran example source code pdgemm_sample.f

program pdgemm_sample
 implicit none
 real*8, allocatable, dimension(:) :: a,b,c
 integer, dimension(9) :: desca,descb,descc
 integer m,n,k
 integer np,nr,nc,mr,mc,icontxt,numroc,iam,nnodes
 integer acol, bcol, ccol
 real*8, parameter :: alpha = 2.d0
 real*8, parameter :: beta = 3.d0
 integer, parameter :: ia = 1, ib = 1, ic = 1
 integer, parameter :: ja = 1, jb = 1, jc = 1
168 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

 integer, parameter :: nb = 200
! Bigger size for CUDA runs
! integer, parameter :: nb = 3000

! Initialization of process grid
 call blacs_pinfo(iam,np)
 if (np.ne.20) then
 print *, 'Test expects 20 nodes'
 stop 1
 else
 nr = 5
 nc = 4
 endif
 call blacs_get(0,0,icontxt)
 call blacs_gridinit(icontxt,'r',nr,nc)
 call blacs_gridinfo(icontxt,nr,nc,mr,mc)

! Size of matrices
 m = 20000
 n = 20000
 k = 20000

! Fill parameters for PDGEMM call
 desca(1) = 1
 desca(2) = icontxt
 desca(3) = m
 desca(4) = k
 desca(5:6) = nb
 desca(7:8) = 0
 desca(9) = numroc(m,nb,mr,0,nr)
 acol = numroc(k,nb,mc,0,nc)

 descb(1) = 1
 descb(2) = icontxt
 descb(3) = k
 descb(4) = n
 descb(5:6) = nb
 descb(7:8) = 0
 descb(9) = numroc(k,nb,mr,0,nr)
 bcol = numroc(n,nb,mc,0,nc)

 descc(1) = 1
 descc(2) = icontxt
 descc(3) = m
 descc(4) = n
 descc(5:6) = nb
 descc(7:8) = 0
 descc(9) = numroc(m,nb,mr,0,nr)
 ccol = numroc(n,nb,mc,0,nc)

 allocate(a(desca(9)*acol))
 allocate(b(descb(9)*bcol))
 allocate(c(descc(9)*ccol))
Chapter 6. Application development and tuning 169

! PDGEMM call
 a = 1.d0
 b = 2.d0
 c = 3.d0
 call pdgemm('N','N',m,n,k,alpha,a,ia,ja,desca,b,ib,jb,descb,
 & beta,c,ic,jc,descc)

! Deallocation of arrays and exit from BLACS
 deallocate(a)
 deallocate(b)
 deallocate(c)
 call blacs_gridexit(icontxt)
 call blacs_exit(0)
 end

For more information about usage of BLACS with the Parallel ESSL library, see the following
website:

http://www.ibm.com/support/knowledgecenter/#!/SSNR5K_5.2.0/com.ibm.cluster.pessl.v
5r2.pssl100.doc/am6gr_dapc.htm

For more information about the concept of development using the Parallel ESSL library, see
the following website:

http://www.ibm.com/support/knowledgecenter/#!/SSNR5K_5.2.0/com.ibm.cluster.pessl.v
5r2.pssl100.doc/am6gr_dlaspro.htm

6.3.2 Using GPUs with Parallel ESSL

GPUs can be used by the local MPI tasks in two ways within the Parallel ESSL programs:

� GPUs are not shared. This setting means that each MPI task on a node uses unique
GPUs. For this case, the local rank of MPI tasks can be used.

Example 6-10 shows how to work with local rank by using the
MP_COMM_WORLD_LOCAL_RANK variable. It is created from Example 6-9 on
page 168 with an additional section that gets the local rank of the MPI task and assigns
this task to a respective GPU by rank. Also, change size of process grid to 4 by 2 to fit your
cluster, which has two nodes with 4 GPUs on each node, and uses a block size of 3000 by
3000.

Example 6-10 PESSL Fortran example source code for non-shared GPUs

program pdgemm_sample_local_rank
 implicit none
 real*8, allocatable, dimension(:) :: a,b,c
 integer, dimension(9) :: desca,descb,descc
 integer m,n,k

integer ids(1)
 integer ngpus
 integer np,nr,nc,mr,mc,icontxt,numroc,iam,nnodes
 integer acol, bcol, ccol
 real*8, parameter :: alpha = 2.d0
 real*8, parameter :: beta = 3.d0
 integer, parameter :: ia = 1, ib = 1, ic = 1
 integer, parameter :: ja = 1, jb = 1, jc = 1
170 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/support/knowledgecenter/#!/SSNR5K_5.2.0/com.ibm.cluster.pessl.v5r2.pssl100.doc/am6gr_dlaspro.htm
http://www.ibm.com/support/knowledgecenter/#!/SSNR5K_5.2.0/com.ibm.cluster.pessl.v5r2.pssl100.doc/am6gr_dapc.htm

 integer, parameter :: nb = 3000

 character*8 rank
 integer lrank,istat

! Initialization of process grid
 call blacs_pinfo(iam,np)
 if (np.ne.8) then
 print *, 'Test expects 8 nodes'
 stop 1
 else
 nr = 4
 nc = 2
 endif
 call blacs_get(0,0,icontxt)
 call blacs_gridinit(icontxt,'r',nr,nc)
 call blacs_gridinfo(icontxt,nr,nc,mr,mc)

! Get local rank and assign respective GPU
 call getenv('MP_COMM_WORLD_LOCAL_RANK',value=rank)
 read(rank,*,iostat=istat) lrank
 ngpus = 1
 ids(1) = lrank
 call setgpus(1,ids)

! Size of matrices
 m = 20000
 n = 20000
 k = 20000

! Fill parameters for PDGEMM call
 desca(1) = 1
 desca(2) = icontxt
 desca(3) = m
 desca(4) = k
 desca(5:6) = nb
 desca(7:8) = 0
 desca(9) = numroc(m,nb,mr,0,nr)
 acol = numroc(k,nb,mc,0,nc)

 descb(1) = 1
 descb(2) = icontxt
 descb(3) = k
 descb(4) = n
 descb(5:6) = nb
 descb(7:8) = 0
 descb(9) = numroc(k,nb,mr,0,nr)
 bcol = numroc(n,nb,mc,0,nc)

 descc(1) = 1
 descc(2) = icontxt
 descc(3) = m
 descc(4) = n
 descc(5:6) = nb
 descc(7:8) = 0
Chapter 6. Application development and tuning 171

 descc(9) = numroc(m,nb,mr,0,nr)
 ccol = numroc(n,nb,mc,0,nc)

 allocate(a(desca(9)*acol))
 allocate(b(descb(9)*bcol))
 allocate(c(descc(9)*ccol))

! PDGEMM call
 a = 1.d0
 b = 2.d0
 c = 3.d0
 call pdgemm('N','N',m,n,k,alpha,a,ia,ja,desca,b,ib,jb,descb,
 & beta,c,ic,jc,descc)

! Deallocation of arrays and exit from BLACS
 deallocate(a)
 deallocate(b)
 deallocate(c)
 call blacs_gridexit(icontxt)
 call blacs_exit(0)
 end

� GPUs are shared. This is the case when the number of MPI tasks per node oversubscribe
the GPUs. Parallel ESSL recommends using NVIDIA MPS, described in 6.6.2, “CUDA
Multi-Process Service” on page 197, for this case. The process allows you to use multiple
MPI tasks concurrently by using GPUs.

To inform Parallel ESSL which GPUs to use for MPI tasks, use the SETGPUS subroutine.
Example 6-11 shows the updated version of Example 6-9 on page 168, where Parallel
ESSL uses only one GPU for each MPI task, and the GPU is assigned in round-robin
order.

Example 6-11 Call of SETGPUS subroutine for 1 GPU usage

program pdgemm_sample
 implicit none
 real*8, allocatable, dimension(:) :: a,b,c
 integer, dimension(9) :: desca,descb,descc
 integer m,n,k

integer ids(1)
 integer ngpus
 integer np,nr,nc,mr,mc,icontxt,numroc,iam,nnodes
 integer acol, bcol, ccol
 real*8, parameter :: alpha = 2.d0
 real*8, parameter :: beta = 3.d0
 integer, parameter :: ia = 1, ib = 1, ic = 1
 integer, parameter :: ja = 1, jb = 1, jc = 1

integer, parameter :: nb = 3000

! Initialization of process grid
 call blacs_pinfo(iam,np)

Note: It is possible that Parallel ESSL will be unable to allocate memory on the GPU. In
this case, you can reduce the number of MPI tasks per node.
172 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

 if (np.ne.20) then
 print *, 'Test expects 20 nodes'
 stop 1
 else
 nr = 5
 nc = 4
 endif

ngpus = 1
 ids(1) = mod(iam,4)
 call setgpus(ngpus,ids)
 call blacs_get(0,0,icontxt)
 call blacs_gridinit(icontxt,'r',nr,nc)
 call blacs_gridinfo(icontxt,nr,nc,mr,mc)

! Size of matrices
 m = 20000
 n = 20000
 k = 20000

! Fill parameters for PDGEMM call
 desca(1) = 1
 desca(2) = icontxt
 desca(3) = m
 desca(4) = k
 desca(5:6) = nb
 desca(7:8) = 0
 desca(9) = numroc(m,nb,mr,0,nr)
 acol = numroc(k,nb,mc,0,nc)

 descb(1) = 1
 descb(2) = icontxt
 descb(3) = k
 descb(4) = n
 descb(5:6) = nb
 descb(7:8) = 0
 descb(9) = numroc(k,nb,mr,0,nr)
 bcol = numroc(n,nb,mc,0,nc)

 descc(1) = 1
 descc(2) = icontxt
 descc(3) = m
 descc(4) = n
 descc(5:6) = nb
 descc(7:8) = 0
 descc(9) = numroc(m,nb,mr,0,nr)
 ccol = numroc(n,nb,mc,0,nc)

 allocate(a(desca(9)*acol))
 allocate(b(descb(9)*bcol))
 allocate(c(descc(9)*ccol))

! PDGEMM call
 a = 1.d0
 b = 2.d0
 c = 3.d0
Chapter 6. Application development and tuning 173

 call pdgemm('N','N',m,n,k,alpha,a,ia,ja,desca,b,ib,jb,descb,
 & beta,c,ic,jc,descc)

! Deallocation of arrays and exit from BLACS
 deallocate(a)
 deallocate(b)
 deallocate(c)
 call blacs_gridexit(icontxt)
 call blacs_exit(0)
 end

Example 6-11 on page 172 explicitly states to use two GPUs per MPI task. To change to
this configuration, change the following lines:

ngpus = 1

 ids(1) = mod(iam,4)

to these:

ngpus = 2

 ids(1) = mod(iam,2)*2

 ids(2) = mod(iam,2)*2 + 1

6.3.3 Compilation

The Parallel ESSL subroutines can be called from 64-bit-environment application programs,
which are written in Fortran, C, and C++. Compilation commands of source code for different
type of Parallel ESSL library (SMP and SMP CUDA) using MPICH libraries are described in
Table 6-7, Table 6-8 and Table 6-9 on page 175.

Table 6-7 Fortran compilation commands for PESSL using MPICH

Table 6-8 shows commands for XLC/XLC++.

Table 6-8 XLC/XLC++ compilation commands (mpcc for XLC, mpCC for XLC++)

Type of PESSL library Compilation command

64-bit SMP mpfort -O program.f -leeslsmp -lpesslsmpich -lblacsmpich -lxlsmp

64-bit SMP CUDA
mpfort -O program.f -leeslsmpcuda -lpesslsmpich -lblacsmpich
-lxlsmp -lcublas -lcudart
-L/usr/local/cuda/lib64 -R/usr/local/cuda/lib64

Type of PESSL library Compilation command

64-bit SMP

mpcc(mpCC) -O program.c -leeslsmp -lpesslsmpich -lblacsmpich
-lxlf90_r -lxlsmp -lxlfmath -lmpigf
-L/opt/ibm/xlsmp/<xlsmp_version>/lib
-L/opt/ibm/xlf/<xlf_version>/lib
-R/opt/ibm/lib

64-bit SMP CUDA

mpcc(mpCC) -O program.c -leeslsmpcuda -lpesslsmpich
-lblacsmpich -lxlf90_r -lxlsmp -lxlfmath -lmpigf -lcublas -lcudart
-L/usr/local/cuda/lib64 -R/usr/local/cuda/lib64
-L/opt/ibm/xlsmp/<xlsmp_version>/lib
-L/opt/ibm/xlf/<xlf_version>/lib
-R/opt/ibm/lib
174 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Table 6-9 shows commands for gcc/g++.

Table 6-9 gcc/g++ compilation commands for PESSL using MPICH

For more information about compilation of programs with the Parallel ESSL library, see the
following website:

http://www.ibm.com/support/knowledgecenter/#!/SSNR5K_5.2.0/com.ibm.cluster.pessl.v
5r2.pssl100.doc/am6gr_det6000l.htm

6.4 Using POWER8 vectorization

The single-instruction, multiple-data (SIMD) instructions are building blocks that are used to
exploit parallelism at CPU level. The Power architecture implements SIMD through the VMX
and VSX technologies, which are specified in the Power Instruction Set Architecture (Power
ISA) version 2.07 for POWER8 generation processor.

Techniques to exploit data parallelism through SIMD instructions are often called
vectorization. They can be employed by the compiler in the form of auto-vectorization
transformations or exposed to applications as application programming interface (API).

Both GNU GCC and IBM XL compilers provide vector APIs based on the Altivec specification
for C, C++, and Fortran. Their API is composed of built-in functions (also known as intrinsics),
defined vector types, and extensions to the programming language semantics. The specifics
of each compiler vector implementation are explained in the next sections.

The auto-vectorization features of the GCC and XL compilers are discussed in 6.1, “Compiler
options” on page 156.

6.4.1 Implementation with GNU GCC

On GNU GCC C, the AltiVec API specification is implemented with modifications that are
listed in the “PowerPC AltiVec Built-in Functions” section of Using the GNU Compiler
Collection (GCC) at the following website:

https://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc.pdf

Type of PESSL library Compilation command

64-bit SMP

mpcc(mpCC) -compiler gnu -O program.c -leeslsmp -lpesslsmpich
-lblacsmpich -lxlf90_r -lxl -lxlsmp -lxlfmath -lm-lmpigf
-L/opt/ibm/xlsmp/<xlsmp_version>/lib
-L/opt/ibm/xlf/<xlf_version>/lib
-R/opt/ibm/lib

64-bit SMP CUDA

mpcc(mpCC) -compiler gnu -O program.c -leeslsmpcuda
-lpesslsmpich -lblacsmpich -lxlf90_r -lxl -lxlsmp -lxlfmath -lm
-lmpigf -lcublas -lcudart
-L/usr/local/cuda/lib64 -R/usr/local/cuda/lib64
-L/opt/ibm/xlsmp/<xlsmp_version>/lib
-L/opt/ibm/xlf/<xlf_version>/lib
-R/opt/ibm/lib
Chapter 6. Application development and tuning 175

https://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc.pdf
http://www.ibm.com/support/knowledgecenter/#!/SSNR5K_5.2.0/com.ibm.cluster.pessl.v5r2.pssl100.doc/am6gr_det6000l.htm

The application must be compiled at least with the -maltivec option. Or they must be
compiled with -mvsx, which enables -maltivec with additional features that use VSX
instructions.

The GNU GCC AltiVec high-level interface and C language extensions are specified in the
altivec.h header.

The following features are implemented:

� Add the keywords __vector, vector, __pixel, pixel, __bool, and bool. The vector, pixel,
and bool keywords are implemented as context-sensitive, predefined macros that are
recognized only when used in C-type declaration statements. In C++ applications, they
can be undefined for compatibility.

� Unlike the AltiVec specification, the GNU/GCC implementation does not allow a typedef
name as a type identifier. You must use the actual __vector keyword, for instance, typedef
signed short int16; __vector int16 myvector.

� Vector data types are aligned on a 16-byte boundary.

� Aggregates (structures and arrays) and unions that contain vector types must be aligned
on 16-byte boundaries.

� Load or store to unaligned memory must be carried out explicitly by one of the vec_ld,
vec_ldl, vec_st, or vec_stl operations. However, the load of an array of components
does not need to be aligned, but it must be accessed with attention to its alignment, which
is usually carried out with a combination of vec_lvsr, vec_lvsl, and vec_perm operations.

� Using sizeof() for vector data types (or pointers) returns 16, for 16 bytes.

� Assignment operation (a = b) is allowed only if both sides have the same vector types.

� Address operation &p is valid if a is p vector type.

� The usual pointer arithmetic can be performed on vector type pointer p, in particular:

– p+1 is a pointer to the next vector after p.

– Pointer dereference (*p) implies either a 128-bit vector load from or store to the
address that is obtained by clearing the low-order bits of p.

C arithmetic and logical operators (+, -, *, /, unary minus, ^, |, &, ~, and %), shifting operators
(<<, >>), and comparison operators (==, !=, <, <=, >, >=) can be used on these types. The
compiler will generate the correct SIMD instructions for the hardware.

Table 6-10 shows vector data type extensions as implemented by GCC. Vector types are
signed by default, unless an otherwise unsigned keyword is specified. The only exception is
vector char, which is unsigned by default. The hardware does not have instructions for
supporting vector long long and vector bool long long types, but they can be used for
float-point/integer conversions.

Table 6-10 Vector types as implemented by GCC

Vector types Description

vector char Vector of sixteen 8-bit char

vector bool Vector of sixteen 8-bit unsigned char

vector short Vector of eight 16-bit short

vector bool short Vector of eight 16-bit unsigned short

vector pixel Vector of eight 16-bit unsigned short
176 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

In addition to vector operations, GCC has a built-in function for cryptographic instructions that
operate in vector types. For more information about the implementation and a comprehensive
list of built-in functions, see the PowerPC AltiVec section in GNU GCC:

https://gcc.gnu.org/onlinedocs/gcc-4.8.5/gcc/PowerPC-AltiVec_002fVSX-Built-in-Func
tions.html#PowerPC-AltiVec_002fVSX-Built-in-Functions

6.4.2 Implementation with IBM XL

The IBM XL compiler family provides an implementation of AltiVec APIs through feature
extensions for both C and C++. Fortran extensions for vector support are also available.

XL C/C++
To use vector extensions, the application must be compiled with -mcpu=pwr8, and -qaltivec
must be in effect.

The XL C/C++ implementation defines the vector (or alternatively, __vector) keywords that
are used in the declaration of vector types.

Similar to GCC implementation, XL C/C++ allows unary, binary, and relational operators to be
applied to vector types. It implements all data types that are shown in Table 6-10 on
page 176.

The indirection operator, asterisk (*), is extended to handle pointer to vector types. Pointer
arithmetic is also defined so that a pointer to the following vector can be expressed as v+ 1.

Vector types can be cast to other vector types (but not allowed to a scalar). The casting does
not represent a conversion and so it is subject to changes in element value. Casting between
vector and scalar pointers is also allowed if memory is maintained on 16-byte alignment.

For more information about XL C/C++ 13.1.3 vector support , vector initialization, and the
vec_step operator, see the manual at the following website:

http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.3/com.ibm.xlcpp1313.lelinux
.doc/language_ref/altivec_exts_both.html

A comprehensive list of built-in functions for vector operations is available at XL C and C++
1.3.1.3 manual at the following website:

http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.3/com.ibm.xlcpp1313.lelinux
.doc/compiler_ref/vec_intrin_cpp.html

vector int Vector of four 32-bit integer

vector bool int Vector of four 32-bit integer

vector float Vector of four 32-bit float

vector double Vector of two 64-bit double. Requires compile with -mvsx

vector long Vector of two 64-bit signed integer. It is implemented in 64-bit mode only.
Requires compile with -mvsx

vector long long Vector of two 64-bit signed integer

vector bool long Vector of two 64-bit signed integer

Vector types Description
Chapter 6. Application development and tuning 177

https://gcc.gnu.org/onlinedocs/gcc-4.8.5/gcc/PowerPC-AltiVec_002fVSX-Built-in-Functions.html#PowerPC-AltiVec_002fVSX-Built-in-Functions
https://gcc.gnu.org/onlinedocs/gcc-4.8.5/gcc/PowerPC-AltiVec_002fVSX-Built-in-Functions.html#PowerPC-AltiVec_002fVSX-Built-in-Functions
http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.3/com.ibm.xlcpp1313.lelinux.doc/language_ref/altivec_exts_both.html
http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.3/com.ibm.xlcpp1313.lelinux.doc/compiler_ref/vec_intrin_cpp.html
http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.3/com.ibm.xlcpp1313.lelinux.doc/compiler_ref/vec_intrin_cpp.html

XL Fortran
To use vector extensions, the application must comply with -qarch=pwr8.

The XL Fortran language extension defines the VECTOR keyword, which is used to declare
16-byte vector entities that can hold PIXEL, UNSIGNED, INTEGER, and REAL type elements. PIXEL
(2 bytes) and UNSIGNED (unsigned integer) types are extensions to the language as well. They
must be only used within vectors.

Vectors are automatically aligned to 16 bytes, but exceptions apply. For more information
about vector types on XL Fortran 15.1.3, see the manual at the following website:

http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.3/com.ibm.xlf1513.lelinux.d
oc/language_ref/vectordatatype.html

For the list of vector intrinsic procedures available with XL Fortran 15.1.3, see the manual at
the following website:

http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.3/com.ibm.xlf1513.lelinux.d
oc/language_ref/vmxintrinsics.html

Example 6-12 uses vectors to calculate the C = alpha * A + B formula where alpha, A, B,
and C are real numbers. The lines 11-14 show declaration of vectors with 16 elements of
8 bytes real types. Called methods vec_xld2, vec_permi, and vec_madd are, respectively,
load, permuting, and fused multiply-add SIMD operations that are applied to the vector types.

Example 6-12 Fortran program that demonstrates use of XL compiler vectors

1 SUBROUTINE VSX_TEST
2 implicit none
3
4 real*8, allocatable :: A(:), B(:), C(:), CT(:)
5 real*8 alpha
6 integer*8 max_size, ierr
7 integer*8 i, j, it
8 integer*8 ia, ialign
9 integer n, nalign
10
11 vector(real*8) va1, va2, va3
12 vector(real*8) vb1, vb2
13 vector(real*8) vc1, vc2
14 vector(real*8) valpha
15
16 max_size = 2000
17 alpha = 2.0d0
18
19 ierr = 0
20 allocate(A(max_size),stat=ierr)
21 allocate(B(max_size),stat=ierr)
22 allocate(C(max_size),stat=ierr)
23 allocate(CT(max_size),stat=ierr)
24 if (ierr .ne. 0) then
25 write(*,*) 'Allocation failed'
26 stop 1
27 endif
28
29 do i = 1, max_size
30 a(i) = 1.0d0*i
31 b(i) = -1.0d0*i
178 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.3/com.ibm.xlf1513.lelinux.doc/language_ref/vectordatatype.html
http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.3/com.ibm.xlf1513.lelinux.doc/language_ref/vmxintrinsics.html

32 ct(i) = alpha*a(i) + b(i)
33 enddo
34
35 ia = LOC(A)
36 ialign = IAND(ia, 15_8)
37 nalign = MOD(RSHIFT(16_8-ialign,3_8),7_8) + 2
38
39 ! Compute Head
40 j = 1
41 do i = 1, nalign
42 C(j) = B(j) + alpha * A(j)
43 j = j + 1
44 enddo
45
46 n = max_size - nalign - 4
47 it = rshift(n, 2)
48
49 va1 = vec_xld2(-8, A(j))
50 va2 = vec_xld2(8, A(j))
51 va3 = vec_xld2(24, A(j))
52
53 va1 = vec_permi(va1, va2, 2)
54 va2 = vec_permi(va2, va3, 2)
55
56 vb1 = vec_xld2(0, B(j))
57 vb2 = vec_xld2(16, B(j))
58
59 do i = 1, it-1
60 vc1 = vec_madd(valpha, va1, vb1)
61 vc2 = vec_madd(valpha, va2, vb2)
62
63 va1 = va3
64 va2 = vec_xld2(40, A(j))
65 va3 = vec_xld2(56, A(j))
66
67 va1 = vec_permi(va1, va2, 2)
68 va2 = vec_permi(va2, va3, 2)
69
70 call vec_xstd2(va1, 0, C(j))
71 call vec_xstd2(va2, 16, C(j))
72
73 vb1 = vec_xld2(32, B(j))
74 vb1 = vec_xld2(48, B(j))
75
76 j = j + 4
77 enddo
78
79 vc1 = vec_madd(valpha, va1, vb1)
80 vc2 = vec_madd(valpha, va2, vb2)
81
82 call vec_xstd2(va1, 0, C(j))
83 call vec_xstd2(va2, 16, C(j))
84
85 ! Compute Tail
86 do i = j, max_size
Chapter 6. Application development and tuning 179

87 C(i) = B(i) + alpha * A(i)
88 enddo
89
90 do i = 1, 10
91 write(*,*) C(i), CT(i)
92 enddo
93
94 END SUBROUTINE VSX_TEST

6.5 Development models

The High Performance Computing (HPC) solution proposed in this book contains a software
stack that allows development of C, C++, and Fortran applications by using different parallel
programming models. In this context, applications can be implemented using pure models as
MPI, OpenMP, CUDA, PAMI, or OpenSHMEM, or by using some combinations of these (also
known as hybrid models).

This section discusses aspects of the IBM PE, compilers (GNU and IBM XL families),
libraries, and toolkits that developers can use to implement applications on either pure or
hybrid parallel programming models. It does not describe how those applications can be run
with IBM PE. That topic is covered in 7.2, “Using the IBM Parallel Environment runtime” on
page 233.

6.5.1 MPI programs with IBM Parallel Environment

The MPI development and runtime environment that is provided by the IBM PE version 2.3
has the following general characteristics:

� Provides the implementation of MPI version 3.0 standard, based on open source MPICH
project.

� The MPI library uses PAMI protocol as a common transport layer.

� Supports MPI application in C, C++, and Fortran.

� Supports 64-bit applications only.

� Supports GNU and IBM XL compilers.

� MPI operations can be carried out on both main or user-space threads.

� The I/O component (also known as MPI-IO) is an implementation of ROMIO provided by
MPICH 3.1.2.

� Provides a CUDA-aware MPI implementation.

� Employs a shared memory mechanism for message transport between tasks on the same
compute node. In contrast, the User Space (US) communication subsystem, which
provides direct access to a high-performance communication network by way of an
InfiniBand adapter, is used for internode tasks.

� Allows message stripping, failover, and recovery on multiple or single (with some
limitations) network configurations.

� Allows for dynamic process management.
180 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

This section introduces some MPI implementation aspects of IBM PE Runtime and general
guidance on how to build parallel applications. For more detailed information, see the Parallel
Environment Runtime Edition for Linux: MPI Programming Guide that is found at the following
website:

http://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.pe.v2r3.pe
400.doc/am106_about.htm?cp=SSFK3V_2.3.0%2F0-0-2

The MPI API
The MPI implementation of PE is based on MPICH. Therefore, to get more information, see
its man pages for further information about the MPI API at the following website:

http://www.mpich.org

The provided compilers
The compilers provide a set of compilation scripts to build parallel applications that support
both GNU and IBM XL family compilers for C, C++ and Fortran.

C, C++ and Fortran applications built, respectively, with mpcc, mpCC, and mpfort legacy
compilation scripts are linked with the threaded version of MPI and poe libraries by default.
They also apply some instrumentation on binary file so that poe is indirectly evoked to
manage the parallel execution.

The mpicc, mpicxx, mpif77, and mpif90 compilation scripts for C, C++, Fortran77, and
Fortran90, respectively, are designed to build MPICH-based parallel applications. Notice that
a program that is compiled with those scripts can be executed through poe.

Example 6-13 shows the mpicc command compiling of an MPI C application using the GNU
GCC compiler.

Example 6-13 IBM PE Runtime mpicc command to compile an MPI C program

$ export PATH=/opt/ibmhpc/pecurrent/base/bin:$PATH
$ mpicc -compiler gnu -O3 -mcpu=power8 -mtune=power8 -o myApp main.c

Use the -show option to display the command that will be executed to compile the application.
In Example 6-13, the mpicc -show command produces this output:

$ mpicc -show -compiler gnu -O3 -mcpu=power8 -mtune=power8 -o myApp main.c
/usr/bin/gcc -Xlinker --no-as-needed -O3 -mcpu=power8 -mtune=power8 -o myApp
main.c -m64 -D__64BIT__ -Xlinker --allow-shlib-undefined -Xlinker
--enable-new-dtags -Xlinker -rpath -Xlinker /opt/ibmhpc/pecurrent/mpich/gnu/lib64
-I/opt/ibmhpc/pecurrent/mpich/gnu/include64 -I/opt/ibmhpc/pecurrent/base/include
-L/opt/ibmhpc/pecurrent/mpich/gnu/lib64 -lmpi

All of these compilation scripts use the XL compilers unless the MP_COMPILER variable or
-compiler option is set, which instructs them to use another compiler. You can use gnu or xl
option values to evoke GNU or XL compilers. For third-party compilers, use the fully qualified
path (for example, MP_COMPILER=/opt/at9.0/bin/gcc).

Note: The compilation scripts that are provided by the latest version of the IBM PE
Runtime are installed in /opt/ibmhpc/pecurrent/base/bin.
Chapter 6. Application development and tuning 181

http://www.mpich.org
http://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.pe.v2r3.pe400.doc/am106_about.htm?cp=SSFK3V_2.3.0%2F0-0-2

Details of MPI-IO implementation
The ROMIO implementation of IBM PE Runtime is configured to exploit the IBM Spectrum
scale file system, delivering high-performance I/O operations. Some environment variables
are also introduced to allow users to control the behavior of some operations, such as
collective aggregations.

Although the configuration also supports NFS and POSIX compliance file systems, some
limitations might apply.

The file system detection mechanism uses system calls, unless the parallel file system is set
with the ROMIO_FSTYPE_FORCE environment variable. Many changes in the default configuration
of MPI-IO by passing hints to ROMIO are allowed, setting them in the ROMIO_HINTS
environment variable.

The local rank property
The Parallel Environment provided MPI implementation comes with a mechanism to
determine the rank of a task among others tasks running in the same machine, which is also
called the task local rank.

The read-only MP_COMM_WORLD_LOCAL_RANK variable can be used to obtain the local
rank. Each task can read its local rank attributed and made available by the runtime
environment.

Example 6-14 shows an MPI C program that reads the MP_COMM_WORLD_LOCAL_RANK
and print its value to standard output.

Example 6-14 Simple MPI C program that prints task local rank

#include<mpi.h>
#include<stdio.h>
#include<stdlib.h>
#include <unistd.h>

int main(int argc, char* argv[]) {
 int world_rank, world_size, local_rank;
 char hostname[255];

 MPI_Init(&argc, &argv);

 gethostname(hostname, 255);
 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
 MPI_Comm_size(MPI_COMM_WORLD, &world_size);
 local_rank = atoi(getenv("MP_COMM_WORLD_LOCAL_RANK"));
 printf("Task %d: running on node %s and local rank %d\n", world_rank, hostname,
local_rank);

 MPI_Finalize();
 return EXIT_SUCCESS;
}

The output of that program is shown in Example 6-15.

Example 6-15 Show output of simple MPI C program that prints the local rank

$ mpcc main.c
$ MP_RESD=poe MP_PROCS=5 ./a.out
182 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Task 0: running on node xcat-mn.xcat-cluster and local rank 0
Task 1: running on node xcat-mn.xcat-cluster and local rank 1
Task 4: running on node xcat-mn.xcat-cluster and local rank 4
Task 2: running on node xcat-mn.xcat-cluster and local rank 2
Task 3: running on node xcat-mn.xcat-cluster and local rank 3

Switch MPI configurations with environment modules
The process of compiling and executing a parallel application with PE requires setting a
number of environment variables. Some predefined profiles that use environment modules1 to
change the system’s variables are available to ease this task. As of PE 2.3, the following
development profiles for MPI applications are provided:

� perf: Compile the MPI application with XL and set to run in development mode with
minimal error checking

� debug: Compile the MPI application with XL and set to run in development mode with the
debug versions of the libraries

� trace: Compile the MPI application with XL and set to run in development mode with the
trace libraries

The environment module command (module) can be installed in the system. For RHEL 7.2, it
can be installed with the following commands:

yum install environment-modules

After the module command is installed in the system, you can list all available module, add
the ones provided by PE, and load them as shown in Example 6-16.

Example 6-16 Show the use of modules to set environment to build and run MPI applications

$ module avail

--
/usr/share/Modules/modulefiles
--
dot module-git module-info modules null use.own
$ module use -a /opt/ibmhpc/pecurrent/base/module
$ echo $MODULEPATH
/usr/share/Modules/modulefiles:/etc/modulefiles:/opt/ibmhpc/pecurrent/base/module
$ module avail

--
/usr/share/Modules/modulefiles
--
dot module-git module-info modules null use.own

--
/opt/ibmhpc/pecurrent/base/module

pe2300.xl.debug pe2300.xl.perf pe2300.xl.trace
$ module whatis pe2300.xl.debug
pe2300.xl.debug : Adds PE environment variables for xl compiler and debug
develop mode to user environment.

$ module whatis pe2300.xl.perf

1 Learn about Linux environment modules at the project website: http://modules.sourceforge.net
Chapter 6. Application development and tuning 183

http://modules.sourceforge.net

pe2300.xl.perf : Adds PE environment variables for xl compiler and
performance develop mode to user environment.

$ module whatis pe2300.xl.trace
pe2300.xl.trace : Adds PE environment variables for xl compiler and trace
develop mode to user environment.

$ env | grep MP
$ module load pe2300.xl.perf
 Adds these PE settings into your environment:

 MP_COMPILER=xl
 MP_EUIDEVELOP=min
 MP_MPILIB=mpich
 MP_MSG_API=mpi
 MP_CONFIG=2300
$ env | grep MP
MP_EUIDEVELOP=min
MP_CONFIG=2300
MP_MSG_API=mpi
MP_MPILIB=mpich
MP_COMPILER=xl
$ module load pe2300.xl.debug
 Adds these PE settings into your environment:

 MP_COMPILER=xl
 MP_EUIDEVELOP=debug
 MP_MPILIB=mpich
 MP_MSG_API=mpi
 MP_CONFIG=2300
$ env | grep MP
MP_EUIDEVELOP=debug
MP_CONFIG=2300
MP_MSG_API=mpi
MP_MPILIB=mpich
MP_COMPILER=xl
184 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Simulate different SMT modes
The example cluster contains two nodes (S822LC), each of which has two sockets. One
NUMA node corresponds to one socket and has 10 physical POWER8 cores inside it. The
systems are configured with SMT-8, which means that a physical core can split a job between
eight logical CPUs (threads). The structure of the S822LC is provided in Figure 6-1.

Figure 6-1 Structure of node in cluster

PE MPI provides run options or environment variables, which helps to simulate runs with
different SMT modes. The following cases describe two ways when a job uses only 1 logical
CPU from each POWER8 core (SMT-1 mode), and fully leverages all 160 logical CPUs using
Example 6-9 on page 168 with Parallel ESSL calls:

1. To configure the job to use only one logical CPU per POWER8 core, the following run
command can be used:

MP_TASK_AFFINITY=core:1 MP_RESD=poe MP_PROCS=40 ./test_pdgemm

MP_TASK_AFFINITY=core:1 says to PE MPI that each MPI task can use only one
POWER8 core. Overall the full cluster has 40 POWER8 cores (each node contains 20
cores), that means that a maximum of 40 MPI (MP_PROCS=40) tasks can be used for
such run.

Another possible solution to simulate SMT-1 mode is to take 20 MPI tasks with two
POWER8 cores for each of them using the following run command:

MP_TASK_AFFINITY=core:2 MP_RESD=poe MP_PROCS=20 ./test_pdgemm

2. The following run command shows how to take advantage of the cluster and use all 160
logical CPUs per node:

MP_TASK_AFFINITY=cpu:16 MP_RESD=poe MP_PROCS=20 ./test_pdgemm

MP_TASK_AFFINITY=core:1 means for PE MPI that each MPI task can use only 16
logical CPUs. Each node in the cluster contains 160 logical CPUs, so 10 MPI tasks per
node and 20 for the overall cluster can be used in this run.
Chapter 6. Application development and tuning 185

If you want to change the CPU affinity variable and still want to use all logical CPUs, the
number of MPI tasks need to be changed respectively. The following commands describe
the alternative calls:

MP_TASK_AFFINITY=cpu:160 MP_RESD=poe MP_PROCS=2 ./test_pdgemm
MP_TASK_AFFINITY=cpu:8 MP_RESD=poe MP_PROCS=40 ./test_pdgemm
MP_TASK_AFFINITY=cpu:2 MP_RESD=poe MP_PROCS=160 ./test_pdgemm

6.5.2 CUDA C programs with the NVIDIA CUDA Toolkit

The development of parallel programs using the General Purpose GPU (GPGPU) model is
provided in the IBM Power S822LC systems with support of the NIVIDIA CUDA Toolkit 7.5 for
Linux on POWER8.

This section highlights some relevant aspects to the CUDA development in the proposed
solution. This section also discusses characteristics of the NVIDIA K80 GPU, integration
between compilers, and availability of libraries. For a deeper and platform-agnostic
understanding of the NVIDIA CUDA development model and resources, see the following
website:

http://developer.nvidia.com/cuda-zone

Understanding the NVIDIA K80 GPU CUDA capabilities
The NVIDIA Tesla K80 is a dual-GPU product with two attached GPUs each implementing the
Kepler GK210 CUDA compute architecture. As such, the host operating system recognizes
four GPUs in an IBM S822LC system that is fully populated with two Tesla K80 cards.

The Kepler GK210 architecture delivers CUDA computability version 3.7.

Table 6-11 summarizes the available resources (per GPU) and the limitations for the CUDA
C++ applications.

Table 6-11 CUDA available resources per GPU

GPU resources Value

Total of global memory 12 GB

Total amount of constant memory 64 KB

Shared memory per block 48 KB

Stream Multiprocessors (SMX) 13

Maximum warps per SMX 64

Threads per Warps 32

Maximum threads per SMX 2048

Maximum thread blocks per SMX 16

Maximum threads per block 1024

Maximum grid size (x,y,z) = (2147483647, 65535, 65535)

Maximum thread block size (x,y,z) = (1024, 1024, 64)
186 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://developer.nvidia.com/cuda-zone

The following features are supported by the Tesla K80 GPU:

� Dynamic parallelism
� Hyper-Q (also known as CUDA streams)
� Host pinned memory
� Supports Unified Virtual Addressing (UVA) space

The NVIDIA nvcc compiler
The NVIDIA nvcc compiler driver is responsible for generating the final executable, which is a
combination of host (CPU) and device (GPU) codes.

Both IBM XL and GNU GCC compilers can be used to generate the host code and even their
flags. As described in 6.1, “Compiler options” on page 156, this process produces an
optimized code to run in the IBM POWER8 processor. By default, nvcc is going to use the
GNU GCC, unless the -ccbin flag is passed to set another back end compiler.

The NVIDIA Tesla K80 GPUs are built on Kepler GK210 architecture, which provides CUDA
computability 3.7. Use the -gencode compiler option to set the virtual architecture and binary
compatibility for example, -gencode arch=compute_37,code=sm_37 will generate code
compatible to the Kepler GK210 architecure (virtual architecture 3.7).

Example 6-17 shows a simple CUDA program that prints to standard output the index values
for 2D thread blocks. The executable is built with nvcc that uses xlC as the host compiler
(-ccbin xlC option). Parameters to xlC are passed with -Xcompiler option.

Example 6-17 Simple CUDA C program and nvcc compilation

$ cat hello.cu
#include<cuda_runtime.h>
#include<stdio.h>

 __global__ void helloKernel() {
 int tidx = threadIdx.x;
 int tidy = threadIdx.y;
 int blockidx = blockIdx.x;
 int blockidy = blockIdx.y;

 printf("I am CUDA thread (%d, %d) in block (%d, %d)\n",
 tidx, tidy, blockidx, blockidy);
 };

Maximum texture dimension size 1D = (65536), 2D = (65536, 65536), 3D = (4096,
4096, 4096)

Maximum layered texture Size and number of
layers

1D = ((16384), 2048 layers), 2D =
(16384, 16384), 2048 layers)

Note: GPUDirect is not supported in the IBM Power Systems servers at the time of writing.
Even though, the IBM Parallel Environment provides an CUDA-Aware API that supports
GPU to GPU buffer transfers. For more information, see 6.5.3, “Hybrid MPI and CUDA
programs with IBM Parallel Environment” on page 190.

Note: The nvcc compiler uses the GNU GCC C++ compiler by default to generate the host
code. If it is desired, the IBM XL C++ compiler instead uses the -ccbin xlC option.

GPU resources Value
Chapter 6. Application development and tuning 187

int main(int argc, char* argv[]) {
 dim3 block(16,16);
 dim3 grid(2,2);
 helloKernel<<<grid, block>>>();
 cudaDeviceSynchronize();
 return 0;
}
$ nvcc -ccbin xlC -Xcompiler="-qarch=pwr8 -qtune=pwr8 -qhot -O3" -gencode
arch=compute_37,code=sm_37 hello.cu -o helloCUDA
$./helloCUDA
I am CUDA thread (0, 0) in block (1, 0)
I am CUDA thread (1, 0) in block (1, 0)
I am CUDA thread (2, 0) in block (1, 0)
I am CUDA thread (3, 0) in block (1, 0)
I am CUDA thread (4, 0) in block (1, 0)
I am CUDA thread (5, 0) in block (1, 0)
<... Output omitted ...>

The nvcc also supports cross-compilation of CUDA C and C++ code to PowerPC 64-bit
Little-Endian (ppc64le).

For more information about nvcc compilation process and options, see the following website:

http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

CUDA libraries
Accompanying the CUDA Toolkit for Linux are some mathematical utility and scientific
libraries that uses the GPU to improve performance and scalability:

� cuBLAS: Basic Linear Algebra Subroutines
� cuFFT: Fast Fourier Transforms
� cuRAND: Random Number Generation
� cuSOLVER: Dense and Sparse Direct Linear Solvers and Eigen Solvers
� cuSPARSE: Sparse matrix routines
� Thrust: Parallel Algorithm and data structures

Example 6-18 illustrates the use of the cuBLAS API to calculate the DOT product of vectors. It
uses IBM XLC++ (xlC) to generate the host code and compile with -lcublas flag that links
dynamically with the cuBLAS library.

Example 6-18 Sample code for CUDA C using cuBLAS library

#include<cublas_v2.h>
#include<cuda_runtime.h>
#include<cuda_runtime_api.h>
#include<stdlib.h>
#include<stdio.h>

#define N 10000

int main(int argc, char* argv[]) {
 int const VEC_SIZE = N*sizeof(double);

Note: The support for cross-compilation for POWER8 Little-Endian was introduced in
CUDA Toolkit 7.5.
188 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

 double* h_vec_A = (double*) malloc(VEC_SIZE);
 double* h_vec_B = (double*) malloc(VEC_SIZE);

 double *d_vec_A, *d_vec_B, result;
 cublasStatus_t status;
 cublasHandle_t handler;
 cudaError_t error;
 // Initialize with random numbers between 0-1
 int i;
 for(i=0; i<N; i++) {
 h_vec_A[i] = (double) (rand() % 100000)/100000.0;
 h_vec_B[i] = (double) (rand() % 100000)/100000.0;
 }
cudaMalloc((void **)&d_vec_A, VEC_SIZE);
 cudaMalloc((void **)&d_vec_B, VEC_SIZE);
 cudaMemcpy(d_vec_A, h_vec_A, VEC_SIZE ,cudaMemcpyHostToDevice);
 cudaMemcpy(d_vec_B, h_vec_B, VEC_SIZE ,cudaMemcpyHostToDevice);

 // Initialize cuBLAS
 status = cublasCreate(&handler);
 // Calculate DOT product
 status = cublasDdot(handler, N , d_vec_A, 1, d_vec_B, 1, &result);
 if(status != CUBLAS_STATUS_SUCCESS) {
 printf("Program failed to calculate DOT product\n");
 return EXIT_FAILURE;
 }
 printf("The DOT product is: %G\n", result);

 // Tear down cuBLAS
 status = cublasDestroy(handler);
 return EXIT_SUCCESS;
}

The source code as shown in Example 6-18 on page 188 is built and executed as shown in
Example 6-19.

Example 6-19 Build and execute source code an cuBLAS sample code

$ make
Building file: ../main.c
Invoking: NVCC Compiler
/usr/local/cuda-7.5/bin/nvcc -I/usr/local/cuda-7.5/include/ -G -g -O0 -ccbin xlC
-Xcompiler -qtune=pwr8 -Xcompiler -qhot -Xcompiler -O3 -Xcompiler -qarch=pwr8
-gencode arch=compute_37,code=sm_37 -m64 -odir "." -M -o "main.d" "../main.c"
/usr/local/cuda-7.5/bin/nvcc -I/usr/local/cuda-7.5/include/ -G -g -O0 -ccbin xlC
-Xcompiler -qtune=pwr8 -Xcompiler -qhot -Xcompiler -O3 -Xcompiler -qarch=pwr8
--compile -m64 -x c -o "main.o" "../main.c"
Finished building: ../main.c

Building target: cudaBLAS
Invoking: NVCC Linker
/usr/local/cuda-7.5/bin/nvcc --cudart static -ccbin xlC
--relocatable-device-code=false -gencode arch=compute_37,code=compute_37 -gencode
arch=compute_37,code=sm_37 -m64 -link -o "cudaBLAS" ./main.o -lcublas
Finished building target: cudaBLAS
Chapter 6. Application development and tuning 189

$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-7.5/lib64/
$./cudaBLAS
The DOT product is: 2500.22

6.5.3 Hybrid MPI and CUDA programs with IBM Parallel Environment

The IBM Parallel Environment compilers and runtime environment support build and
execution of hybrid of MPI and CUDA programs.

Building the program
The common case is to organize sources on separate files for MPI and CUDA codes, and
therefore use different compilers to build the objects and then link them using the MPI
compiler.

Example 6-20 illustrates this procedure. The MPI source is built with the mpCC script, whereas
the nvcc compiler is used for the CUDA code. Finally, the object files are linked into the
executable, along with the CUDA runtime library. Implicitly mpCC links the executable to libmpi
(MPI), libpami (PAMI), and libpoe (POE).

Example 6-20 Show how hybrid MPI and CUDA programs can be built

$ mpCC -o helloMPICuda_mpi.o -c helloMPICuda.cpp
$ nvcc -ccbin g++ -m64 -gencode arch=compute_37,code=sm_37 -o helloMPICuda.o -c
helloMPICuda.cu
$ mpCC -o helloMPICuda helloMPICuda_mpi.o helloMPICuda.o
-L/usr/local/cuda-7.5/lib64 -lcudart

It is possible to compile source files that contain MPI and CUDA code mixed (often called
spaghetti programming style), although it is not recognized as a good programming practice.
In this case, you can compile it invoking the nvcc (CUDA C compiler) and setting the MPI
library and the headers as follows:

$ nvcc -I/opt/ibmhpc/pecurrent/mpich/gnu/include64/
-L/opt/ibmhpc/pecurrent/mpich/gnu/lib64/ -L/opt/ibmhpc/pecurrent/base/gnu/lib64/
-lmpi -lpami main.cu

The CUDA-aware MPI support
The cuda-aware MPI feature of PE allows direct access of tasks to the GPU memory’s buffers
on operations of message passing, which can improve the application performance
significantly.

The CUDA development model can be generalized with following steps:

1. Allocate data on the host (CPU) memory.
2. Allocate data on the device (GPU) memory.
3. Move the data from host to device memory.
4. Perform on that data some computation (kernel) on device.
5. Move processed data from device back to the host memory.

In a context of send/receive communication and without the CUDA-aware MPI capability, the
task do not have access to the GPU memory. Thus step 5 is required because the data must
be in the host memory before it is sent. However, with CUDA-aware MPI, the task will access

Note: The CUDA-aware MPI API was introduced in IBM Parallel Environment version 2.3.
190 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

to the portion of memory that is allocated on step 2, meaning that data cannot be staged into
host memory (step 5 is optional).

The code in Example 6-21 shows how the CUDA-aware feature can be used within a hybrid of
CUDA and MPI programs. It is a simple MPI program meant to run two jobs where task 0
initialize an array, increment its values by one utilizing the GPU computation, then sends the
result to task 1. In line 56, the call to the MPI_Send function utilizes the device buffer
(allocated on line 40) directly.

Example 6-21 A simple CUDA-aware MPI program

1 #include<cuda_runtime.h>
 2 #include<mpi.h>
 3 #include<stdio.h>
 4 #include<stdlib.h>
 5 #include<assert.h>
 6
 7 __global__ void vecIncKernel(int* vec, int size) {
 8 int tid = blockDim.x * blockIdx.x + threadIdx.x;
 9 if(tid < size) {
 10 vec[tid] += 1;
 11 }
 12 }
 13
 14 #define ARRAY_ELEM 1024
 15 #define ARRAY_ELEM_INIT 555
 16
 17 int main(int argc, char* argv[]) {
 18 int taskid, numtasks, tag=0;
 19 MPI_Status status;
 20 int array_size = sizeof(int) * ARRAY_ELEM;
 21 int threadsPerBlock = 32;
 22 int blockSize = ceil(ARRAY_ELEM/threadsPerBlock);
 23
 24 MPI_Init(&argc, &argv);
 25 MPI_Comm_rank(MPI_COMM_WORLD, &taskid);
 26 MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
 27
 28 if(numtasks != 2) {
 29 printf("This program must run only 2 tasks\n");
 30 }
 31 /*
 32 * Task 0: initialize an array, increment its values by 1,
 33 * and send it to Task 1.
 34 */
 35 if(taskid == 0) {
 36 int *vSend = (int*) malloc(array_size);
 37 for(int i=0; i < ARRAY_ELEM; i++)
 38 vSend[i]=ARRAY_ELEM_INIT;
 39 int *vDev;
 40 if(cudaMalloc((void **)&vDev, array_size) == cudaSuccess) {

Note: By default, CUDA-aware MPI is disabled on IBM PE run time. That behavior can be
changed by exporting the MP_CUDA_AWARE environment variable with yes (enable) or
no (disable).
Chapter 6. Application development and tuning 191

 41 cudaMemcpy(vDev,vSend, array_size,cudaMemcpyHostToDevice);
42 vecIncKernel<<< blockSize, threadsPerBlock>>>(vDev, ARRAY_ELEM);
 43 cudaDeviceSynchronize();
 44 } else {
 45 printf("Failed to allocate memory on GPU device\n");
 46 MPI_Abort(MPI_COMM_WORLD, MPI_ERR_OTHER);
 47 exit(0);
 48 }
 49 if(strcmp(getenv("MP_CUDA_AWARE"),"yes") != 0) {
 50 printf("Cuda-aware MPI is disabled, MPI_Send will fail.\n");
 51 }
 52 /*
 53 * CUDA-AWARE MPI Send: using the buffer allocated in GPU device.
 54 * Do not need to transfer data back to host memory.
 55 */
 56 MPI_Send(vDev, ARRAY_ELEM, MPI_INT, 1, tag, MPI_COMM_WORLD);
 57 } else {
 58 /*
 59 * Task 1: receive array from Task 0 and verify its values
 60 * are incremented by 1.
 61 */
 62 int *vRecv = (int*) malloc(array_size);
 63 MPI_Recv(vRecv, ARRAY_ELEM, MPI_INT, 0, tag, MPI_COMM_WORLD, &status);
 64 int expected = ARRAY_ELEM_INIT+1;
 65 for(int i=0; i < ARRAY_ELEM_INIT; i++) {
 66 assert(vRecv[i]==expected);
 67 }
 68 }
 69
 70 MPI_Finalize();
 71 return 0;
 72 }

The program in Example 6-21 on page 191 was compiled and executed twice as shown in
Example 6-22. The first time enables the CUDA-aware MPI (see the line starting with
MP_CUDA_AWARE=yes). Afterwards, it executes with the feature disabled (the line starting with
MP_CUDA_AWARE=no), which makes it exit with a segmentation fault. In this situation, a
remediation can be implemented which consists of copying the buffer back to the host
memory and use it in the MPI message pass call.

Example 6-22 Compile and run the simple CUDA-aware MPI program

$
LD_LIBRARY_PATH=/opt/ibmhpc/pecurrent/mpich/gnu/lib64/:/opt/ibmhpc/pecurrent/base/
gnu/lib64/:$LD_LIBRARY_PATH
$ nvcc -I/opt/ibmhpc/pecurrent/mpich/gnu/include64/
-L/opt/ibmhpc/pecurrent/mpich/gnu/lib64/ -L/opt/ibmhpc/pecurrent/base/gnu/lib64/
-lmpi -lpami main.cu
$ MP_CUDA_AWARE=yes MP_RESD=poe MP_PROCS=2 poe ./a.out
$ MP_CUDA_AWARE=no MP_RESD=poe MP_PROCS=2 poe ./a.out
 5 Cuda-aware MPI is disabled, MPI_Send will fail.
 6 ERROR: 0031-250 task 0: Segmentation fault
192 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

As of Parallel Environment 2.3, the CUDA-aware MPI is implemented on these features:

� All two-sided (point-to-point) communication (either blocking and non-blocking and intra-
and inter-communicator)

� All blocking intra-communicator collectives

However, some features are not supported on the context of CUDA-aware MPI:

� One-sided communications
� One-sided synchronization calls
� Fabric Collective Accelerator (FCA)
� Non-blocking collective API calls
� Inter-communicator collective API
� The collective selection with the pami_tune command

Using MPI local rank to balance the use of GPU devices
A policy to grant shared access and load balance to GPU device among local tasks (running
on same compute node) can be implemented by using the local rank feature available in the
Parallel Environment MPI. For example, one algorithm can limit the number of tasks that use
GPUs to avoid oversubscription.

For more infromation about the Parallel Environment local rank, see 6.5.1, “MPI programs
with IBM Parallel Environment” on page 180.

Launching concurrent CUDA kernels from multiple tasks
There are some considerations about shared use of GPUs with multiple MPI tasks. This topic
is covered in 6.6.2, “CUDA Multi-Process Service” on page 197.

6.5.4 OpenMP programs with the IBM Parallel Environment

The OpenMP applies a shared memory parallel programming model of development. It is a
multi-platform directive-based API available to many languages, including C, C++, and
Fortran.

Development and execution of OpenMP applications are fully supported by the IBM PE
Runtime.

From a compiler perspective, XL C/C++ 13.1.3, and Fortran 15.1.3 provide full support to
OpenMP API version 3.1, and partial support to versions 4.0 and 4.5. Similarly, the GNU GCC
compiler that is provided by the Linux distribution is based on OpenMP API version 3.1.

6.5.5 OpenSHMEM programs with the IBM Parallel Environment

The OpenSHMEM2 provides a specification API and reference implementation for the
Partitioned Global Address Space (PGAS) parallel programming model, which abstracts the
concept of global shared memory on processes distributed across different address spaces.
Its implementation involves the use of a communication library that often leverages Remote
Direct Memory Access (RDMA) techniques.

Note: At the time of writing, the NVIDIA GPUDirect technology is not supported on IBM
Power Systems. However, the CUDA-aware MPI API of IBM PE implement transparent
means to send/receive data to/from the GPU buffers.

2 Learn more about OpenSHMEM at http://openshmem.org
Chapter 6. Application development and tuning 193

http://openshmem.org

Parallel Environment provides an OpenSHMEM runtime library (libshmem.so), compiler
scripts, and tools that enable development and execution of OpenSHEM programs. The PAMI
library is used for communication among processing elements (PEs) of the PGAS program,
and it is able to take advantage of RDMA capabilities of the InfiniBand interconnect to improve
performance.

As of Parallel Environment version 2.3, there is only support for parallel programs that are
written in C and C++. Its implementation is based on the OpenSHEM API specification
version 1.23 with some minor deviations. For a complete list of supported and unsupported
routines, see the OpenSHEM section at the following website:

http://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.pe.v2r3.pe
100.doc/am102_openshmem.htm

The OpenSHMEM tools are installed at /opt/ibmhpc/pecurrent/base/bin. The compile
scripts for C and C++ are, respectively, oshcc and oshCC. The oshrun script runs programs,
although poe can be used as well.

Example 6-23 illustrates the OpenSHMEM program. The API can only be used after a shared
memory section is initialized (line 8). A symmetric memory area (the basket variable declared
on line 6) is written by all processing elements (call to shmem_int_put on line 14) on PE zero.
Then, all of the elements read the variable from PE zero (call to shmem_int_get on line 15) to
print its value.

Example 6-23 A simple OpenSHMEM program

1 #include<shmem.h>
2 #include<stdio.h>
3 #include<stdlib.h>
4
5 int main() {
6 static int basket; // Global shared (symetric) variable
7 int cents_p, cents_g; // Processing element's local variable
8 shmem_init(); // Initialize SHMEM
9 int my_pe = shmem_my_pe(); // Processing element's number
10 //printf("Hello, I am PE %d\n", my_pe);
11 cents_p = rand()%10;
12 shmem_barrier_all();
13 if(my_pe != 0)
14 shmem_int_put(&basket, ¢s_p, 1, 0);
15 shmem_int_get(¢s_g, &basket, 1, 0);
16 printf("Hello, I am PE %d. I put %d cents but I get %d\n", my_pe, cents_p,
cents_g);
17 shmem_finalize(); // Finalize SHMEM
18
19 return 0;
20 }

3 Download the OpenSHEM specification version 1.2 document at
http://openshmem.org/site/sites/default/site_files/openshmem-specification-1.2.pdf
194 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.pe.v2r3.pe100.doc/am102_openshmem.htm
http://openshmem.org/site/sites/default/site_files/openshmem-specification-1.2.pdf

The source code in Example 6-23 on page 194 can be compiled with the oshcc script as
shown in Example 6-24. It is a common practice to name an OpenSHMEM executable with
the suffix .x.

Example 6-24 Show how to compile an OpenSHMEM program

$ oshcc -O3 hellosh.c -o hellosh.x
$ ls
hellosh.c hellosh.x

By default oshcc (or oshCC) compiles the application with xlc (or xlC) unless it is not installed
into the system or the MP_COMPILER environment variable is set to use gcc (or g++).

The program is launched with the oshrun script. Alternatively, it can evoke poe directly. For
more information about execution of OpenSHMEM programs, see 7.2.3, “Running
OpenSHMEM programs” on page 239.

6.5.6 Parallel Active Messaging Interface programs

Parallel Active Messaging Interface (PAMI) is a low-level protocol that is the foundation of
communications on MPI and OpenSHMEM implementations of the IBM PE Runtime. It
provides an API for programs to access PAMI capabilities, such as collective communications
and RDMA using InfiniBand Host Channel Adapters (HCAs).

Many sample codes to demonstrate PAMI subroutines are included with the IBM PE Runtime
and are available in the /opt/ibmhpc/pecurrent/ppe.samples/pami folder. Example 6-25
shows how to build the PAMI samples and run a program (alltoall.exe) that uses the all to
all communication functions.

Example 6-25 Show how to build and run PAMI sample codes

$ cp -r /opt/ibmhpc/pecurrent/ppe.samples/pami .
$ cd pami/
$ make
$ cd pami_samples
$ vi host.list
$ MP_RESD=poe MP_PROCS=4 ./coll/alltoall.exe
Context: 0
Alltoall Bandwidth Test(size:4) 0x1000e400, protocol: I1:Alltoall:P2P:P2P
Size(bytes) iterations bytes/sec usec
----------- ----------- ----------- ---------
 1 100 413223.1 2.42
 2 100 840336.1 2.38
 4 100 1659751.0 2.41
 8 100 3347280.3 2.39
 16 100 6722689.1 2.38
 32 100 13502109.7 2.37
 64 100 26778242.7 2.39
 128 100 53112033.2 2.41
 256 100 81012658.2 3.16
 512 100 171812080.5 2.98
 1024 100 320000000.0 3.20
 2048 100 552021563.3 3.71
 4096 100 869639065.8 4.71
Chapter 6. Application development and tuning 195

Check out the Parallel Environment Runtime Edition for Linux: PAMI Programming Guide
available at following website for more details about this topic:

http://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.protocols.
v2r3.pp400.doc/bl510_about.htm?cp=SSFK3V_2.3.0%2F0-0-5

6.6 GPU tuning

This section explains how to overcome performance degradation due to the Power Cap Limit
featured by the NVIDIA GPU. Also, it shows how to manage shared access to GPUs by
multi-process applications through Multi-Process Service (MPS).

6.6.1 Power Cap Limit

While running your applications, the power cap limit can exceed the Software Power Cap
Limit of the NVIDIA GPU cards. If this happens, performance will be degraded because the
frequency of the GPU clock will be reduced because the GPU is consuming too much power.

To adjust the Power Cap Limit and check how performance looks after this adjustment, you
need to make following checks:

1. Check the current, default and maximum power limits:

nvidia-smi -q | grep 'Power Limit'

Example 6-26 contains output for the example NVIDIA Tesla K80 after execution of this
command.

Example 6-26 NVIDIA Tesla K80 Power limits by default

Power Limit : 149.00 W
Default Power Limit : 149.00 W
Enforced Power Limit : 149.00 W
Min Power Limit : 100.00 W
Max Power Limit : 175.00 W
Power Limit : 149.00 W
Default Power Limit : 149.00 W
Enforced Power Limit : 149.00 W
Min Power Limit : 100.00 W
Max Power Limit : 175.00 W
Power Limit : 149.00 W
Default Power Limit : 149.00 W
Enforced Power Limit : 149.00 W
Min Power Limit : 100.00 W
Max Power Limit : 175.00 W
Power Limit : 149.00 W
Default Power Limit : 149.00 W
Enforced Power Limit : 149.00 W
Min Power Limit : 100.00 W
Max Power Limit : 175.00 W

2. Set persistence to the following settings:

nvidia-smi -pm 1

3. Increase the Power Cap limit to, for example, to 175 watts:

nvidia-smi -pl 175
196 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.protocols.v2r3.pp400.doc/bl510_about.htm?cp=SSFK3V_2.3.0%2F0-0-5

You can check again the limits after these three steps have been completed by using the
command from the first step as shown in Example 6-27.

Example 6-27 NVIDIA Tesla K80 Power limits after changes

Power Limit : 175.00 W
Default Power Limit : 149.00 W
Enforced Power Limit : 175.00 W
Min Power Limit : 100.00 W
Max Power Limit : 175.00 W
Power Limit : 175.00 W
Default Power Limit : 149.00 W
Enforced Power Limit : 175.00 W
Min Power Limit : 100.00 W
Max Power Limit : 175.00 W
Power Limit : 175.00 W
Default Power Limit : 149.00 W
Enforced Power Limit : 175.00 W
Min Power Limit : 100.00 W
Max Power Limit : 175.00 W
Power Limit : 175.00 W
Default Power Limit : 149.00 W
Enforced Power Limit : 175.00 W
Min Power Limit : 100.00 W
Max Power Limit : 175.00 W

Example 6-4 on page 164 and Example 6-5 on page 164 show runs of sample ESSL SMP
CUDA program with the default and the adjusted Power Cap Limit respectively. This
technique gives performance improvements of about 2.5 times for this case.

6.6.2 CUDA Multi-Process Service

MPS is client-server runtime implementation of the CUDA API that helps multiple CUDA
processes to share GPUs. MPS takes advantage of parallelism between MPI tasks to
improve GPU utilization.

MPS contains following components:

� Control Daemon Process: Coordinates connections between servers and clients, starts
and stops server.

� Client Runtime: Any CUDA application can use the MPS client runtime from the CUDA
driver library.

� Server Process: This is shared clients’ shared connection to the GPU and provides
concurrency between clients.

MPS is recommended to use for jobs that do not generate enough work for GPUs. If you have
multiple runs at the same time, MPS helps to balance the workload of the GPU and increases
its utilization.

Also MPI programs that have different MPI-tasks but share the same GPU can get
improvement of performance by using MPS to control access to the GPU between tasks.

Note: You need to set the Power Cap Limit and persistence after each system reboot.
Chapter 6. Application development and tuning 197

A recommendation is to use MPS with the EXCLUSIVE_PROCESS mode to be sure that only
the MPS server runs on GPUs. Other compute modes, described in 8.2.3, “Compute modes”
on page 261, are not recommended or unsupported.

The CUDA program works using MPS if the MPS control daemon already runs in the system.
The program at startup tries to connect to the MPS control daemon, which creates an MPS
server or reuses an existing one if it has the same user ID as the user who launches the job.
Therefore, each user has its own MPS server. The MPS server creates the shared GPU
context for the different jobs in the system, manages its clients, and calls to GPU on behalf of
them. Figure 6-2 shows the overview of this process.

Figure 6-2 NVIDIA Multi-Process Service

To run MPS, you need to run the following commands, as root:

1. Set environment variable CUDA_VISIBLE_DEVICES to inform the system which GPUs
will be used. This step is optional. To use all GPUs start from the second step, issue this
command:

export CUDA_VISIBLE_DEVICES=0,1 #Use only first and second GPUs

2. Change the compute mode for all GPUs or to specific ones, chosen in the first step:

nvidia-smi -i 0 -c EXCLUSIVE_PROCESS
nvidia-smi -i 1 -c EXCLUSIVE_PROCESS

3. Start the daemon:

nvidia-cuda-mps-control -d

To stop the MPS daemon, execute following command as root:

echo quit | nvidia-cuda-mps-control

Note: The MPS Server supports up to 16 client CUDA contexts, and these contexts can be
distributed over up to 16 processes.
198 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Example 6-28 shows the output after the execution starts and stops steps in the example
system.

Example 6-28 Start and stop commands of the MPS for 4 GPUs

$ nvidia-smi -i 0 -c EXCLUSIVE_PROCESS
Set compute mode to EXCLUSIVE_PROCESS for GPU 0000:03:00.0.
All done.
$ nvidia-smi -i 1 -c EXCLUSIVE_PROCESS
Set compute mode to EXCLUSIVE_PROCESS for GPU 0000:04:00.0.
All done.
$ nvidia-smi -i 2 -c EXCLUSIVE_PROCESS
Set compute mode to EXCLUSIVE_PROCESS for GPU 0002:03:00.0.
All done.
$ nvidia-smi -i 3 -c EXCLUSIVE_PROCESS
Set compute mode to EXCLUSIVE_PROCESS for GPU 0002:04:00.0.
All done.
$ nvidia-cuda-mps-control -d
$ echo quit | nvidia-cuda-mps-control

If the system has running jobs, the nvidia-smi command provides output similar to that
shown in Example 6-29.

Example 6-29 nvidia-smi output for system with MPS

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 0 23715 C nvidia-cuda-mps-server 89MiB |
| 1 23715 C nvidia-cuda-mps-server 89MiB |
| 2 23715 C nvidia-cuda-mps-server 89MiB |
| 3 23715 C nvidia-cuda-mps-server 89MiB |
+---+

For more information about the CUDA MPS, see the following website:

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

6.7 Tools for development and tuning of applications

Many tools for parallel program development and tuning are available for the cluster
environment described in this book. Because different development models are allowed,
more than one tool is usually needed to develop the application.

This section covers some tools that have been developed by IBM, and others that are useful
tools but are maintained by third-party companies or open source communities.
Chapter 6. Application development and tuning 199

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

Table 6-12 gives a brief description of the tools and development models.

Table 6-12 Summary of tools for development and tuning of parallel applications

6.7.1 The Parallel Environment Developer Edition

The PE DE provides a set of tools (see Table 6-12) and libraries to help during the
development of applications written in C, C++ or Fortran by using pure MPI or hybrid with
OpenMP and CUDA. This encompassed two main components:

� HPC Toolkit: Provides back-end runtime and development libraries and command-line
tools

� hpctView: Provides a graphical user interface (GUI) front end to the HPC Toolkit.
Additionally, hpctView plug-ins to Eclipse for Parallel Application Developers (PTP) are
available.

The fluxogram as shown in Figure 6-3 on page 201 describes the analysis cycle of a parallel
application by using the IBM PE DE. As general rule, it evolves in three phases:

� Instrument: An application executable is designed to use a certain tool of the HPC Toolkit.

� Profile: Run the application to record execution data.

� Visualize: Visualize the resulting profile by using either command-line or GUI (hpctView)
tool.

Development model Provider Tool

MPI Parallel Environment (PE)
Developer Edition (DE)

Call graph analysis

I/O Profiling (MIO)

MPI Profiling

Hardware Performance Monitor
(HPM)

PDB

Hybrid of MPI and OpenMP Parallel Environment (PE)
Developer Edition (DE)

OpenMP profiling

CUDA CUDA Toolkit CUDA-memcheck

CUDA Debugger

nvprof

Nsight Eclipse Edition

Hybrid of MPI and CUDA Parallel Environment (PE)
Developer Edition (DE)

GPU Performance Monitor
(GPU)

MPI, OpenMP, PAMI,
OpenSHMEM

Eclipse Parallel Tools Platform
(PTP)

Integrated Development
Environment (IDE)

Note: Since version 2.2, PE DE does not provide the workbench component. Instead,
there is the hpctView plug-ins to the Eclipse for Parallel Application Developers. For more
information, see 6.7.3, “Eclipse for Parallel Application Developers” on page 218.
200 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Figure 6-3 Fluxogram shows how to use IBM Parallel Environment (PE) Developer Edition (DE)

Instrumentation is an optional step for some tools. If you need fine-grained collection of
runtime information, use any of the instrument mechanisms provided:

� Binary instrumentation: Uses the hpctInst command or hpcView (GUI) to place probes on
the executable file. It does not require you to rebuild the application

� Profiling library API: Places calls to library methods to control profiling at the source level.
It does require you to recompile the application and link it to the profiling library

The profile phase is simply to run an instrumented executable with a relevant work load so
that useful data is collected. For situations where the binary is not iinstrumented, it requires
you to preload at run time the corresponding profiling tool library and use of environment
variables to control the behavior of the library. The library then takes over some method calls
to produce the profile data.

In order to visualize the data produced by the profiling tools, you can use either hpctView for
the Graphical visualization or Linux commands like cat to inspect the report files.

Using hpctView to carry on the instrument-profile-visualize analysis cycle is a convenient
method because it permits fine-grained instrumentation at file, function, MPI call, or region
levels. It also provides other means to profile the parallel application, and easy visualization of
profile data and graphical tracing.

Instrument?

Use the
executable?

Instrument binary

Recompile with
Required flags

Recompile with
Required flags

Use profile library
API

Recompile and
link to profile library

Run instrumented
executable

Preload profile
library

Run
executable

Use
GUI?

Open profile reports
on text editor

Open profile reports
on hpctView

Recorded
trace?

Open trace visualizer
on hpctView

Visualize

Profile

Instrument
Chapter 6. Application development and tuning 201

The PE DE tools are briefly introduced in the next sections, which show the many ways to
profile and trace a parallel application. For more information about those topics, see the guide
to getting started at the following website and select Cluster software → Parallel
Environment Developer Edition → Parallel Environment Developer Edition 2.2.0:

http://www.ibm.com/support/knowledgecenter

Call graph analysis tool
The call graph analysis tool in the hpctView is used to visualize GNU gprof files of MPI
applications. When gprof profiling data is collected with parallel SPMD programs, one file per
task is created, which can make it difficult to visualize the information.

To use the call graph tool, you need to compile the application with the -pg compiler flag, then
run the application to produce the profile data. It is important to use a workload that is as
close as possible to the production scenario so that good profile data can be generated.

The following shows an example on how to compile and link a Fortran MPI application:

$ mpfort -g -c -O bcast.f
$ mpfort -o bcast -pg -g bcast.o

One gmon.out profile file is build per task.

Along with the call graph methods, the tool provides information about these statistics:

� Total execution time (and percentage) spent on each method
� Number of times each method was called
� Average time per call that is spent on each method

This information comes handy to identify hotspots so you can target performance
optimizations on specific methods.

Follow these steps to load the gmon.out files into hpctView:

1. Import the executable by clicking File → Open Executable.

2. On the menu bar, select File → Load Call Graph (gmon.out).

3. In the Select gmon.out Files window, browse the remote file system to select the gmon.out
files that you want to load, and click OK.

Note: A bug in the GNU Library C (glibc) that is installed by default with Red Hat
Enterprise Linux 7.2 prevents gmon.out files from being generated. This problem can be
solved by installing the latest glibc package version by way of the Red Hat Extended
Update Support (EUS), also known as z-stream.

For more information about the problem and solution, see the following website:

http://bugzilla.redhat.com/show_bug.cgi?id=1249102
202 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/support/knowledgecenter
http://bugzilla.redhat.com/show_bug.cgi?id=1249102

The hpctView callgraph visualizer opens as shown in Figure 6-4.

Figure 6-4 hpctView with example gprof data loaded on callgraph tool

In hpctView, you can choose to display the data from the gprof files in many ways in the
information recorder as shown in Figure 6-5.

Figure 6-5 hpctView with an example of gprof loaded

MPI profiling and tracing
The MPI profiling and tracing tool obtains data about the usage of the MPI routines in parallel
programs. The following are the profiles and reporting information (per tasks):

� Number of times that MPI routines are executed

� Total wall time that is spent in each MPI routine

� Average transferred bytes on message passing routines

� Point out the tasks with minimal, median, and maximum communication time. This
information is provided only in the report of task 0.
Chapter 6. Application development and tuning 203

You can use the profile and trace data to do many kinds of analysis, such as communication
patterns, hotspots, and data movements.

Example 6-30 shows the textual report for task 0 of an MPI program. The last section of the
report (Communication summary for all tasks) shows that the minimum, median, and
maximum communication time are spent on tasks 7, 4, and 5, respectively.

Example 6-30 HPC Toolkit - MPI profiling report for task 0

$ cat hpct_0_0.mpi.txt

MPI Routine #calls avg. bytes time(sec)

MPI_Comm_size 1 0.0 0.000
MPI_Comm_rank 1 0.0 0.000
MPI_Bcast 1 4.0 0.000
MPI_Barrier 1 0.0 0.000
MPI_Allreduce 4 26.0 0.000

total communication time = 0.000 seconds.
total elapsed time = 2.725 seconds.

Message size distributions:

MPI_Bcast #calls avg. bytes time(sec)
 1 4.0 0.000

MPI_Allreduce #calls avg. bytes time(sec)
 3 8.0 0.000
 1 80.0 0.000

Communication summary for all tasks:

 minimum communication time = 0.000 sec for task 7
 median communication time = 0.001 sec for task 4
 maximum communication time = 0.002 sec for task 5

Example 6-31 lists the files that are generated by the tool. Notice that although the parallel job
used in this example has eight tasks in total, only the reports of tasks 0, 4, 5, and 7 are
available. The MPI profiling tool generates by default reports for the four most significant tasks
according to the communication time criteria: Task 0 (an aggregate of all tasks) and tasks with
minimum, median, and maximum communication time.

Example 6-31 Listing the files generated by the tool

$ ls
hpct_0_0.mpi.mpt hpct_0_0.mpi.txt hpct_0_0.mpi.viz hpct_0_4.mpi.txt
hpct_0_4.mpi.viz hpct_0_5.mpi.txt hpct_0_5.mpi.viz hpct_0_7.mpi.txt
hpct_0_7.mpi.viz
204 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Still taking as example the same parallel job, the task with maximum communication time is 5.
The content of the profiling of task 5 is displayed in Example 6-32.

Example 6-32 Contents of the profiling tasks

$ cat hpct_0_5.mpi.txt

MPI Routine #calls avg. bytes time(sec)

MPI_Comm_size 1 0.0 0.000
MPI_Comm_rank 1 0.0 0.000
MPI_Bcast 1 4.0 0.000
MPI_Barrier 1 0.0 0.000
MPI_Allreduce 4 26.0 0.001

total communication time = 0.002 seconds.
total elapsed time = 2.725 seconds.

Message size distributions:

MPI_Bcast #calls avg. bytes time(sec)
 1 4.0 0.000

MPI_Allreduce #calls avg. bytes time(sec)
 3 8.0 0.001
 1 80.0 0.000

Along with the profile data, the tool records MPI routines calls over time that can be used
within hpctView trace visualizer. This information is useful to analyze the communication
patterns within the parallel program.

The easiest way to profile your MPI application is to load the trace library before the execution
by exporting the LD_PRELOAD environment variable. However, it can produce too much data
from large programs. Using the hpctView instrumentation-run-visualize analysis cycle from
within hpctView is also a convenient way to profile the application as it permits fine-grained
instrumentation at levels of files, functions, MPI routines, or just code regions.

The examples showed in this section were generated by using the script shown in
Example 6-33. To use the MPI profile preload library, the parallel program can be compiled
with the -g -Wl,--hash-style=sysv -emit-stub-syms flags.

Example 6-33 Script to profile MPI with HPC Toolkit

01 #!/bin/bash
02 #
03 # Use it as: $ MP_PROCS=<num> poe ./hpct_mpiprofile.sh <app> <args>
04 #
05
06 . /opt/ibmhpc/ppedev.hpct/env_sh
07
08 #
09 # HPCT MPI Trace control variables
10 #
11
12 ## Uncomment to set maximum limit of events traced.
13 ## Default is 30000.
Chapter 6. Application development and tuning 205

14 #MAX_TRACE_EVENTS=
15
16 ## Uncomment to generate traces for all ranks.
17 ## Default are 4 tasks: task 0 and tasks with maximum, minimum and median
communication time.
18 #OUTPUT_ALL_RANKS=yes
19
20 ## Uncomment to enable tracing of all tasks.
21 ## Default are tasks from 0 to 255 ranks.
22 #TRACE_ALL_TASKS=yes
23
24 ## Uncomment to set maximum limit of rank traced.
25 ## Default are 0-255 ranks or all if TRACE_ALL_TASKS is set.
26 #MAX_TRACE_RANK=
27
28 ## Uncomment to set desired trace back level. Zero is level where MPI function
is called.
29 ## Default is the immediate MPI function's caller.
30 #TRACEBACK_LEVEL=
31
32 # Preload MPI Profile library
33 LD_PRELOAD=/opt/ibmhpc/ppedev.hpct/lib64/preload/libmpitrace.so
34
35 $@

MPI I/O profiling
The MPI I/O (MIO) tool records information about Linux I/O system calls (syscalls) carried out
by the parallel program while accessing and manipulating files. The following statistics are
calculated per file:

� Number of times each I/O syscall
� Total time spent on each I/O syscall

Depending on the I/O syscall, it also profiles these statistics:

� Total of bytes requested
� Total of bytes delivered
� Minimum requested size in bytes
� Maximum requested size in bytes
� Rate in bytes
� Suspend wait count
� Suspend wait time
� Forward seeks average
� Backward seeks average

For your MIO tool, you can compile the application with the -g -Wl,--hash-style=sysv
-Wl,--emit-stub-syms flags that prepare the binary for instrumentation.

Example 6-34 shows the hpctInst command used to instrument all I/O calls of an application
called simul. Next, the application is executed by using the MIO_DEFAULTS and MIO_FILES
environment variables to set the MIO trace modules. As a result, MIO generates trace and
statistics data on a set of files withthe mio pattern in their names on a per-task basis.

Example 6-34 Instrument and profile an application with HPC Toolkit MIO tool

$. /opt/ibmhpc/ppedev.hpct/env_sh
$hpctInst -dmio simul
206 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

$ MP_RESD=poe MP_PROCS=4 MIO_FILES="*[trace/xml/events]"
MIO_DEFAULTS="trace/stats=miostats/mbytes" ./simul.inst -d ./iodir
$ ls hpct*
hpct_0_0.mio.iot hpct_0_0.mio.viz hpct_0_1.mio.txt
hpct_0_2.mio.miostats.txt hpct_0_3.mio.iot hpct_0_3.mio.viz
hpct_0_0.mio.miostats.txt hpct_0_1.mio.iot hpct_0_1.mio.viz
hpct_0_2.mio.txt hpct_0_3.mio.miostats.txt
hpct_0_0.mio.txt hpct_0_1.mio.miostats.txt hpct_0_2.mio.iot
hpct_0_2.mio.viz hpct_0_3.mio.txt

Example 6-34 shows the MIO_DEFAULTS and MIO_FILES environment variables that are used to
control the behavior of the profiling tool. Those are the minimum required variables to
manage MIO tool, but others are available.

Follow these steps to load MIO files into hpctView:

1. Import the executable by clicking File → Open Executable.

2. On menu bar, click File → Load MIO Trace (*.iot).

3. In the Select Files window, browse the remote file system and select files with *.iot
pattern in their names that you want to load. Click OK.

4. Likewise, go to the menu bar and click File → Load Viz Files (*.viz) to open the
visualization files that are generated by the MIO tool.

Figure 6-6 displays the hpctView visualization mode for the data generated with the MIO tool.
Detailed information about each I/O system call is provided on a per-task basis.

Figure 6-6 hpctView: MPI I/O tool profiling visualization
Chapter 6. Application development and tuning 207

Another view of the hpctView that displays the I/O trace data is shown in Figure 6-7.

Figure 6-7 hpctView: MPI I/O tool trace visualization

Hardware Performance Monitor
The Processor Monitor Unit (PMU) of POWER8 is a part of the processor dedicated to record
hardware events. It has six Performance Monitor Counter (PMC) registers. Registers 0-3 can
be programmed to count any of the more than one thousand of events available, 4 can count
run instructions completed, and 5 can count run cycles.

These events are important because they can reveal performance issues like pipeline
bubbles, inefficient use of caches, and high ratio of branches misprediction from the
perspective of the processor. Metrics for performance measurements can also be calculated
from hardware events, such as instructions per cycle, million of instructions per second
(MIPS), and memory bandwidth.

For single programs, tools such as Oprofile and Perf provide access to either system-wide or
application profiling of those hardware events on POWER8. Parallel SPMD programs are
often difficult to profile with these traditional tools because they are designed to deal with a
single process (whether multi-threaded or not).

For more information about Oprofile, see the Oprofile tool website at:

http://oprofile.sourceforge.net

For more information about Oprofile, see the Perf tool wiki page at:

http://perf.wiki.kernel.org

The Hardware Performance Monitor (HPM) tool is an analog tool, but provides easy SPMD
programs profiling on Linux on Power Systems.With HPM, you can profile MPI programs
regarding any of the hardware events available or obtain any of the 31 predefined metrics that
are most commonly used in performance analysis. The complete list of predefine metrics can
be found at the following website:

http://www.ibm.com/support/knowledgecenter/SSFK5S_2.2.0/com.ibm.cluster.pedev.v2r2
.pedev100.doc/bl7ug_derivedmetrics.htm
208 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://oprofile.sourceforge.net
http://perf.wiki.kernel.org
http://www.ibm.com/support/knowledgecenter/SSFK5S_2.2.0/com.ibm.cluster.pedev.v2r2.pedev100.doc/bl7ug_derivedmetrics.htm
http://www.ibm.com/support/knowledgecenter/SSFK5S_2.2.0/com.ibm.cluster.pedev.v2r2.pedev100.doc/bl7ug_derivedmetrics.htm

Figure 6-8 shows an HPM report opened with hpctView.

Figure 6-8 hpctView: HPC tool visualization

GPU Performance Monitoring
The GPU Performance Monitoring (GPM) tool is designed to profile and trace hardware
events that are produced by the GPU on hybrid MPI with CUDA C programs.

The HPM tool can profile raw hardware events and obtain metrics from a predefined list. The
gpmlist command is the interface to fetch the list of events and metrics supported.
Example 6-35 shows a sample of the list of events available for the NVIDIA K80 GPU.

Example 6-35 HPC Toolkit - how to list events available to GPM profile tool

$ /opt/ibmhpc/ppedev.hpct/bin/gpmlist -d k80 -e -l
 Domain 0
 2082 tex0_cache_sector_queries - tex0 cache sector queries
 2083 tex1_cache_sector_queries - tex1 cache sector queries
 2084 tex2_cache_sector_queries - tex2 cache sector queries
 2085 tex3_cache_sector_queries - tex3 cache sector queries
 2086 tex0_cache_sector_misses - tex0 cache sector misses
 2087 tex1_cache_sector_misses - tex1 cache sector misses
 2088 tex2_cache_sector_misses - tex2 cache sector misses
<... Output Omitted ...>
Domain 2
 2401 gld_inst_8bit - gld inst 8bit
 2402 gld_inst_16bit - gld inst 16bit
 2403 gld_inst_32bit - gld inst 32bit
 2404 gld_inst_64bit - gld inst 64bit
 2405 gld_inst_128bit - gld inst 128bit
<... Output Omitted ...>
 Domain 3
 2601 prof_trigger_00 - prof trigger 00

Note: GPU was introduced in PE DE 2.2.
Chapter 6. Application development and tuning 209

 2602 prof_trigger_01 - prof trigger 01
 2603 prof_trigger_02 - prof trigger 02
 2604 prof_trigger_03 - prof trigger 03
 2605 prof_trigger_04 - prof trigger 04
 2606 prof_trigger_05 - prof trigger 05
 2607 prof_trigger_06 - prof trigger 06
 2608 prof_trigger_07 - prof trigger 07
 2617 warps_launched - warps launched
 2618 threads_launched - threads launched
<... Output Omitted ...>

Example 6-36 shows a sample of the metrics available for the NVIDIA K80 GPU.

Example 6-36 HPC Toolkit - how to list metrics available to GPM profile tool

$ /opt/ibmhpc/ppedev.hpct/bin/gpmlist -d k80 -m -l
 1201 l1_cache_global_hit_rate - L1 Global Hit Rate
 2645 l1_global_load_hit - l1 global load hit
 2646 l1_global_load_miss - l1 global load miss
 1202 l1_cache_local_hit_rate - L1 Local Hit Rate
 2641 l1_local_load_hit - l1 local load hit
 2643 l1_local_store_hit - l1 local store hit
 2642 l1_local_load_miss - l1 local load miss
 2644 l1_local_store_miss - l1 local store miss
 1203 sm_efficiency - Multiprocessor Activity
 2629 active_cycles - active cycles
 2193 elapsed_cycles_sm - elapsed_cycles_sm
<... Output Omitted ...>

As with other HPC Toolkit tools, GPM is also flexible regarding the instrument-profile-visualize
cycle possibilities. It can also be used together with the HPM tool.

The following environment variables are used to configure the profiler:

� GPM_METRIC_SET: Use to set the metrics to be profiled.

� GPM_EVENT_SET: Use to set the hardware events to be profiled. Cannot be exported
together with GPM_METRIC_SET.

� GPM_VIZ_OUTPUT=y: Enables creation of visualization files that are used by hpctView
visualizer. By default it is disabled.

� GPM_STDOUT=n: Suppresses the profiler messages to standard output (stdout). By default it
sends messages to stdout.

� GPM_ENABLE_TRACE=y: Turns on trace mode. By default, it is off.

Example 6-37 demonstrates a profiling session of a hybrid MPI and CUDA C application
named a.out. The lines ranging from 1-26 are the content of the gpm.sh script, which exports
the GPM control variables (lines 13 -15) which instruct the system to calculate the
sm_efficiency metric, then evoke the wrapper called gpm_wrap.sh. In turn the wrapper (lines
29-35) script preloads (line 33) the GPM library. The remained lines are messages that are
printed by GPM on standard output.

Example 6-37 HPC Toolkit - profiling with GPU Performance Monitor tool

1 $ cat gpm.sh
2
3 #!/bin/bash
210 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

4
5
6
7 export

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-7.5/lib64:/opt/ibmhpc/pecurrent/m
pich/gnu/lib64:/opt/ibmhpc/pecurrent/gnu/lib64/

8
9
10
11 # GPU Performance Monitor - variables
12
13 export GPM_METRIC_SET=sm_efficiency
14
15 export GPM_VIZ_OUTPUT=y
16
17
18
19 export MP_CUDA_AWARE=yes
20
21 export MP_RESD=poe
22
23 export MP_PROCS=2
24
25 poe ./gpm_wrap.sh
26
27 $ cat gpm_wrap.sh
28
29 #!/bin/bash
30
31
32
33 export LD_PRELOAD=/opt/ibmhpc/ppedev.hpct/lib64/preload/libgpm.so:$LD_PRELOAD
34
35 ./a.out
36
37 $./gpm.sh
38
39
40
41 GPM (IBM HPC Toolkit for PE Developer Edition) results
42
43
44
45 Device 0 (Tesla K80):
46
47 --
48
49 Symbol Name: cudaMalloc
50
51 --
52
53 Memory Kind: cudaMalloc
54
55 Bytes Copied: 4096
56
Chapter 6. Application development and tuning 211

57
58
59 Symbol Name: cudaMemcpy
60
61 --
62
63 Memory Kind: cudaMemcpyHostToDevice
64
65 Bytes Copied: 4096
66
67
68
69 Kernel Name: _Z12vecIncKernelPii
70
71 ---
72
73 GPU Kernel Time: 0.000005 seconds
74
75 W/clock Time: 0.012338 seconds
76
77 sm_efficiency: 31.155739%
78
79
80
81 Symbol Name: cudaMemcpy
82
83 --
84
85 Memory Kind: cudaMemcpyDeviceToHost
86
87 Bytes Copied: 4096
88
89
90
91 Totals for device 0
92
93 --
94
95 Total Memory Copied: 8192 bytes
96
97 Total GPU Kernel Time: 0.000005 seconds
98
99 Total W/clock Time: 0.012338 seconds
100
101 sm_efficiency: 31.155739%
102

As a result, the tool reports the calculated metric or counted event on per-task files.
Example 6-38 shows the report that is generated for execution in Example 6-37 on page 210.

Example 6-38 HPC Toolkit - report generate by GPU Performance Monitoring tool

$ cat hpct_0_0.gpm.a.out.txt

 GPM (IBM HPC Toolkit for PE Developer Edition) results
212 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

 Totals for device 0
 --
 Total Memory Copied: 8192 bytes
 Total GPU Kernel Time: 0.000005 seconds
 Total W/clock Time: 0.012338 seconds
 sm_efficiency: 31.155739%

For more details about GPM tool, see the following website:

http://www.ibm.com/support/knowledgecenter/SSFK5S_2.2.0/com.ibm.cluster.pedev.v2r2
.pedev100.doc/bl7ug_gpuhwcounters.htm

IBM HPC Toolkit hpctView
The IBM HPCView is a front end for the HPC Toolkit runtime and command-line
instrumentation tools. It provides a GUI to instrument the parallel executable file,which you
can run to collect data and visualize information from the developer workstation.

The tool can be run from the developer workstation. Version 2.2 is supported on Mac OS 10.9
(Mavericks) or later, Microsoft Windows 64 bit, and any Linux distribution.

Find the hpctView as a tarball file distributed together with PE DE. Then proceed as follows to
install it and run it:

$ tar xvzf hpctView-2.2.0-0-linux-gtk-x86_64.tar.gz
$ cd hpctView
$./hpctView &

Profile and trace files that are generated by using the HPC Toolkit command-line tools and
libraries can be loaded into hpctView for visualization. Or you can execute a complete cycle of
instrument-run-visualize from within it.

To instrument a compiled parallel executable, complete these steps:

1. In the Instrumentation pane (left side pane), select the profiler that you want to
instrument the binary for. The options are HPM, MPI, OpenMP, and MIO.

2. Click File → Open Executable. This action opens a window with a connection to the
remote machine. Select the file to be instrumented as shown Figure 6-9.

Figure 6-9 hpctView: Select binary for instrumentation
Chapter 6. Application development and tuning 213

http://www.ibm.com/support/knowledgecenter/SSFK5S_2.2.0/com.ibm.cluster.pedev.v2r2.pedev100.doc/bl7ug_gpuhwcounters.htm

3. Click the New button to create a connection to the remote system where the binary is
hosted if it does not already exist.

4. Select the binary, then click OK.

5. The binary content will be analyzed and sections corresponding to the instrumentation
portions of the application code are listed in tree format in the Instrumentation pane. For
each type of profiling tool, different instrumentation options are displayed. Figure 6-10, for
example, shows the options (Function body, Function Call, HPM Region) for the
instrumentation of a binary to be used with the HPM tool. Select the instrumentation points
according to your needs.

Figure 6-10 hpctView: Binary instrumentation

6. Click the instrument executable icon in the Instrumentation pane. If the operation
succeeds, then a file called <binary>.inst is saved in the same folder as the original binary.

From within hpctView, you can launch an instrumented binary using either IBM Parallel
Environment (by way of POE) or IBM Spectrum Load Sharing Facility (LSF). The view of the
profiling tool is usually automatically opened. The binary file cannot necessarily be
instrumented with the hpctView, but it can use one of the built-in HPC Toolkit command-line
tools.
214 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

To run an instrumented binary, complete these steps:

1. Click Run → Profile Configurations to open the Profile Configurations window.

2. Double-click the Parallel Application list on the left side pane. A new configuration entry
is created and a pane is displayed for it as shown in Figure 6-11.

Figure 6-11 Profile configurations

3. Click the Performance Analysis tab. This tab contains the options of the profiling tools that
can be entered as shown in Figure 6-12.

Figure 6-12 HPM tool

4. After this is all set, click Profile.
Chapter 6. Application development and tuning 215

6.7.2 IBM PE Parallel Debugger

PDB and parallel environment poe communicate by using a portable, scalable, and
high-performance protocol, the Scalable Communication Infrastructure (SCI).

The Parallel Debugger (PDB) for the IBM Parallel Environment is a command-line debugger
that comes with IBM PE and operates in a similar manner to many instances of GBD
debugging multiple programs.

PDB comes with subcommands that manage and switch between the many instances of gdb
clients, often one per program running. These subcommands allow for multiple consoles,
message control, thread stack information for each task, and controls to reduce the task
information that is generated.

The debugging session can be started by either launching the parallel application with the pdb
command or attaching it to a running job.

Example 6-39 launches a program called threaded_ring to debug with the pdb command.
Any parameters to Parallel Operating Environment (POE) are passed with --poe option. It is
set breakpoint (break threaded_ring.c:send_thread) at send_thread function, where you
want to check the value of a variable called dest. The following debug steps are carried out:

1. Run the program to stop at breakpoint.

2. Create the groups task0 (group task0=0) and task1 (group task1=1) that map to gbd
instances attached to tasks 0 and 1, respectively.

3. Enter gbd client mapped to task 0 (on task0), then use gdb subcommands next and print
to execute the next line of code and display the value of the dest variable

4. Enter the gdb client mapped to task 1 (on task1), then proceed with the above steps

Example 6-39 IBM PE pdb command to debug parallel programs

$ pdb ./threaded_ring --debugger gdb --poe "-procs 2 -resd poe"
PDB -- Parallel Debugger for IBM Parallel Environment on Linux

Internal Debugger: gdb(Provided by "--debugger" value)

PDB warning: lxc-cr-attach/lxc-attach is not found, checkpointable job debug will
be impacted
Current PDB debug session number is 92668. Be aware, only one console
will connect to this session after startup, type 'pdb -c 92668' to
connect more consoles to this session.

At the prompt, enter any gdb command.

Enter 'help' for more usage.

Info: Connecting to poe domain socket with timeout 60 seconds...Done.
Info: Getting tasks' information from poe domain socket...Done.
Info: Deploy all debugger instances within maximum 600 seconds...
Process: 100%(use 1 seconds totally)
Info: All the debugger instances have been deployed successfully.
(all) break threaded_ring.c:send_thread
0:1 | Breakpoint 1 at 0x10000fd4: file threaded_ring.c, line 100.
(all) run
0:1 | Starting program: /home/wainersm/threads/./threaded_ring
0:1 | [Thread debugging using libthread_db enabled]
216 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

0:1 | Using host libthread_db library "/lib64/power8/libthread_db.so.1".
1 | [New Thread 0x100007b4ed90 (LWP 92784)]
0 | [New Thread 0x100007b4ed90 (LWP 92783)]
1 | [New Thread 0x100007f4ed90 (LWP 92785)]
0 | [New Thread 0x100007f4ed90 (LWP 92786)]
1 | [New Thread 0x10000834ed90 (LWP 92788)]
0 | [New Thread 0x10000834ed90 (LWP 92787)]
0 | [New Thread 0x100009cfed90 (LWP 92791)]
1 | [New Thread 0x100009cfed90 (LWP 92789)]
0 | [New Thread 0x10000a37ed90 (LWP 92792)]
1 | [New Thread 0x10000a37ed90 (LWP 92790)]
0 | [New Thread 0x10000a77ed90 (LWP 92793)]
1 | [New Thread 0x10000a77ed90 (LWP 92794)]
0 | [New Thread 0x10000ab7ed90 (LWP 92797)]
1 | [New Thread 0x10000ab7ed90 (LWP 92798)]
0 | [Switching to Thread 0x10000ab7ed90 (LWP 92797)]
1 | [Switching to Thread 0x10000ab7ed90 (LWP 92798)]
0:1 |
0:1 | Breakpoint 1, send_thread (dummy=0x0) at threaded_ring.c:100
0:1 | 100 dest = (me==tasks-1) ? 0 : me+1;
0:1 | Missing separate debuginfos, use: debuginfo-install
glibc-2.17-105.el7.ppc64le libgcc-4.8.5-4.el7.ppc64le
libstdc++-4.8.5-4.el7.ppc64le
(all) group task0=0
(all) group task1=1
(all) on task0
(task0) next
0 | 101 rc = MPI_Isend(out,ARRAY_SIZE,MPI_INT,dest,TAG,MPI_COMM_WORLD,&msgid);
(task0) print dest
0 | $1 = 1
(task0) on task1
(task1) next
1 | 101 rc = MPI_Isend(out,ARRAY_SIZE,MPI_INT,dest,TAG,MPI_COMM_WORLD,&msgid);
(task1) print dest
1 | $1 = 0
(task1) on all
(all) c
0:1 | Continuing.
0 | TEST COMPLETE
1 | [New Thread 0x10000af7ed90 (LWP 92800)]
0 | [New Thread 0x10000af7ed90 (LWP 92799)]
1 | [Thread 0x10000ab7ed90 (LWP 92798) exited]
1 | [Thread 0x10000af7ed90 (LWP 92800) exited]
0 | [Thread 0x10000ab7ed90 (LWP 92797) exited]
1 | [Thread 0x10000a37ed90 (LWP 92790) exited]
0 | [Thread 0x10000af7ed90 (LWP 92799) exited]
1 | [Thread 0x100009cfed90 (LWP 92789) exited]
0 | [Thread 0x10000a37ed90 (LWP 92792) exited]
1 | [Thread 0x10000a77ed90 (LWP 92794) exited]
0 | [Thread 0x100009cfed90 (LWP 92791) exited]
1 | [Thread 0x10000834ed90 (LWP 92788) exited]
0 | [Thread 0x10000a77ed90 (LWP 92793) exited]
1 | [Thread 0x100007f4ed90 (LWP 92785) exited]
0 | [Thread 0x10000834ed90 (LWP 92787) exited]
1 | [Thread 0x100007b4ed90 (LWP 92784) exited]
Chapter 6. Application development and tuning 217

0 | [Thread 0x100007f4ed90 (LWP 92786) exited]
0 | [Thread 0x100007b4ed90 (LWP 92783) exited]
1 | [Inferior 1 (process 92778) exited normally]
0 | [Inferior 1 (process 92777) exited normally]
(all)

For more information about pdb options and subcommands, see the following website:

http://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.pe.v2r3.pe
100.doc/am102_dishandpdb.htm

6.7.3 Eclipse for Parallel Application Developers

Eclipse for Parallel Application Developers provides an entire IDE. It bundles some open
source projects under the Eclipse umbrella that includes C/C++ Development Tools (CDT)
and PTP. It provides a complete environment for coding, compilation, launch, analysis, and
debug of applications written in C, C++, and Fortran. It uses MPI, OpenMP, PAMI, and
OpenSHMEM.

The specialized editors feature syntax highlighting, code assistant, place markers for compiler
errors, auto-completion, and many other helpers to improve productivity. They also come with
static analysis tools that are used to identify common coding mistakes such as MPI barriers
mismatch.

You can build programs by using Eclipse managed makefile (integrated with IBM XL and GNU
compilers), Makefile, Autotools, and custom scripts and commands. The integration with XL
and GNU compilers also includes build output parsers that can correlate errors to source
code files.

Remotely launched applications on either IBM Parallel Environment (by way of POE) or IBM
Spectrum LSF are supported.

Its parallel debugger provides specific debugging features for parallel applications that
distinguish it from the Eclipse debugger for serial applications. Its parallel debugger is also
able to launch and remotely debug parallel applications through POE and LSF.

Most of the topics that are introduced in this section are detailed in the Eclipse PTP user
guide at the following website. Select the Parallel Tools Platform (PTP) User Guide.

http://help.eclipse.org

To install Eclipse, download its tarball file and then uncompress it on your development
workstation. Visit the Eclipse download website (http://www.eclipse.org/downloads/) and
select Eclipse for Parallel Application Developers. Download the Eclipse tarball file for
your workstation operating system and architecture. At the time of writing, the latest Eclipse
version was 4.5 SR1 (also known as Eclipse Mars.1).

Remote synchronized development model
The Eclipse for Parallel Application developers implements a remote development working
model where the code editing is carried out locally within a workbench (GUI). However, other
tasks that are usually required to be performed on the server side, such as build, launch,
debug, and profile, are carried out remotely.

The model uses a synchronized project type to keep local and remote copies of the working
directory updated so that code programming is minimally affected by network latency or slow
response time in the editor. The C, C++, and Fortran editors appear as though you are
218 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.pe.v2r3.pe100.doc/am102_dishandpdb.htm
http://help.eclipse.org
http://www.eclipse.org/downloads/

developing locally on the Power Systems machine even though all of the resources are on the
server side. With this approach, you do not need to rely on a cross-compilation environment,
which is often difficult to set up. This approach provides an efficient method for remote
development.

The parallel debugger
The Eclipse PTP parallel debugger extends the default C/C++ Eclipse debugger for serial
application to scale parallel programs.

It combines into a single viewer the information obtained from the many processes and
threads that a parallel job is composed of. Therefore, you can browse the entities separately if
needed.

Debugging operations can be carried out on any arbitrary subset of processes within a
parallel job, as for example, step in and out, and stop at breakpoint. A different type of
breakpoint, which is called a parallel breakpoint, can be applied in these collections of
processes.

The debugger is able to launch and remote debug parallel programs by using several types of
workload managers, including the IBM Parallel Environment and Spectrum LSF.

Using IBM PE Developer Edition plug-ins
The hpctView plug-ins can be installed on top of Eclipse in addition to the PE DE profiling and
tracing tools. First, uncompress the Eclipse update that bundles the hpctView plug-ins, which
releases the PE DE 2.2 files:

$ mkdir ppedev_update-2.2.0
$ unzip ppedev_update-2.2.0-0.zip -d ppedev_update-2.2.0

Install the plug-ins by using the Eclipse install software using these steps:

1. At tool bar menu, select Help → Install New Software.

2. Click Add to create a new repository location from where Eclipse can find plug-ins to be
installed.

3. Enter the location where hpctView update site files were uncompressed, and click OK to
add the repository configuration.

4. In the selection tree appears, select its root element (IBM PE Developer Edition
Components) to install all PE DE plug-ins. Click Next → Next.

5. The license agreement text comes up. Read and accept it to continue the installation.

6. Click Finish to install the plug-ins.

See the Eclipse workbench user guide if you find it difficult to install the plug-ins. It can be
accessed from http://help.eclipse.org by selecting Workbench User Guide → Tasks →
Updating and installing software.

To use hpctView, open its perspective within Eclipse by completing these steps:

1. Click Window → Perspective → Open Perspective → Other.
2. In the perspective window that opens, select HPCT and click OK.

The PE DE embedded user guide gives detailed instructions on how to use the hpctView
resources and HPC Toolkit from inside Eclipse. To read its user guide, on the tool bar menu
click Help → Help Contents, then open the IBM PE Developer Edition content page.
Chapter 6. Application development and tuning 219

http://help.eclipse.org

6.7.4 NVIDIA Nsight Eclipse Edition for CUDA C/C++

The NVIDIA Nsight Eclipse Edition is a complete IDE for development of CUDA C and C++
applications that run on NVIDIA GPUs.

It provides developers with an Eclipse-based GUI that includes tools for a complete cycle of
development: Code writing, compilation, debug, and profile and tuning.

Two development models are allowed as follows:

� Local: The complete development cycle is carried out at the machine where Nsight is
running. The program produced is targeted for the local host architecture and GPU.

� Remote: The complete development cycle is carried out at a remote host where Nsight is
running.

The next sections show basic use of Nsight for remote development of CUDA C applications
for IBM Power Systems. The examples illustrated here use an x86_64 workstation with Linux
Fedora 21 and running the NVIDIA Nsight Eclipse Edition that comes with the CUDA
Toolkit 7.5.

Because that Nsight has many functionalities, they are not all described in this book. Instead,
it shows how to create compile and debug projects. See the following website to learn more
about usage instructions:

http://developer.nvidia.com/nsight-eclipse-edition

Running NVIDIA Nsight Eclipse Edition
The Nsight GUI can be started as follows:

$ export PATH=/usr/local/cuda-7.5/bin:$PATH
$ nsight &

Creating a project for remote development
Before you begin, check the requirements and carry out the following tasks:

1. Ensure that the machine (usually the cluster login node) you are going to use for remote
development has Git installed. Nsight uses git commands to synchronize local and
remote copies of the project files.

2. Connect to the remote machine to configure user name and email used by Git, for
example:

$ git config --global user.name "Wainer dos Santos Moschetta"
$ git config --global user.email "wainersm@br.ibm.com"

3. Ensure that the directory that is going to hold the project files in the remote machines is
already created, for example:

$ mkdir -p ~/wainer/cudaBLAS
220 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://developer.nvidia.com/nsight-eclipse-edition

In the Nsight GUI, complete these steps to create a CUDA C/C++ project:

1. On the main menu tool bar, click File → New → CUDA C/C++ Project to open the window
shown in Figure 6-13.

Figure 6-13 Nsight: New CUDA C/C++ project wizard

2. Click Next → Next.
Chapter 6. Application development and tuning 221

3. Select 3.7 on both Generate PTX code and Generate GPU code fields as shown in
Figure 6-14, and click Next.

Figure 6-14 Nsight: New CUDA C/C++ project basic settings
222 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

4. Click Manage (as pointed out by the arrow in Figure 6-15) to configure a new connection
to the remote machine.

Figure 6-15 Nsight: New CUDA C/C++ project remote connection setup

5. As shown in Figure 6-15, fill in the connection information fields (host name, user name).
Click OK.
Chapter 6. Application development and tuning 223

6. Fill out the Project path, Toolkit, and set the CPU Architecture fields for the newly
created connection (see Figure 6-16). You must remove the Local System configuration.
Click Next → Finish.

Figure 6-16 Nsight - new CUDA C/C++ project further remote configuration setup

After you successfully created the project, perform a few more tasks to configure the Nsight to
automatically synchronize the local and remote project files. Complete these steps:

1. Create a source code file (for example, main.c).

2. Right-click the project in the Project Explorer pane and select Synchronize → Set active.
Then choose the option that matches the name of the connection configuration to the
remote machine.

3. Right-click the project again and select Synchronize → Sync Active now to perform the
first synchronization between local and remote folders. That operation can be performed
at any time to force a synchronization. Remember that Nsight is already configured to do
so after or before some tasks (for example, before compiling the project).
224 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

4. As an optional step, i set the host compiler that is evoked by nvcc. Right-click the project
name and select Properties. Expand Build, and then choose Settings. Click the Tool
Settings tab, then select Build Stages to fill out the Compiler Path and Preprocessor
options fields (see Figure 6-17). Change the content of the Compiler Path under the
Miscellaneous section of the NVCC Linker window.

Figure 6-17 Nsight - new CUDA C/C++ project build settings

After completing these steps, the new created project is ready for CUDA C/C++ programming.
You can take advantage of many of the features that are provided by the Nsight C and C++
code editor, such as syntax highlighting, code completion, static analysis, and error markers.

Compiling the application
To build the application, complete these steps:

1. Right-click the project in the Project Explorer pane and select Run As → Remote C/C++
Application.

2. Check that all the information is correct, and change it if needed. Then click Run.

Debugging the application
The steps to launch the Nsight debugger are similar to those of running the application.
However, the executable is started by the cuda-gdb command, which in turn is backed by the
GNU GDB debugger tool.

See 6.7.5, “Command-line tools for CUDA C/C++” on page 226 for more information about
cuda-gdb command.
Chapter 6. Application development and tuning 225

To debug the application, complete these steps:

1. Right-click project name in the Project Explorer pane and select Debug As → Remote
C/C++ Application.

2. A window allowing permission to open the Eclipse Debug perspective comes up. Click
Yes.

By default, the debugger stops at the first instruction on the main method. Figure 6-18 shows
the Nsight debugger.

Figure 6-18 Nsight: CUDA C/C++ debugger

6.7.5 Command-line tools for CUDA C/C++

The NVIDIA Toolkit 7.5 provides the following tools for debugging problems on CUDA C and
C++ applications.

CUDA memcheck
The memcheck tool (cuda-memcheck) detects memory-related flaws on programs. It
dynamically instruments the program executable on run time and is able to check
allocation/deallocation and accesses on global and shared memories.

Other than memory checking, cuda-memcheck is also able to inspect the application to catch
these types of errors:

� Race condition: Check for race condition on access of shared and local variables. Uses
the --tool racecheck option.

� initcheck: Check for use of non-initialized memory. Uses the --tool initcheck option

Notice that for complete visualization of source code file and line number where detected
problems occur, it is needed to compile the binary with nvcc -g -lineinfo options.
226 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

For more information about the CUDA memcheck tool, check its user manual at the following
website:

http://docs.nvidia.com/cuda/cuda-memcheck/index.html

CUDA GDB
CUDA application portions of the code runs on CPU (host) and GPUs (devices), and also
program can often have thousands of CUDA threads that are spread across many GPUs.
Although traditional debuggers are effective to work with CPU code, they are not properly built
to deal with both.

The cuda-gdb tool is an implemented debugger extension of GNU GDB designed to deal with
the scenario that CUDA hybrid model imposes.

nvprof
The nvprof is a profiling tool able to count and report the occurrence of GPU events while the
CUDA application executes performance measurements.

The tool can report several metrics that are calculated upon the information of hardware
events collected.

nvprof is flexible because it allows to profile all processes in the entire system, only a given
application or just some elements of it (for example, kernels, streams, and contexts). Also, it
allows you to select which GPU device must be profiled (default is all on the system).

Another useful function of nvprof is to generate traces of the application execution.

For more information about the nvprof tool, check its user manual at the following website:

http://docs.nvidia.com/cuda/profiler-users-guide/index.html
Chapter 6. Application development and tuning 227

http://docs.nvidia.com/cuda/cuda-memcheck/index.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html

228 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Chapter 7. Running applications

This chapter describes how to run applications.

This chapter contains the following sections:

� Controlling the execution of multithreaded applications
� Using the IBM Parallel Environment runtime
� Using the IBM Spectrum LSF

7

© Copyright IBM Corp. 2016. All rights reserved. 229

7.1 Controlling the execution of multithreaded applications

The technical computing applications that run on a computing node typically use multiple
threads. The runtime environment has several options to support the runtime fine-tuning of
multithreaded programs. First, this chapter shows how to control the OpenMP1 workload by
setting certain environment variables. Then, it explains the tools that a user can use to
retrieve or set affinity of a process at run time. It also shows how to control the nonuniform
memory access (NUMA) policy for processes and shared memory2.

7.1.1 Running OpenMP applications

A user can control the execution of OpenMP applications by setting environment variables.
This section covers only a subset of the environment variables that are especially important
for technical computing workloads.

Distribution of a workload
The OMP_SCHEDULE environment variable controls the distribution of a workload among
threads. If the workload items have uniform computational complexity, the static distribution
fits well in most cases. If an application does not specify the scheduling policy internally, a
user can set it to static at run time by exporting the environment variable:

export OMP_SCHEDULE="static"

Specifying the number of OpenMP threads
OpenMP applications are often written so that they can spawn an arbitrary number of threads.
In this case, to specify the number of threads to create, the user sets the
OMP_NUM_THREADS environment variable. For example, to run the application with 20
threads, use this setting:

export OMP_NUM_THREADS=20

Showing OpenMP data
The OpenMP 4.0 standard introduced the OMP_DISPLAY_ENV environment variable to
show the OpenMP version and list the internal control variables (ICVs). The OpenMP run time
prints data to the stderr output stream. If the user sets the value to TRUE, the OpenMP
version number and initial values of ICVs are printed. The VERBOSE value instructs the
OpenMP run time to augment the output with the values of vendor-specific variables. If the
value of this environment variable is set to FALSE or undefined, no information is printed. This
variable is useful when you need to be certain that the runtime environment is configured as
expected at the moment that the program loads.

Placement of OpenMP threads
The POWER8 microprocessor can handle multiple hardware threads simultaneously. With
the increasing number of logical processors, the operating system kernel scheduler has more

1 OpenMP (Open Multi-Processing) is an application programming interface that facilitates the development of
parallel applications for shared memory systems.

2 This section is based on the content that originally appeared in Chapter 7 of Implementing an IBM
High-Performance Computing Solution on IBM POWER8, SG24-8263.

Note: The environment variables that are prefixed with OMP_ are defined by the OpenMP
standard. Other environment variables mentioned in this section are specific to a particular
compiler.
230 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

possibilities for automatic load balancing. But for technical computing workloads, the fixed
position of threads within the server is typically preferred.

The IDs of the logical processors are zero based. Each logical processor has the same index
regardless of the simultaneous multithreading (SMT) mode. Logical processors are counted
starting from the first core of the first socket. The first logical processor of the second core has
the index 8. Start numbering the logical processors of the second socket only after you finish
the numbering of the logical processors of the first socket.

IBM XL compilers
For the OpenMP application that is compiled with IBM XL compilers, you need to use the
XLSMPOPTS environment variable to control thread placement. This environment variable
has many suboptions, and only a few of them control thread binding. You can use either the
combination of startproc and stride suboptions, or the procs suboption as described in the
following section:

� The startproc suboption is used to specify the starting logical processor number for
binding the first thread of an application. The stride suboption specifies the increment for
the subsequent threads. For example, the following value of XLSMPOPTS instructs the
OpenMP runtime environment to bind OpenMP threads to logical processors 80, 84, 88,
and so on, up to the last available processor:

export XLSMPOPTS=startproc=80:stride=4

� A user can also explicitly specify a list of logical processors to use for thread binding with
the procs suboption. For example, to use only even-numbered logical processors of a
processor’s second core, specify the following value of XLSMPOPTS:

export XLSMPOPTS=procs=8,10,12,14

For more information about the XLSMPOPTS environment variable, see the XLSMPOPTS
section of the online manuals at the following websites:

� XL C/C++ for Linux:

http://www.ibm.com/support/knowledgecenter/SSXVZZ/welcome

� XL Fortran for Linux:

http://www.ibm.com/support/knowledgecenter/SSAT4T/welcome

GCC compilers
For the OpenMP application that is compiled with GNU Compiler Collection (GCC) compilers,
use the GOMP_CPU_AFFINITY environment variable. Assign a list of the logical processors
that you want to utilize to the GOMP_CPU_AFFINITY environment variable. The syntax and
semantics are the same as with the procs suboption of the IBM XL compilers XLSMPOPTS
environment variable. For more information about the GOMP_CPU_AFFINITY environment
variable, see the corresponding section of the GCC manual at the following website:

http://bit.ly/1thwOaq

Support for thread binding in the recent versions of the OpenMP standard
The OpenMP 3.1 revision introduced the OMP_PROC_BIND environment variable. The
Open MP 4.0 revision introduced the OMP_PLACES environment variable. These variables
control thread binding and affinity in a similar manner to XLSMPOPTS and
GOMP_CPU_AFFINITY, although their syntax slightly differs.

Note: The startproc, stride, and procs suboptions have been deprecated in favor of the
OMP_PLACES environment variable. These subooptions might be removed in future
releases of the IBM XL compiler runtime environment.
Chapter 7. Running applications 231

http://www.ibm.com/support/knowledgecenter/SSXVZZ/welcome
http://www.ibm.com/support/knowledgecenter/SSAT4T/welcome
http://bit.ly/1thwOaq

Performance impact
For the discussion of thread binding impact on the performance, see “Effects of basic
performance tuning techniques” on page 278. This section also provides an easy-to-use code
that you can use to generate your own binding map. For more information, see “Sample code
for the construction of thread affinity strings” on page 309.

7.1.2 Setting and retrieving process affinity at run time

With the Linux taskset command, you can manipulate the affinity of any multithreaded
program, even if you do not have access to the source code. You can use the taskset
command to launch a new application with a certain affinity by specifying a mask or a list of
logical processors. The Linux scheduler restricts the application threads to a certain set of
logical processors only.

You can also use the taskset command when an application creates many threads and you
want to set the affinity for highly loaded threads only. In this circumstance, identify the process
identifiers (PIDs) of highly loaded running threads and perform binding only on those threads.
You can discover these threads by examining the output of the top -H command.

Knowing the PID, you can also use the taskset command to retrieve the affinity of the
corresponding entity (a thread or a process).

7.1.3 Controlling NUMA policy for processes and shared memory

With the numactl command, you can specify a set of nodes and logical processors that you
want your application to run on. In the current context, you can assume that this tool defines a
node as a group of logical processors that are associated with a particular memory controller.
For POWER8, such node is a whole processor. To discover the indexes of nodes and
estimate the memory access penalty, run numactl with the -H argument. Example 7-1 shows
the corresponding output for a 20-core IBM Power System S822LC (Model 8335-GTA) server
that is running Red Hat Enterprise Linux Server release 7.2 little endian.

Example 7-1 numactl -H command (truncated) output in a 20-core IBM Power System S822LC

$ numactl -H
available: 2 nodes (0,8)
< ... output omitted ... >
node distances:
node 0 8
 0: 10 40
 8: 40 10

You can pass these indexes of the nodes to numactl as an argument for the -N option to bind
the process to specific nodes. To bind the process to specific logical processors, use the -C
option. In the latter case, the indexes follow the same conventions as the OpenMP
environment variables and a taskset command.

The memory placement policy significantly affects the performance of technical computing
applications. You can enforce a certain policy by the numactl command. The -l option
instructs the operating system to always allocate memory pages on the current node. Use the
-m option to specify a list of nodes that the operating system can use for memory allocation.
You need to use the -i option to ask the operating system for a round-robin allocation policy
on specified nodes.
232 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

7.2 Using the IBM Parallel Environment runtime

This section describes the execution of a parallel application through the IBM Parallel
Environment Runtime.

7.2.1 Running applications

The IBM Parallel Environment provides an environment to manage the execution of parallel
applications, and the Parallel Operating Environment (POE) is started with a call to the poe
command line.

In a nutshell, an execution of an application with POE is going to spread processes across the
cluster nodes as follows:

� Parallel tasks are spawned on compute nodes.

� One instance of the partition manager daemon (PMD) per compute node that has tasks of
the application running.

� The poe process resides on the submitting node (home node) machine where it was
evoked.

The PMD is in charge of controlling communication between the home poe process and the
spawned tasks in a given compute node. The PMD is also used to pass the standard input,
output, and error streams of the home poe to the tasks.

However, if the PMD process exits abnormally, such as with kill signals or the bkill
command of the IBM Spectrum LSF, then the shared memory used for intra-node message
passing cannot get cleaned up properly. In this case, use the ipcrm command to reclaim that
memory.

The environment works in two modes: interactive and batch. It also allows single program,
multiple data (SPMD) and multiple program multiple data (MPMD) programs.

Many environment variables are in place to control the behavior of poe. Some of them are
discussed throughout this section.

The number of tasks in the parallel application is specified with MP_PROCS variable that is
equivalent to -procs option of poe command. The following example sets the application with
10 tasks:

$ MP_PROCS=10 poe ./myApp

poe manages the execution of applications that are implemented with different models and
eventually mixed. To set the messaging API, set the MP_MSG_API variable (equivalent to the
-msg_api option). The accepted values are MPI, PAMI, and shmem, and it does not need to be
set for MPI programs because it is the default. In following command, poe is called to execute
a 10 task OpenSHMEM program:

$ MP_PROCS=10 MP_MSG_API=shmem poe ./myApp

Compute nodes allocation
The partition manager can connect to an external resources manager that will determine
allocation of compute nodes. For example, the configuration described in 4.11, “IBM
Spectrum LSF (formerly IBM Platform LSF)” on page 50 can be configured to integrate
seamlessly with IBM PE so that hosts are selected by the Spectrum LSF bsub command for
batch jobs submission.
Chapter 7. Running applications 233

By default, the allocation uses any resources manager that is configured. However, it can be
disabled by setting MP_RESD (or -resd option). Also, native partition manager nodes
allocation mechanism are enabled with MP_RESD=poe and require a hosts list file.

Example 7-2 displays what a host list file looks like when resource manager is not used with
poe. Notice MP_RESD=poe is exported to enable the internal host allocation mechanism.

Example 7-2 Run parallel application without resource manager through IBM PE

$ cat host.list
! Host list - One host per line
! Tasks 0 and 2 run on p8r1n1 host
! Tasks 1 and 3 run on p8r2n2 host
p8r1n1
p8r2n2
p8r1n1
p8r2n2
$ MP_PROCS=4 MP_RESD=poe poe ./myApp

The format and content of the hosts list file changes whether using a resource manager or
not. See the following website on IBM PE documentation for further information:

http://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.pe.v2r3.pe
100.doc/am102_chlf.htm

If it needs to point out the host file location, use the MP_HOSTFILE variable (same as
-hostfile option of poe). If it is not set, then poe looks for a file named host.list in the local
directory.

When a resource manager is in place, the system administrators often configure pools of
hosts. Therefore, consider using the MP_RMPOOL variable (or -rmpool option) to determine
which of the pools of machines configured (if any) by the administrators to use.

Other variables are available to configure the resource manager behavior. The MP_NODES
(-nodes option) and MP_TASKS_PER_NODE (-tasks_per_node option) variables set the
number of physical nodes and tasks per node, respectively.

Considerations about network configuration
The IBM PE provides variables to control and configure the use of network adapters by the
parallel applications. Some of them might already be implicitly set depending on the
combination of other settings or by the use of a resource manager.

To specify the network adapters to use for message passing, set the MP_EUIDEVICE
variable (or -euidevice option). It accepts the value sn_all (one or more windows are on
each network) or sn_single (all windows are on a single network). The sn_all value is
frequently used to enable protocol stripping, failover, and recovery.

Network adapters can be shared or dedicated. That behavior is defined with the
MP_ADAPTER_USE variable (or -adapter_use option). It accepts the shared and dedicated
values.

Considerations about Remote Direct Memory Access
The IBM PE implements message passing by using Remote Direct Memory Access (RDMA)
through the InfiniBand (IB) interconnect. In such a mechanism, memory pages are
automatically pinned and buffer transferences are handled directly by the InfiniBand adapter
without the host CPU involvement.
234 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.pe.v2r3.pe100.doc/am102_chlf.htm

RDMA on messaging passing is disabled by default. Export MP_USE_BULK_XFER=yes to enable
bulk data transfer mechanism. Also, use the MP_BULK_MIN_MSG_SIZE variable to set the
minimum message length for bulk transfer.

Considerations about affinity
Several levels of affinity are available for parallel applications through poe. These levels are
also controlled by environment variables (or poe options). Because resource managers
usually employ their own affinity mechanisms, those variables can be overwritten or ignored.

The primary variable to control placement of message passing interface (MPI) tasks is
MP_TASK_AFFINITY (or -task_affinity option), when a resource manager is not
employed. You can bind tasks at the physical processor (core value), logical CPU (cpu value),
and multi-chip module (mcm value) levels.

For example, the following command allocates one core per task:

$ poe -task_affinity core -procs 2 ./myApp

More examples of MP_TASK_AFFINITY being used to control task affinity are shown in 6.5.1,
“MPI programs with IBM Parallel Environment” on page 180.

The MP_CPU_BIND_LIST (or -cpu_bind_list option) and MP_BIND_MODE (or -bind_mode
spread option) environment variables can be used together with MP_TASK_AFFINITY to
further control the placement of tasks. MP_CPU_BIND_LIST specifies a list of processor
units for establishing task affinity. In the following command, affinity is restricted to only the
second core of each socket:

$ poe -task_affinity core -cpu_bind_list 0/16,8/1040 -procs 2

When using a resource manager, the MP_PE_AFFINITY variable can be set to yes so that
poe will assume control over affinity. However, if IBM Spectrum Load Sharing Facility (LSF) is
in use and it has already set affinity, poe honors the allocated CPUs. If MP_PE_AFFINITY=yes is
enabled in Spectrum LSF batch jobs, it will enable the InfiniBand adapter affinity.

To assist on affinity definition, the IBM PE runtime provides the cpuset_query command that
displays information about current assignments of a running program, and also provides the
topology of any given compute node. As shown in n Example 7-3, cpuset_query -t displays
the topology of an IBM S822LC System running on SMT-8 mode with two sockets with
10 cores each with eight hardware threads.

Example 7-3 cpuset_query command to show the node topology

$ cpuset_query -t
MCM(Socket): 0
 CORE: 8
 CPU: 0
 CPU: 1
 CPU: 2
 CPU: 3
 CPU: 4
 CPU: 5
 CPU: 6
 CPU: 7
 CORE: 16
 CPU: 8
 CPU: 9
 CPU: 10
 CPU: 11
Chapter 7. Running applications 235

 CPU: 12
 CPU: 13
 CPU: 14
 CPU: 15
<... Output Omitted ...>
MCM(Socket): 8
 CORE: 1032
 CPU: 80
 CPU: 81
 CPU: 82
 CPU: 83
 CPU: 84
 CPU: 85
 CPU: 86
 CPU: 87
 CORE: 1040
 CPU: 88
 CPU: 89
 CPU: 90
 CPU: 91
 CPU: 92
 CPU: 93
 CPU: 94
 CPU: 95
 CORE: 1048
<... Output Omitted ...>

A way to check the affinity is to run cpuset_query command through poe as shown in
Example 7-4. The command shows a two tasks program that is launched with affinity at a
core level. Each task is allocated (see CPUs with value 1) with a full core that has eight
hardware threads on SMT-8 mode node.

Example 7-4 cpuset_query command to show task affinity

MCM/QUAD(0) contains:
cpu0, cpu1, cpu2, cpu3, cpu4,
cpu5, cpu6, cpu7, cpu8, cpu9,
cpu10, cpu11, cpu12, cpu13, cpu14,
cpu15, cpu16, cpu17, cpu18, cpu19,
cpu20, cpu21, cpu22, cpu23, cpu24,
cpu25, cpu26, cpu27, cpu28, cpu29,
cpu30, cpu31, cpu32, cpu33, cpu34,
cpu35, cpu36, cpu37, cpu38, cpu39,
cpu40, cpu41, cpu42, cpu43, cpu44,
cpu45, cpu46, cpu47, cpu48, cpu49,
cpu50, cpu51, cpu52, cpu53, cpu54,
cpu55, cpu56, cpu57, cpu58, cpu59,
cpu60, cpu61, cpu62, cpu63, cpu64,
cpu65, cpu66, cpu67, cpu68, cpu69,
cpu70, cpu71, cpu72, cpu73, cpu74,
cpu75, cpu76, cpu77, cpu78, cpu79,
[Total cpus for MCM/QUAD(0)=80]
MCM/QUAD(8) contains:
cpu80, cpu81, cpu82, cpu83, cpu84,
cpu85, cpu86, cpu87, cpu88, cpu89,
cpu90, cpu91, cpu92, cpu93, cpu94,
236 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

cpu95, cpu96, cpu97, cpu98, cpu99,
cpu100, cpu101, cpu102, cpu103, cpu104,
cpu105, cpu106, cpu107, cpu108, cpu109,
cpu110, cpu111, cpu112, cpu113, cpu114,
cpu115, cpu116, cpu117, cpu118, cpu119,
cpu120, cpu121, cpu122, cpu123, cpu124,
cpu125, cpu126, cpu127, cpu128, cpu129,
cpu130, cpu131, cpu132, cpu133, cpu134,
cpu135, cpu136, cpu137, cpu138, cpu139,
cpu140, cpu141, cpu142, cpu143, cpu144,
cpu145, cpu146, cpu147, cpu148, cpu149,
cpu150, cpu151, cpu152, cpu153, cpu154,
cpu155, cpu156, cpu157, cpu158, cpu159,
[Total cpus for MCM/QUAD(8)=80]

Total number of MCMs/QUADs found = 2
Total number of COREs found = 20
Total number of CPUs found = 160
cpuset for process 95014 (1 = in the set, 0 = not included)
cpu0 = 1
cpu1 = 1
cpu2 = 1
cpu3 = 1
cpu4 = 1
cpu5 = 1
cpu6 = 1
cpu7 = 1
cpu8 = 0
cpu9 = 0
cpu10 = 0
cpu11 = 0
cpu12 = 0
cpu13 = 0
cpu14 = 0
cpu15 = 0
<... Output Omitted ...>
MCM/QUAD(0) contains:
cpu0, cpu1, cpu2, cpu3, cpu4,
cpu5, cpu6, cpu7, cpu8, cpu9,
cpu10, cpu11, cpu12, cpu13, cpu14,
cpu15, cpu16, cpu17, cpu18, cpu19,
cpu20, cpu21, cpu22, cpu23, cpu24,
cpu25, cpu26, cpu27, cpu28, cpu29,
cpu30, cpu31, cpu32, cpu33, cpu34,
cpu35, cpu36, cpu37, cpu38, cpu39,
cpu40, cpu41, cpu42, cpu43, cpu44,
cpu45, cpu46, cpu47, cpu48, cpu49,
cpu50, cpu51, cpu52, cpu53, cpu54,
cpu55, cpu56, cpu57, cpu58, cpu59,
cpu60, cpu61, cpu62, cpu63, cpu64,
cpu65, cpu66, cpu67, cpu68, cpu69,
cpu70, cpu71, cpu72, cpu73, cpu74,
cpu75, cpu76, cpu77, cpu78, cpu79,
[Total cpus for MCM/QUAD(0)=80]
MCM/QUAD(8) contains:
Chapter 7. Running applications 237

cpu80, cpu81, cpu82, cpu83, cpu84,
cpu85, cpu86, cpu87, cpu88, cpu89,
cpu90, cpu91, cpu92, cpu93, cpu94,
cpu95, cpu96, cpu97, cpu98, cpu99,
cpu100, cpu101, cpu102, cpu103, cpu104,
cpu105, cpu106, cpu107, cpu108, cpu109,
cpu110, cpu111, cpu112, cpu113, cpu114,
cpu115, cpu116, cpu117, cpu118, cpu119,
cpu120, cpu121, cpu122, cpu123, cpu124,
cpu125, cpu126, cpu127, cpu128, cpu129,
cpu130, cpu131, cpu132, cpu133, cpu134,
cpu135, cpu136, cpu137, cpu138, cpu139,
cpu140, cpu141, cpu142, cpu143, cpu144,
cpu145, cpu146, cpu147, cpu148, cpu149,
cpu150, cpu151, cpu152, cpu153, cpu154,
cpu155, cpu156, cpu157, cpu158, cpu159,
[Total cpus for MCM/QUAD(8)=80]

Total number of MCMs/QUADs found = 2
Total number of COREs found = 20
Total number of CPUs found = 160
cpuset for process 95015 (1 = in the set, 0 = not included)
cpu0 = 0
cpu1 = 0
cpu2 = 0
cpu3 = 0
cpu4 = 0
cpu5 = 0
cpu6 = 0
cpu7 = 0
cpu8 = 1
cpu9 = 1
cpu10 = 1
cpu11 = 1
cpu12 = 1
cpu13 = 1
cpu14 = 1
cpu15 = 1
cpu16 = 0
cpu17 = 0
cpu18 = 0
cpu19 = 0
cpu20 = 0
cpu21 = 0
cpu22 = 0
cpu23 = 0
<... Output Omitted ...>

Considerations about CUDA-aware MPI
The IBM PE runtime implements a CUDA-aware MPI mechanism, but it is disabled by default.
Use the MP_CUDA_AWARE=yes variable to enable it. This topic is further described in 6.5.3,
“Hybrid MPI and CUDA programs with IBM Parallel Environment” on page 190.
238 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

7.2.2 Managing application

IBM PE Runtime provides a set of commands to manage stand-alone poe jobs. This section
introduces the most common commands.

Canceling an application
Because poe command handles signal of all tasks in the partition, sending an interrupt
(SIGINT) or terminate (SIGTERM) signal will trigger it to all remote processes. If poe runs with
100413 pid, you can kill the program with the following command:

$ kill -s SIGINT 100413

However, if some remote processes are orphan, use the poekill program_name to kill all
remaining tasks. In fact, poekill is capable of sending any signal to all the remote processes.

Suspend and resume a job
Likewise, to cancel a poe process, suspend and resume applications by way of signals. Use a
poekill or kill command to send a SIGTSTP to suspend the poe process (which will trigger
the signal to all tasks).

The application can be resumed by sending a SIGCONT to continue poe. Use a poekill, kill,
fg, or bg command to deliver the signal.

7.2.3 Running OpenSHMEM programs

Some environment variables can be set to run an OpenSHMEM program with the IBM PE
runtime through a poe command:

� MP_MSG_API=shmem

Instructs poe to use openSHMEM message passing API.

� MP_USE_BULK_XFER=yes

Enables exploitation of RDMA in Parallel Active Messaging Interface (PAMI).

MP_PROCS=<num> can be used to set the number of Processing Elements (PE).

NAS Parallel Benchmarks with OpenSHMEM
The NAS Parallel Benchmarks3 (NPB) is a well-known suite of parallel applications that are
often used to evaluate high performance computers. The benchmark provides programs,
kernels, and problem solvers that simulate aspects such as computation, data movement,
and I/O of real scientific applications. You can select the size of the workload each benchmark
is going to process among a list of classes (A, B, C, and so on).

A version of NPB rewritten by using OpenSHMEM in C and Fortran has been released by the
openshmem.org. NPB3.2-SHMEM is the implementation of NPB 3.2 and provides some
benchmarks in Fortran and only one in C as shown in Example 7-5.

Example 7-5 openshmen-npbs implementation

$ git clone https://github.com/openshmem-org/openshmem-npbs
$ cd openshmem-npbs/C
$ cd config
$ cp suite.def.template suite.def
$ cp make.def.template make.def

3 Learn more about NAS Parallel Benchmarks at http://www.nas.nasa.gov/publications/npb.html.
Chapter 7. Running applications 239

http://www.nas.nasa.gov/publications/npb.html

Set CC in make.def
$ cd ../
$ make is NPROCS=2 CLASS=A
make suite
$ cd bin
$ ls
host.list is.A.2
[developer@redbook01 bin]$ MP_RESD=poe oshrun -np 2 ./is.A.2

This section uses the Integer Sort kernel implementation of NPB3.2-SHMEM to demonstrate
the use of OpenSHMEM with IBM PE, and the impact of some configurations on the
performance of the application.

The Integer Sort benchmark was compiled with the oshcc compiler script of the IBM PE and
the IBM XL C compiler.

The workload class C of the Integer Sort benchmark was executed as shown in Example 7-5
on page 239.

7.3 Using the IBM Spectrum LSF

The IBM Spectrum LSF is a load and a resources manager that allows shared access to
cluster hosts while maximizing occupancy and efficiency on use of resources.

Spectrum LSF provides a queue-based and policy-driven scheduling system for a user’s
batch jobs that employs mechanisms to optimize resource selection and allocation based on
the requirements of the application.

All development models that are described in Chapter 6, “Application development and
tuning” on page 155 are fully supported by Spectrum LSF. The preferred way to run
applications in a production cluster is by using the Spectrum LSF job submission mechanism.
Also, you can manage any job. This section shows how to submit and manage jobs by using
Spectrum LSF commands.

7.3.1 Submit jobs

This section describes the job submission process. Tools to monitor jobs and queues are
introduced in Chapter 8, “Cluster monitoring” on page 247.

To submit a job to Spectrum LSF, use the bsub command. Spectrum LSF allows you to submit
by using command-line options, interactive command-line mode, or a control file. The tool
provides a rich set of option that allows fine-grained job management:

� Control input and output parameters
� Define limits
� Specify submission properties
� Notify users
� Control scheduling and dispatch
� Specify resources and requirements
240 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

The simplest way is to use the command-line options as shown in Example 7-6.

Example 7-6 Spectrum LSF bsub command to submit a job by using command-line options

$ bsub -o %J.out -e %J.err -J 'omp_affinity' -q short './affinity'
Job <212> is submitted to queue <short>.

Example 7-6 shows some basic options of the bsub command. The -o, -i, and -e flags
specify standard output, input, and error files, respectively. In the example, -J sets the job
name, but it can also be used to submit multiple jobs (also know as an array of jobs). and -q
sets the queue that it can be part of. If the -q flag is not specified, the default queue is used
(usually the normal queue). The last option in Example 7-6 on page 241 is the application to
be executed.

The use of the shell script is convenient when you have to submit jobs regularly or that require
many parameters. The file content shown in Example 7-7 is a regular shell script that
embodies special comments (lines starts with #BSUB) to control the behavior of bsub
command, and executes the noop application by using the /bin/sh interpreter.

Example 7-7 Shell script to run Spectrum LSF batch job

#!/bin/sh

#BSUB -o %J.out -e %J.err
#BSUB -J serial

./noop

Either bsub myscript or bsub < myscript commands can be issued to submit a script to
Spectrum LSF. In the first case, myscript is not spooled, which means that changes on the
script will take effect as long as the job is still executing. On the other side, bsub < myscrypt
(see Example 7-8) is going to spool the script.

Example 7-8 Spectrum LSF bsub command to submit a script job

$ bsub < noop_lsf.sh
Job <220> is submitted to default queue <normal>.

Considerations for OpenMP programs
You can use environment variables to control the execution of OpenMP applications as
explained in 7.1.1, “Running OpenMP applications” on page 230. By default, the bsub
command propagates all variables on the submitting host to the environment on the target
machine.

Example 7-9 shows some OpenMP control variables (OMP_DISPLAY_ENV,
OMP_NUM_THREADS, and OMP_SCHEDULE) which are exported on the environment
before a job is scheduled to run on the p8r2n2 host. The content of 230.err file, where errors
were logged, shows that those variables are indeed propagated on the remote host.

Example 7-9 Exporting OpenMP variables to Spectrum LSF bsub command

$ export OMP_DISPLAY_ENV=true
$ export OMP_NUM_THREADS=20
$ export OMP_SCHEDULE="static"
$ bsub -m "p8r2n2" -o %J.out -e %J.err ./affinity
Job <230> is submitted to default queue <normal>.
$ cat 230.err
Chapter 7. Running applications 241

OPENMP DISPLAY ENVIRONMENT BEGIN
 _OPENMP = '201307'
 OMP_DYNAMIC = 'FALSE'
 OMP_NESTED = 'FALSE'
 OMP_NUM_THREADS = '20'
 OMP_SCHEDULE = 'STATIC'
 OMP_PROC_BIND = 'FALSE'
 OMP_PLACES = ''
 OMP_STACKSIZE = '70368222510890'
 OMP_WAIT_POLICY = 'PASSIVE'
 OMP_THREAD_LIMIT = '4294967295'
 OMP_MAX_ACTIVE_LEVELS = '2147483647'
 OMP_CANCELLATION = 'FALSE'
 OMP_DEFAULT_DEVICE = '0'
OPENMP DISPLAY ENVIRONMENT END

If you do not want to export OpenMP environment variables, then the -env option can be used
to control how bsub propagates them. As an example, that same results in Example 7-9 on
page 241 can be achieved with the following command, but without exporting any variable:

$ bsub -m "p8r2n2" -o %J.out -e %J.err -env "all, OMP_DISPLAY_ENV=true,
OMP_NUM_THREADS=20, OMP_SCHEDULE='static'" ./affinity

As a last example, Example 7-10 shows how the environment variables can be set in a job
script to control the OpenMP behavior.

Example 7-10 Exporting OpenMP variables to Spectrum LSF job script

#!/bin/bash

#BSUB -J "openMP example"
#BSUB -o job_%J.out -e job_%J.err
#BSUB -q short
#BSUB -m p8r2n2

export OMP_NUM_THREADS=20
export OMP_SCHEDULE=static
export OMP_DISPLAY_ENV=true

./affinity

Considerations for MPI programs
Use the -n option of the bsub command to allocate the number of tasks (or job slots) for the
parallel application. Note that depending on the configuration of Spectrum LSF, job slots can
be set in terms of CPUs in the cluster. As an example, the following command submits an MPI
job with six tasks:

$ bsub -n 6 -o %J.out -e %J.err poe ./helloMPI

You can select a set of hosts for a parallel job by using bsub command options:

� Use the -m option to namely select hosts or groups of host.
� Resources-based selection with requirements expressions (-R option).
� Indicate a host file by using the -hostfile option. Do not use with -m or -R options.
242 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

The following examples show the usage of -m and -R, respectively, to allocate hosts:

$ bsub -n 2 -m "p8r1n1! p8r2n2" -o %J.out -e %J.err poe ./myAPP

Run two tasks MPI application on hosts p8r1n1 and p8r2n2. The symbol ! indicates that poe
will be first executed on p8r1n1.

$ bsub -n 4 -R "select[ncores==20] same[cpuf]" -o %J.out -e %J.err poe ./myApp

Run four tasks MPI application on hosts with 20 CPU cores (select[ncores==20]) as long as
they have same CPU factor (same[cpuf]).

The job locality can be specified with the span string in a resources requirement expression
(-R option). You can use either one of the following formats to specify the locality:

� span[hosts=1]: Set to run all tasks on same host
� span[ptile=n]: Where n is an integer that sets the number of tasks per host
� span[block=size]: Where size is an integer that sets the block size

Job task affinity is enabled with the use of the affinity string in the resources requirement
expression (-R option). The affinity applies to either CPU and memory, and is defined in terms
of processor units assigned per task, being either core, numa, socket, and task. The following
example has a 10 task MPI application, allocated five per host, and each with four designated
coreswith binding by threads:

$ bsub -n 10 -R "select[ncores >= 20] span[ptile=5]
affinity[core(4):cpubind=thread]" -o %J.out -e %J.err

Further processor unit specification makes the affinity expression powerful. See the following
website for a detailed explanation of affinity expressions in Spectrum LSF:

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_admin/affinity_res_req
_string.dita

Spectrum LSF integrates nicely with the IBM Parallel Environment (PE) Runtime Edition and
supports execution of parallel applications through POE. Some configurations in Spectrum
LSF are required. For more information, see 5.6.13, “IBM Spectrum LSF” on page 134.

Example 7-11 has a Spectrum LSF job script to execute an MPI program with poe. Notice that
the IBM PE environment variables are going to take effect.

Example 7-11 Spectrum LSF job script to submit a simple IBM PE application

#!/bin/bash

#BSUB -J "MPILocalRank" # Set job name
#BSUB -o lsf_job-%J.out # Set output file
#BSUB -e lsf_job-%J.err # Set error file
#BSUB -q short # Set queue
#BSUB -n 5 # Set number of tasks

export MP_INFOLEVEL=1
export LANG=en_US
export MP_RESD=POE
poe ./a.out
Chapter 7. Running applications 243

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_admin/affinity_res_req_string.dita

Spectrum LSF provides a native network-aware scheduling of the IBM PE parallel application
through the -network option of the bsub command. That option encloses the attributes that
are described in Table 7-1.

Table 7-1 Spectrum LSF bsub network attributes for IBM PE

The following command submits a two tasks (-n 2) MPI (protocol=mpi) job. It shares the
network adapters (usage=shared) and reserves windows on all of them.

$ bsub -n 2 -R "span[ptile=1]" -network "protocol=mpi:type=sn_all:
instances=2:usage=shared" poe ./myApp

Considerations for CUDA programs
You can take advantage of graphics processing unit (GPU) resources mapping when either
using requirements expressions to allocate hosts and express usage reservation. If Spectrum
LSF is configured as shown in 5.6.13, “IBM Spectrum LSF” on page 134, then the following
resource fields are available:

� ngpus: Total number of GPUs
� ngpus_shared: Number of GPUs in share mode
� ngpus_excl_t: Number of GPUs in exclusive thread mode
� ngpus_excl_p: Number of GPUs in exclusive process mode

The ngpus resource field can be used in requirement expressions (-R option) for demanding
the number of GPUs needed to execute a CUDA application. The following command submits
a job to any host with one or more GPU:

$ bsub -R "select [ngpus > 0]" ./cudaApp

In terms of usage, it can reserve GPUs by setting ngpus_shared (number of shared),
ngpus_excl_t (number of GPUs on exclusive thread mode), ngpus_excl_p (number of GPUs
on exclusive process mode) resources. Use the rusage with -R option of the bsub command to
reserve GPU resources.

Attribute Description Values

type Manage network windows
reservation

� sn_single (reserves
windows from one network
for each task)

� sn_all (reserve windows
from all networks for each
task)

protocol Set the messaging API in use � mpi
� shmem
� pami

mode The network type � US
� IP

usage The network adapter usage
among processes

� shared
� dedicated

instance Number of instances for
reservation window

Positive integer number
244 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

In Example 7-12 the job script sets one GPU in shared mode, and use by a cudaCUDA
application.

Example 7-12 Script to set one GPU in shared mode to be used by a cudaCUDA application

#!/bin/bash

#BSUB -J "HelloCUDA"
#BSUB -o helloCUDA_%J.out -e helloCUDA_%J.err
#BSUB -R "select [ngpus > 0] rusage [ngpus_shared=1]"

./helloCUDA

When it comes to exclusive use of GPUs by parallel applications, set the value of
ngpus_excl_t or ngpus_excl_p to change run mode properly. The following example executes
a parallel two tasks (-n 2) application in one host (span[hosts=1]), where each host reserves
two GPUs on exclusive process mode (rusage[ngpus_excl_p=2]):

$ bsub -n 2 -R “select[ngpus > 0] rusage[ngpus_excl_p=2] span[hosts=1]” poe
./mpi-GPU_app

Considerations for OpenSHMEM
The -network option of the bsub command can set the parallel communication protocol of the
application. For an OpenSHMEM application, it can be set using this command:

$ bsub -n 10 -network ”protocol=shmem” poe ./shmemApp

7.3.2 Manage jobs

Spectrum LSF provides a set of commands to manage batch jobs. This section introduces the
most common commands.

Modifying a job
The batch job can assume several statuses throughout its lifecycle, of which these are the
most common:

� PEND: Waiting to be scheduled status
� RUN: Running status
� PSUSP, USUSP or SSUSP: Suspended status
� DONE or EXIT: Terminated status

It is possible to modify submission options of a job either in pending or running status. To
change it, use the bmod command.

Most of submission options can be changed with bmod. It is allowed to operate in an option to
cancel, reset to its default value or override it.

To override a submission parameter, use the same option as of bsub. In the following
example, -o “%J_noop.out” changes the output file of the job with identifier 209:

$ bmod -o "%J_noop.out" 209
Parameters of job <209> are being changed

To cancel a submission parameter, append n to the option. For example, -Mn removes the
memory limits.
Chapter 7. Running applications 245

Because the bmod command is flexible and has many options, read its manual, which is
located in the following website:

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_command_ref/bmod.1.dita

Canceling a job
To kill one or more jobs, use the bkill command. This command by default on Linux sends
the SIGINT, SIGTERM, and SIGKILL signals in sequence. The time interval can be configured in
the lsb.params configuration file. In reality, bkill -s <signal> sends the <signal> signal to the
job.

The user can only kill their own jobs. The root and Spectrum LSF administrators can
terminate any job.

In the following example the job with identifier 217 is terminated:

$ bkill 217
Job <217> is being terminated

Suspend and resume a job
To suspend one or more unfinished jobs, use the bstop command. In Linux, it sends the
SIGSTOP and SIGTSTP signal to, respectively, serial and parallel jobs. As an alternative, the
bkill -s SIGSTOP or the bkill -s SIGTSTP commands send the stop signal to a job.

In Example 7-13, the job with identifier 220 had not finished (status RUN) when it was stopped
(bstop 220). As a result, bjobs 220 shows it is now in a suspended status (USUSP).

Example 7-13 Spectrum LSF bstop command to suspend a job

$ bjobs 220
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
220 wainers RUN normal p8r1n1 p8r2n2 serial Apr 17 16:06
$ bstop 220
Job <220> is being stopped
$ bjobs 220
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
220 wainers USUSP normal p8r1n1 p8r2n2 serial Apr 17 16:06

To resume a job, use the bresume command. In Linux, it sends a SIGCONT signal to the
suspended job. To stop or kill a job, bkill -s can be used to send the continue signal bkill
-s CONT. The following command shows how to resume the job stopped in Example 7-13:

$ bresume 220
Job <220> is being resumed
246 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_command_ref/bmod.1.dita

Chapter 8. Cluster monitoring

Monitoring is an important activity to assist in the maintenance of cluster resources, and to
ensure its serviceability to end users. It is composed of resource control and health check
tasks on the various nodes (compute, login, services), networking devices, and storage
systems.

This topic is vast and deserves an entire book itself. Instead of covering this subject in detail,
this chapter introduces some tools and resources that can be employed to support monitoring
of a high performance computing (HPC) cluster.

This chapter includes the following topics:

� IBM Spectrum LSF tools for monitoring
� nvidia-smi tool for monitoring GPU

8

© Copyright IBM Corp. 2016. All rights reserved. 247

8.1 IBM Spectrum LSF tools for monitoring

IBM Spectrum Load Sharing Facility (LSF) provides a comprehensive set of tools that can be
employed for monitoring the cluster. This section shows how to use some of these tools to
carry out common tasks. The following list summarizes the commands that are used in this
section:

� lsclusters: Lists all configured clusters
� lsid: Displays the current LSF version number, the cluster name, and master host name
� lshosts: Displays hosts information
� lsload: Displays load-per-host information
� bhosts: Displays information about batches
� bjobs: Displays information about jobs
� bqueues: Displays information about batch queues
� bparams: Displays batch parameters
� badmin: Provides a set of administrative subcommands for batches
� lsadmin: Provides a set of administrative subcommands for hosts

For a complete list of commands and usage guides, see the Spectrum LSF manual:

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_kc_cmd_ref.dita

8.1.1 General information about clusters

The lsclusters command shows information about the clusters managed by the Spectrum
LSF master host server as shown in Example 8-1.

Example 8-1 Spectrum LSF lsclusters command to gather information about the clusters

$ lsclusters
CLUSTER_NAME STATUS MASTER_HOST ADMIN HOSTS SERVERS
lsf-cluster ok p8r1n1 lsfadmin 2 2

As shown in Example 8-2, the lsid command is used to display the cluster name, master
host server, and version of Spectrum LSF.

Example 8-2 Spectrum LSF lsid command to display cluster name and master host

[wainersm@p8r2n2 ~]$ lsid
IBM Platform LSF Standard 9.1.3.0, Mar 31 2015
Copyright IBM Corp. 1992, 2014. All rights reserved.
US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

My cluster name is lsf-cluster
My master name is p8r1n1

Use the badmin command with the showstatus subcommand as shown in Example 8-3 to get
an overview of servers, users, groups, and jobs in the cluster. Notice that badmin is a suite of
commands to manage batch-related configuration and daemons. More of its features are
shown later in this chapter.

Example 8-3 Spectrum LSF badmin command to show master host batch daemon status

$ badmin showstatus
LSF runtime mbatchd information
248 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_kc_cmd_ref.dita

 Available local hosts (current/peak):
 Clients: 0/0
 Servers: 2/2
 CPUs: 2/2
 Cores: 40/40
 Slots: unlimited/unlimited

 Number of servers: 2
 Ok: 2
 Closed: 0
 Unreachable: 0
 Unavailable: 0

 Number of jobs: 1
 Running: 1
 Suspended: 0
 Pending: 0
 Finished: 0

 Number of users: 4
 Number of user groups: 1
 Number of active users: 1

 Latest mbatchd start: Wed Apr 13 21:21:33 2016
 Active mbatchd PID: 4617

 Latest mbatchd reconfig: -

8.1.2 Getting information about hosts

The Spectrum LSF master host obtains static and dynamic information about the slave hosts
of the cluster. Static information means properties that are hard to change such as system
memory, disk capacity, topology, and number of CPUs. In contrast, dynamic information
depends on current workload on the system, such as the amount of memory utilized, amount
of swap memory, and jobs scheduled to run.

By default the commands that are highlighted in this section display information about all
hosts of the cluster, unless a host name is specified. Also, a subset of hosts can be selected
by using resources requirement expressions. Example 8-4 shows an expression (specified as
an argument of the -R option) to select hosts whose model matches POWER8.

Example 8-4 Spectrum LSF lshosts command to show slave hosts selected by the expression

$ lshosts -R "select[model==POWER8]"
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
p8r1n1 LINUXPP POWER8 250.0 160 256G 3.9G Yes (mg)
p8r2n2 LINUXPP POWER8 250.0 160 256G 3.9G Yes (mg)

Resource requirements can also be used in scheduling of jobs and with other Spectrum LSF
commands. The language to express requirements is covered in the Spectrum LSF manual,
which can be found at the following address:

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_admin/res_req_strings_
about.dita
Chapter 8. Cluster monitoring 249

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_admin/res_req_strings_about.dita
http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_admin/res_req_strings_about.dita

By default the lshost command displays static information about all hosts that are configured
in the local cluster as shown in Example 8-5. The columns cpuf, ncpus, maxmem, and maxswp
display the CPU performance factor, number of CPUs, maximum memory, and maximum
swap memory.

Example 8-5 Spectrum LSF lshosts command shows static information of hosts

$ lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
p8r1n1 LINUXPP POWER8 250.0 160 256G 3.9G Yes (mg)
p8r2n2 LINUXPP POWER8 250.0 160 256G 3.9G Yes (mg)

More information about individual hosts can be queried by passing the -l option to lshost
command as shown in Example 8-6. Notice that besides the static information, the -l option
reports the current load status of the host.

Example 8-6 Spectrum LSF lshosts command displays static information about a specified host

$ lshosts -l p8r2n2

HOST_NAME: p8r2n2
type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores nthreads
LINUXPPC64 POWER8 250.0 160 1 256G 3.9G 949020M 0 Yes 1 20 8

RESOURCES: (mg)
RUN_WINDOWS: (always open)

LOAD_THRESHOLDS:
 r15s r1m r15m ut pg io ls it tmp swp mem pnsd pe_network
 - 3.5 - - - - - - - - - - -

The lshosts command with -T option shows the nonuniform memory access (NUMA)
topology of the hosts. In Example 8-7, the lshosts command reports a two-node (0 and 8)
S822LC host (p8r2n2), with 128 GB of memory available per node (for a total of 256 GB). It
also shows 10 processor cores per NUMA node, each with 8 CPUs (SMT8 mode).

Example 8-7 Spectrum LSF lshosts command shows NUMA topology of a specified host

[wainersm@p8r2n2 ~]$ lshosts -T p8r2n2
Host[256G] p8r2n2
 NUMA[0: 128G]
 core(0 1 2 3 4 5 6 7)
 core(8 9 10 11 12 13 14 15)
 core(16 17 18 19 20 21 22 23)
 core(24 25 26 27 28 29 30 31)
 core(32 33 34 35 36 37 38 39)
 core(40 41 42 43 44 45 46 47)
 core(48 49 50 51 52 53 54 55)
 core(56 57 58 59 60 61 62 63)
 core(64 65 66 67 68 69 70 71)
 core(72 73 74 75 76 77 78 79)
 NUMA[8: 128G]
 core(80 81 82 83 84 85 86 87)
 core(88 89 90 91 92 93 94 95)
 core(96 97 98 99 100 101 102 103)
 core(104 105 106 107 108 109 110 111)
 core(112 113 114 115 116 117 118 119)
250 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

 core(120 121 122 123 124 125 126 127)
 core(128 129 130 131 132 133 134 135)
 core(136 137 138 139 140 141 142 143)
 core(144 145 146 147 148 149 150 151)
 core(152 153 154 155 156 157 158 159)

In contrast to the lshost command that provides only static information, the lsload command
gives dynamic information for the hosts. Example 8-8 shows load information for all hosts in
the cluster.

Example 8-8 Spectrum LSF lsload command reports dynamic information for the hosts

[wainersm@p8r2n2 ~]$ lsload
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
p8r2n2 ok 0.1 0.0 0.0 0% 0.0 1 0 920G 3.9G 246G
p8r1n1 ok 1.0 0.0 0.1 0% 0.0 0 8518 920G 3.9G 245G

The following are the means of each column header in the report:

� status reports the current status of the host. This columen has these possible values:

– ok: The host is ready to accept remote jobs.
– -ok: The LIM daemon is running, but the RES daemon is unreachable.
– busy: The host is overloaded.
– lockW: The host is locked by its run window.
– lockU: The host is locked by the LSF administrator or root.
– unavail: The host is down or the LIM daemon is not running.

� r15s, r1m, and r15m indicate that the CPU load averaged exponentially over the last 15
seconds, 1 minute, and 15 minutes, respectively.

� ut is the CPU utilization time averaged exponentially over the last minute.

� pg is the memory paging rate averaged exponentially over the last minute.

� ls is the number of current login users.

� it shows the idle time of the host.

� tmp is the amount of free space in the /tmp directory.

� swp is the amount of free swap space.

� mem is the amount of memory available on the host.

Other options can be used with the lsload command to display different information. For
example, the -l option displays network resources information for scheduling IBM Parallel
Environment (PE) jobs and also the disk I/O rate.

8.1.3 Getting information about jobs and queues

Some commands are available to monitor the workload in the cluster, and give information on
jobs and queue status. The bhosts command reports jobs statistics per-host, which is useful
to see overall cluster workload as shown in Example 8-9.

Example 8-9 Spectrum LSF bhosts to report on hosts batch jobs status

$ bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
Chapter 8. Cluster monitoring 251

p8r1n1 ok - - 1 1 0 0 0
p8r2n2 ok - - 0 0 0 0 0

To show unfinished jobs in the entire cluster, use the bjobs command (see Example 8-10).
You can use the -a option with the bjobs command to view all recently finished jobs in
addition to those jobs still running.

Example 8-10 Spectrum LSF bjobs command to show unfinished jobs

$ bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
209 wainers RUN normal p8r1n1 p8r1n1 serial Apr 14 17:18

The bjobs command can also be used to report detailed information about a job as shown in
Example 8-11.

Example 8-11 Spectrum LSF bjobs command to show detailed information about a job

$ bjobs -l 209

Job <209>, Job Name <serial>, User <wainersm>, Project <default>, Status <RUN>,
 Queue <normal>, Command <#!/bin/sh; #BSUB -o %J.out -e %J
 .err;#BSUB -J serial; ./noop>, Share group charged </waine
 rsm>
Thu Apr 14 17:18:41: Submitted from host <p8r1n1>, CWD <$HOME/lsf/noop>, Output
 File <209.out>, Error File <209.err>;
Thu Apr 14 17:18:42: Started 1 Task(s) on Host(s) <p8r1n1>, Allocated 1 Slot(s)
 on Host(s) <p8r1n1>, Execution Home </home/wainersm>, Exe
 cution CWD </home/wainersm/lsf/noop>;
Thu Apr 14 17:22:41: Resource usage collected.
 MEM: 22 Mbytes; SWAP: 0 Mbytes; NTHREAD: 5
 PGID: 82953; PIDs: 82953 82954 82958 82959

 MEMORY USAGE:
 MAX MEM: 22 Mbytes; AVG MEM: 22 Mbytes

 SCHEDULING PARAMETERS:
 r15s r1m r15m ut pg io ls it tmp swp mem
 loadSched - - - - - - - - - - -
 loadStop - - - - - - - - - - -

 RESOURCE REQUIREMENT DETAILS:
 Combined: select[type == local] order[r15s:pg]
 Effective: select[type == local] order[r15s:pg]

The bqueues command displays information about the queues of the jobs available in a cluster
along with use statistics. The command list queues are sorted by priority (PRIO). It also
reports their status (STATUS), maximum number of job slots (MAX), maximum jobs slots per
users (JL/U), maximum job slots per processors (JL/P), maximum job slots per slot (JL/H),
number of tasks for jobs (NJOBS), and number of jobs pending (PEN), running (RUN) and
suspended (SUSP).
252 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Example 8-12 shows the ouput of a bqueues command.

Example 8-12 Spectrum LSF bqueues command to show available job queues

[wainersm@p8r1n1 ~]$ bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
admin 50 Open:Active - - - - 0 0 0 0
owners 43 Open:Active - - - - 0 0 0 0
priority 43 Open:Active - - - - 0 0 0 0
night 40 Open:Inact - - - - 0 0 0 0
chkpnt_rerun_qu 40 Open:Active - - - - 0 0 0 0
short 35 Open:Active - - - - 0 0 0 0
license 33 Open:Active - - - - 0 0 0 0
normal 30 Open:Active - - - - 1 0 1 0
interactive 30 Open:Active - - - - 0 0 0 0
hpc_linux 30 Open:Active - - - - 0 0 0 0
hpc_linux_tv 30 Open:Active - - - - 0 0 0 0
idle 20 Open:Active - - - - 0 0 0 0

8.1.4 Administering the cluster

HPC cluster administration involves many non-trivial tasks, although tools like Spectrum LSF
simplify the process. This section shows just a small part of the Spectrum LSF capabilities
and tools. For more information, see the administration section of the user guide available at
the following website:

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_kc_managing.dita

The Spectrum LSF configuration directory has a few files where global and per-cluster basis
configurations are defined. Its path depends on the installation performed by the administrator
and the LSF_ENVDIR environment variable value:

$ echo $LSF_ENVDIR
/usr/share/lsf/conf

The bare minimum Spectrum LSF configuration directory includes the following files:

� lsf.shared: Contains the cluster names and definitions that can be referenced by
configuration files

� lsf.conf: Contains global configurations that are shared among clusters defined on
lsf.shared.

� lsf.cluster.<cluster-name>: Contain per cluster name-specific configurations such as
the list of hosts and their attributes, administrators, and resources mapping.

Other configuration files exist. For example, lsf.queue is the file where batch queues are
defined.

Typically, any change requires restarting the Spectrum LSF servers and daemons, so they
are usually followed by running badmin reconfig and lsadmin reconfig commands so that
the new configurations take effect.
Chapter 8. Cluster monitoring 253

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_kc_managing.dita

Managing batch services
To check all batch configuration parameters, use the bparams command. Without any options,
it displays basic information as shown in Example 8-13. MBD_SLEEP_TIME is the jobs dispatch
interval.

Example 8-13 Spectrum LSF bparams command to show basic batch configuration parameters

[wainersm@p8r1n1 ~]$ bparams
Default Queues: normal interactive
MBD_SLEEP_TIME used for calculations: 10 seconds
Job Checking Interval: 7 seconds
Job Accepting Interval: 0 seconds

Example 8-14 lists configured batch parameters with the bparams -l command. Because the
list of parameters is long, many of them were omitted from the output shown in Example 8-14.

Example 8-14 Spectrum LSF bparams to show detailed batch configuration parameters

$ bparams -l

System default queues for automatic queue selection:
 DEFAULT_QUEUE = normal interactive

Amount of time in seconds used for calculating parameter values:
 MBD_SLEEP_TIME = 10 (seconds)

The interval for checking jobs by slave batch daemon:
 SBD_SLEEP_TIME = 7 (seconds)

The interval for a host to accept two batch jobs:
 JOB_ACCEPT_INTERVAL = 0 (* MBD_SLEEP_TIME)

The idle time of a host for resuming pg suspended jobs:
 PG_SUSP_IT = 180 (seconds)

The amount of time during which finished jobs are kept in core memory:
 CLEAN_PERIOD = 3600 (seconds)

The maximum number of retries for reaching a slave batch daemon:
 MAX_SBD_FAIL = 3

<... Omitted output ...>
Resets the job preempted counter once this job is requeued, migrated, or rerun:
 MAX_JOB_PREEMPT_RESET = Y

Disable the adaptive chunking scheduling feature:
 ADAPTIVE_CHUNKING = N

Spectrum LSF uses default batch parameters unless the (optional) lsb.params file is
deployed in $LSF_ENVDIR/<cluster-name>/configdir as a per-cluster configuration file. After
any change to lsb.params, run the badmin reconfig command to reconfigure the mbatchd
daemon.
254 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

The badmin administrative tool provides some debugging subcommands that can help
determine problems with batch daemons. The following commands can be executed with the
Spectrum LSF administrator user:

� sbddebug: Debug the slave batch daemon
� mbddebug: Debug the master batch daemon
� schddebug: Debug the scheduler batch daemon

As a case study, Example 8-15 shows the output of the bhosts command, where the p8r2n2
host is marked as unreachable.

Example 8-15 Spectrum LSF bhosts command to determine problem on batch services

[lsfadmin@p8r1n1 wainersm]$ bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
p8r1n1 ok - - 0 0 0 0 0
p8r2n2 unreach - - 0 0 0 0 0

From the master host (p8r1n1), neither badmin mbddebug nor badmin schddebug reported
errors. Now, badmin sbddebug shows that the batch daemon is unreachable:

$ badmin sbddebug p8r2n2
failed : Slave batch daemon (sbatchd) is unreachable now on host p8r2n2

The above issues are fixed by restarting the slave batch daemon as shown in Example 8-16.

Example 8-16 Spectrum LSF badmin command to start up slave batch daemon

badmin hstartup p8r2n2
Start up slave batch daemon on <p8r2n2> ? [y/n] y
Start up slave batch daemon on <p8r2n2> done

As a result, the slave batch daemon is back online again:

$ bhosts p8r2n2
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
p8r2n2 ok - - 0 0 0 0 0

Managing the LIM and Remote Execution Server services
Spectrum LSF deploys the Load Information Manager (LIM) and Remote Execution Server
servers in each host, where they run as daemons. They play these roles in the Spectrum LSF
system:

� LIM collects load and configuration information about the host.

� Remote Execution Server provides execution services. It allows secure and transparent
execution of jobs and tasks on the host.

The lsadmin tool provides subcommands to manage the LIM and Remote Execution Server
in a single host or groups. Operations to start, stop, and restart the daemons are carried out
by the limstartup, limshutdown, limrestart, resstartup, resshutdown and resrestart
subcommands.

lsadmin provides a useful subcommand to check the correctness of LIM and Remote
Execution Server configurations called chkconfig:

$ lsadmin ckconfig

Checking configuration files ...
No errors found.
Chapter 8. Cluster monitoring 255

The badmin command comes with limdebug and resdebug subcommands for debugging
problems with LIM and RES daemons, respectively.

8.2 nvidia-smi tool for monitoring GPU

NVIDIA provides a tool to control the status and health of GPUs called the System
Management Interface (nvidia-smi). The tool shows different levels of information depending
on the generation of your card. Some options can be disabled and enabled when using this
tool.

Example 8-17 shows default output for the example system with NVIDIA K80 cards.

Example 8-17 Default nvidia-smi output

$ nvidia-smi
+--+
| NVIDIA-SMI 352.59 Driver Version: 352.59 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla K80 On | 0000:03:00.0 Off | 0 |
| N/A 31C P8 27W / 175W | 55MiB / 11519MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla K80 On | 0000:04:00.0 Off | 0 |
| N/A 26C P8 26W / 175W | 55MiB / 11519MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla K80 On | 0002:03:00.0 Off | 0 |
| N/A 31C P8 25W / 175W | 55MiB / 11519MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla K80 On | 0002:04:00.0 Off | 0 |
| N/A 27C P8 28W / 175W | 55MiB / 11519MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| No running processes found |
+---+

8.2.1 Information about jobs on GPU

When the system has jobs that use graphics processing unit (GPU) calls inside them, you can
find information (name and PID of tasks, GPU number for each process, and GPU memory
usage) about it in the bottom section of the default nvidia-smi call. This section is shown in
Example 8-18 for a sample MPI run with 10 MPI tasks, where each task uses only one GPU
with a number that is assigned in round-robin order.

Example 8-18 Process section of nvidia-smi output during MPI run

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
256 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

|===|
| 0 23102 C ./sample_mpi 971MiB |
| 1 23103 C ./sample_mpi 834MiB |
| 2 23104 C ./sample_mpi 971MiB |
| 3 23105 C ./sample_mpi 834MiB |
| 0 23106 C ./sample_mpi 971MiB |
| 1 23107 C ./sample_mpi 834MiB |
| 2 23108 C ./sample_mpi 971MiB |
| 3 23109 C ./sample_mpi 834MiB |
| 0 23110 C ./sample_mpi 971MiB |
| 1 23111 C ./sample_mpi 834MiB |
+---+

8.2.2 All GPU details

To show all information about GPUs inside your node, use the -q option. To list only data
about specific GPU, specify the ID with the -i option. Example 8-19 provides details for the
second GPU using these options.

Example 8-19 Detailed information about second GPU in system using nvidia-smi

$ nvidia-smi -i 1 -q

==============NVSMI LOG==============

Timestamp : Tue Dec 15 04:26:08 2015
Driver Version : 352.59

Attached GPUs : 4
GPU 0000:04:00.0
 Product Name : Tesla K80
 Product Brand : Tesla
 Display Mode : Disabled
 Display Active : Disabled
 Persistence Mode : Enabled
 Accounting Mode : Disabled
 Accounting Mode Buffer Size : 1920
 Driver Model
 Current : N/A
 Pending : N/A
 Serial Number : 0324914053157
 GPU UUID : GPU-3602edfc-edcb-9392-9fcc-b619254d8d2f
 Minor Number : 1
 VBIOS Version : 80.21.1B.00.02
 MultiGPU Board : No
 Board ID : 0x400
 Inforom Version
 Image Version : 2080.0200.00.04
 OEM Object : 1.1
 ECC Object : 3.0
 Power Management Object : N/A
 GPU Operation Mode
 Current : N/A
 Pending : N/A
 PCI
Chapter 8. Cluster monitoring 257

 Bus : 0x04
 Device : 0x00
 Domain : 0x0000
 Device Id : 0x102D10DE
 Bus Id : 0000:04:00.0
 Sub System Id : 0x106C10DE
 GPU Link Info
 PCIe Generation
 Max : 3
 Current : 1
 Link Width
 Max : 16x
 Current : 16x
 Bridge Chip
 Type : N/A
 Firmware : N/A
 Replays since reset : 0
 Tx Throughput : N/A
 Rx Throughput : N/A
 Fan Speed : N/A
 Performance State : P8
 Clocks Throttle Reasons
 Idle : Active
 Applications Clocks Setting : Not Active
 SW Power Cap : Not Active
 HW Slowdown : Not Active
 Unknown : Not Active
 FB Memory Usage
 Total : 11519 MiB
 Used : 55 MiB
 Free : 11464 MiB
 BAR1 Memory Usage
 Total : 16384 MiB
 Used : 2 MiB
 Free : 16382 MiB
 Compute Mode : Default
 Utilization
 Gpu : 0 %
 Memory : 0 %
 Encoder : 0 %
 Decoder : 0 %
 Ecc Mode
 Current : Enabled
 Pending : Enabled
 ECC Errors
 Volatile
 Single Bit
 Device Memory : 0
 Register File : 0
 L1 Cache : 0
 L2 Cache : 0
 Texture Memory : 0
 Total : 0
 Double Bit
 Device Memory : 0
258 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

 Register File : 0
 L1 Cache : 0
 L2 Cache : 0
 Texture Memory : 0
 Total : 0
 Aggregate
 Single Bit
 Device Memory : 0
 Register File : 0
 L1 Cache : 0
 L2 Cache : 0
 Texture Memory : 0
 Total : 0
 Double Bit
 Device Memory : 0
 Register File : 0
 L1 Cache : 0
 L2 Cache : 0
 Texture Memory : 0
 Total : 0
 Retired Pages
 Single Bit ECC : 0
 Double Bit ECC : 0
 Pending : No
 Temperature
 GPU Current Temp : 26 C
 GPU Shutdown Temp : 93 C
 GPU Slowdown Temp : 88 C
 Power Readings
 Power Management : Supported
 Power Draw : 26.44 W
 Power Limit : 175.00 W
 Default Power Limit : 149.00 W
 Enforced Power Limit : 175.00 W
 Min Power Limit : 100.00 W
 Max Power Limit : 175.00 W
 Clocks
 Graphics : 324 MHz
 SM : 324 MHz
 Memory : 324 MHz
 Applications Clocks
 Graphics : 562 MHz
 Memory : 2505 MHz
 Default Applications Clocks
 Graphics : 562 MHz
 Memory : 2505 MHz
 Max Clocks
 Graphics : 875 MHz
 SM : 875 MHz
 Memory : 2505 MHz
 Clock Policy
 Auto Boost : On
 Auto Boost Default : On
 Processes : None
Chapter 8. Cluster monitoring 259

To print only specific information about the GPUs, use the -d option with the names of
interesting sections. Example 8-20 provides only the details about temperature, power, and
clocks using this option.

Example 8-20 Specific details of GPU using the -d option

$ nvidia-smi -i 1 -q -d POWER,TEMPERATURE,CLOCK

==============NVSMI LOG==============

Timestamp : Tue Dec 15 04:36:20 2015
Driver Version : 352.59

Attached GPUs : 4
GPU 0000:04:00.0
 Temperature
 GPU Current Temp : 26 C
 GPU Shutdown Temp : 93 C
 GPU Slowdown Temp : 88 C
 Power Readings
 Power Management : Supported
 Power Draw : 26.20 W
 Power Limit : 175.00 W
 Default Power Limit : 149.00 W
 Enforced Power Limit : 175.00 W
 Min Power Limit : 100.00 W
 Max Power Limit : 175.00 W
 Power Samples
 Duration : 118.07 sec
 Number of Samples : 119
 Max : 26.44 W
 Min : 26.20 W
 Avg : 26.24 W
 Clocks
 Graphics : 324 MHz
 SM : 324 MHz
 Memory : 324 MHz
 Applications Clocks
 Graphics : 562 MHz
 Memory : 2505 MHz
 Default Applications Clocks
 Graphics : 562 MHz
 Memory : 2505 MHz
 Max Clocks
 Graphics : 875 MHz
 SM : 875 MHz
 Memory : 2505 MHz
 SM Clock Samples
 Duration : 3207.02 sec
 Number of Samples : 100
 Max : 875 MHz
 Min : 324 MHz
 Avg : 472 MHz
 Memory Clock Samples
 Duration : 3207.02 sec
 Number of Samples : 100
260 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

 Max : 2505 MHz
 Min : 324 MHz
 Avg : 1652 MHz
 Clock Policy
 Auto Boost : On
 Auto Boost Default : On

For more information about the options of the nvidia-smi command, see the following
website:

http://developer.download.nvidia.com/compute/cuda/6_0/rel/gdk/nvidia-smi.331.38.pdf

8.2.3 Compute modes

nvidia-smi can change compute modes of GPUs by using following command:

nvidia-smi -i <GPU_number> -c <compute_mode>

NVIDIA GPUs support the following compute modes:

� PROHIBITED: The GPU cannot compute applications and no contexts are allowed.

� EXCLUSIVE_THREAD: Only one process can be assigned to the GPU at a time and will
only perform work from one thread of this process.

� EXCLUSIVE_PROCESS: Only one process can be assigned to the GPU at a time and
different process threads can submit jobs to the GPU concurrently.

� DEFAULT: Multiple processes can use the GPU simultaneously and different process
threads can submit jobs to the GPU concurrently.

8.2.4 Persistence mode

Persistence mode is a mode of the NVIDIA driver that helps to keep GPU initialized even
when no processes are accessing the cards. This mode requires more power, but shortens
delays that occur at each start of GPU jobs. It is useful when you have a series of short runs.

To enable persistence mode for all GPUs, use following command:

nvidia-smi -pm 1

After this command is issued, you get the output for your system like that shown in
Example 8-21.

Example 8-21 Enable persistence mode for all GPUs

$ nvidia-smi -pm 1
Enabled persistence mode for GPU 0000:03:00.0.
Enabled persistence mode for GPU 0000:04:00.0.
Enabled persistence mode for GPU 0002:03:00.0.
Enabled persistence mode for GPU 0002:04:00.0.
All done.
Chapter 8. Cluster monitoring 261

http://developer.download.nvidia.com/compute/cuda/6_0/rel/gdk/nvidia-smi.331.38.pdf

To enable persistence mode only for a specific GPU, use the -i option. Example 8-22 shows
how to enable this mode for the first GPU.

Example 8-22 Enable persistence mode for specific GPU

$ nvidia-smi -i 0 -pm 1
Enabled persistence mode for GPU 0000:03:00.0.
All done.

To disable persistence mode for all or a specific GPU, use the 0 value for the -pm option.
Example 8-23 shows the usage of this command.

Example 8-23 Disable persistence mode for all or specific GPU

$ nvidia-smi -pm 0
Disabled persistence mode for GPU 0000:03:00.0.
Disabled persistence mode for GPU 0000:04:00.0.
Disabled persistence mode for GPU 0002:03:00.0.
Disabled persistence mode for GPU 0002:04:00.0.
All done.
$
$ nvidia-smi -i 0 -pm 0
Disabled persistence mode for GPU 0000:03:00.0.
All done.
262 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Appendix A. Applications and performance

Although this book generally targets system administrators and application developers, this
appendix covers several topics that are mostly relevant to the application users of the IBM
POWER8 high-performance computing solution.

This appendix includes the following sections:

� Application software

This section gives examples of application software, such as bioinformatics, computational
fluid dynamics, and molecular dynamics packages.

� Effects of basic performance tuning techniques

This section suggests some practices for tuning applications (an example of the NAS
Parallel Benchmarks suite) and describes their impact on performance.

� General methodology of performance benchmarking

This section proposes a sequence of actions to be performed when evaluating
performance of parallel applications.

� Sample code for the construction of thread affinity strings

This section provides sample code that can be used to construct affinity strings for thread
binding environment variables.

� ESSL performance results

This section shows the performance of the DGEMM routine from the ESSL library.

A

© Copyright IBM Corp. 2016. All rights reserved. 263

Application software

This section lists examples of software packages from the following application domains:

� Bioinformatics
� Computational fluid dynamics
� Molecular dynamics

This section also provides basic guidance about the compilation and execution of several of
these applications.

Bioinformatics

Personal healthcare is a rapidly growing area. Driven by the high demand for low-cost
nucleotide sequencing, several new genome sequencing methods were developed recently.
These methods are commonly known as next-generation sequencing (NGS) methods. In
recent years, these methods were implemented in commercial sequencer apparatus, and
sequencing of genetic material has become a routine procedure.

The NGS technology produces vast amounts of raw genome sequence data. As a result,
researchers and clinicians need solutions that can solve the problem of large volume NGS
data management, processing, and analysis. The underlying computing resources are
equipped ideally with multiple fast processors, a large amount of RAM, and an efficient
storage system. POWER8 machines that run the Linux operating system are good
candidates for the role of NGS data machines.

Trinity
Trinity is a popular tool for the processing and analysis of genomic sequencing data. The
paper available at the following link lists a possible choice of compilation options and
evaluates the performance of POWER8 processor-based systems in NGS analysis:

http://www.ibm.com/partnerworld/wps/servlet/ContentHandler/stg_ast_sys_wp-performa
nce-of-trinity-rna-seqde-novo-assembly

BioBuilds suite
Major genomics applications on POWER8, including Trinity, are available for download as
part of the BioBuilds suite. The suite is a collection of open source bioinformatics tools, and is
distributed at no additional charge. The package is pre-built and optimized for the IBM Linux
on Power platform. It also includes supporting libraries for the tools. Table A-1 lists the set of
available tools as of the BioBuilds 2015.11 release.

Table A-1 List of bioinformatics tools available in BioBuilds 2015.11 release

Bioinformatics tools from the BioBuilds suite (2015.11 release)

ALLPATHS-LG ClustalW iSAAC SOAP3-DP

BAMtools Cufflinks Mothur SOAPaligner

Barracuda EBSEQ NCBI SOAPbuilder

bedtools EMBOSS Oases/Velvet SOAPdenovo2

Bfast FASTA Picard STAR

Bioconductor FastQC PLINK tabix

BioPython HMMER Pysam TMAP
264 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/partnerworld/wps/servlet/ContentHandler/stg_ast_sys_wp-performance-of-trinity-rna-seqde-novo-assembly

Because genome sequencing is a compute-intensive task, the sequencing can gain a large
performance benefit by using an accelerator. The Barracuda and SOAP3-DP tools listed in
Table A-1 on page 264 are examples of open source bioinformatics applications that can
offload computations to a GPU.

For more information about the BioBuilds collection, see the following website:

http://www.ibm.com/partnerworld/gsd/solutiondetails.do?solution=51837

BALSA
BALSA is another example of an application that uses the computational power of the GPU
for the secondary analysis of next generation sequencing data. With two GPUs installed, the
tool can analyze two samples in parallel. For more information about BALSA, see the
following website:

http://www.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=POS03141USEN

OpenFOAM

The Open Field Operation and Manipulation (OpenFOAM) Computational Fluid Dynamics
(CFD) toolbox is an open source CFD software package that is available at no additional
charge. It has a large user base across most areas of engineering and science, from both
commercial and academic organizations. OpenFOAM has an extensive range of features to
solve anything from complex fluid flows involving chemical reactions, turbulence, and heat
transfer, to solid dynamics and electromagnetic. It includes tools for meshing, notably
snappyHexMesh, a parallelized mesher for complex computer-aided engineering (CAE)
geometries, and for pre- and post-processing. Almost everything (including meshing, and pre-
and post-processing) runs in parallel as standard, enabling users to take full advantage of
computer hardware at their disposal.

Several versions of OpenFOAM are available. This section provides an example of
OpenFOAM 2.4.0, focusing on how to install and run it, and how to get the most out of the
POWER8 architecture with this application.

Preparation before installation of OpenFOAM
This example uses the GNU compiler and the OpenMPI for MPI parallelization as shown in
Example A-1.

Example A-1 Preparation before installation of OpenFOAM

$ export MP_COMPILER=gnu

Bowtie HTSeq RSEM TopHat

Bowtie2 htslib Samtools Trinity

BWA IGV SHRiMP variant_tools
Appendix A. Applications and performance 265

http://www.ibm.com/partnerworld/gsd/solutiondetails.do?solution=51837
http://www.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=POS03141USEN

Installation of OpenFOAM
This section shows how you can download and install the OpenFOAM 2.4.0 package. First,
download and decompress the source codes of OpenFOAM and the third-party toolkit as
shown in Example A-2.

Example A-2 Prepare the required sources of OpenFOAM and third-party pack

$ mkdir -p $HOME/OpenFOAM
$ cd $HOME/OpenFOAM
$ wget http://jaist.dl.sourceforge.net/project/foam/foam/2.4.0/OpenFOAM-2.4.0.tgz
$ wget
http://jaist.dl.sourceforge.net/project/foam/foam/2.4.0/ThirdParty-2.4.0.tgz
$ tar zxvf OpenFOAM-2.4.0.tgz
$ tar zxvf ThirdParty-2.4.0.tgz

For OpenFOAM 2.4.0, obtain a patch file from the following website:

http://www.openfoam.org/mantisbt/view.php?id=1759

From this site, get the file enable_ppc64el_patch.patch, put it on $HOME/OpenFOAM, and apply
it as shown in Example A-3.

Example A-3 Apply the required patch to OpenFOAM

$ cd $HOME/OpenFOAM/OpenFOAM-2.4.0
$ patch -p1 < ../enable_ppc64el_patch.patch

Set the environment variables required for OpenFOAM and start the shell script Allwmake as
shown in Example A-4.

Example A-4 Start OpenFOAM building

$ export FOAM_INST_DIR=$HOME/OpenFOAM
$ source $FOAM_INST_DIR/OpenFOAM-2.4.0/etc/bashrc
$ cd $FOAM_INST_DIR/OpenFOAM-2.4.0
$./Allwmake

Running OpenFOAM
To run OpenFOAM, a series of input data is needed that is a combination of data sets such as
boundary conditions, initial conditions, various physical parameters, and the selections from
many solvers and methods prepared in OpenFOAM. This input data defines the physical
simulation that the user wants to solve. OpenFOAM includes examples of these data sets that
are called tutorials. This example shows a tutorial named motorbike. The motorbike tuitorial
simulates a typical CFD that calculates the steady flow around a motorcycle and rider and is
one of the major tutorials for the performance benchmark.
266 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.openfoam.org/mantisbt/view.php?id=1759

Figure A-1 shows the images of the motorcycle and rider. These images are rendered by
using the ParaView tool. The ParaView tool binary for Windows 64-bit, Windows 32-bit, Linux
64-bit, and Mac OS X is downloadable from the following website:

http://www.paraview.org/

The source code of the ParaView tool is also included in the third-party toolkit introduced
above.

Figure A-1 Motorbike input for OpenFOAM simulation

There are nine programs for completing the motorbike simulation as shown in Example A-5.
These programs are implemented in the Allrun script file that is located in the following
directory:

$HOME/OpenFOAM/OpenFOAM-2.4.0/tutorials/incompressible/simpleFoam/motorBike/

These nine programs are executed one by one in the Allrun script. Among these nine
programs, four programs (snappyHexMesh, patchSummary, potentialFoam, and simpleFoam) are
executed with message passing interface (MPI) parallelization. By default, they are executed
with six MPI processes. The other five programs (surfaceFeatureExtract, blockMesh,
decomposePar, reconstructParMesh, and reconstructPar) are not MPI implemented and
executed serially using one CPU core.

Example A-5 Nine OpenFOAM programs executed in the motorbike simulation

surfaceFeatureExtract
blockMesh
decomposePar
snappyHexMesh
patchSummary
potentialFoam
simpleFoam
reconstructParMesh
reconstructPar

Among these programs, simpleFoam is the main solver for this motorbike simulation, which
solves the velocity and pressure by iterative calculation using the Semi-Implicit Method for
Pressure-Linked Equation (SIMPLE) method. In general, simpleFoam takes plenty of time to
complete and its elapsed time is the majority of the elapsed time of all nine programs.
Appendix A. Applications and performance 267

http://www.paraview.org/

Simulating a large-size problem with many MPI processes
The POWER8 architecture has high memory bandwidth. Even if you increase the number of
grids of the problem and increase the number of MPI processes, you can run your jobs
comfortably without seeing the performance degradation caused by memory performance
bottleneck. Therefor, you can increase the problem size and the number of MPI processes to
take the advantage of the POWER8 architecture.

The following section shows how to increase the problem size (the number of grids) and the
number of MPI processes using the motorbike case as an example.

How to increase the problem size
This section describes how to increase the problem size and the number of processes by
referring to the previous motorbike case (Figure A-1 on page 267).

To change the problem size of the simulation, modify the parameter settings in the
blockMeshDict file. This file is located in the following directory:

$HOME/OpenFOAM/OpenFOAM-2.4.0/tutorials/incompressible/simpleFoam/motorBike/consta
nt/polyMesh/

The default is 1280 grids (20 x 8 x 8 grids) as shown in Figure A-2.

Figure A-2 20 x 8 x 8 grids (default)

For example, if you want to change the default grid into a 40 × 16 × 16 grids (10240 grids) as
shown in Figure A-3, you need to modify blockMeshDict as shown in Example A-6 on
page 269.

Figure A-3 40 x 16 x 16 grids
268 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Example A-6 shows modifying the blockMeshDict file.

Example A-6 Modification of blockMeshDict file

$ diff blockMeshDict.org blockMeshDict
34c34
< hex (0 1 2 3 4 5 6 7) (20 8 8) simpleGrading (1 1 1)

> hex (0 1 2 3 4 5 6 7) (40 16 16) simpleGrading (1 1 1)

For more information about blockMeshDict, see 4.3 Mesh generation with the blockMesh
utility in the following website:

http://www.openfoam.com/documentation/user-guide/blockMesh.php

How to increase the number of MPI processes
The method of parallel computing that is used by OpenFOAM is known as domain
decomposition. In this method, the geometry and associated fields are broken into pieces and
allocated to each CPU core for computation. The flow of parallel computation involves
decomposition of mesh and fields, running the application in parallel, and post-processing the
decomposed case as described in the following sections. The parallel running uses OpenMPI
for the standard MPI.

To change the number of MPI processes, you need to make the following modifications.

Select the method of the domain decomposition
You can select the scotch method rather than default hierarchical method for the domain
decomposition. The scotch decomposition requires no geometric input from the user and
attempts to minimize the number of processor boundaries.

This section shows the difference between hierarchical and scotch by using simple figures of
1280 grids (20 x 8 x 8 grids).

Figure A-4 shows the hierarchical method, and in this case. The domain is decomposed as
(X-direction, Y-direction, Z-direction) = (3, 2, 1) based on the parameter settings that are
stated in decomposeParDict file.

Figure A-4 Domain decomposition by hierarchical method
Appendix A. Applications and performance 269

http://www.openfoam.com/documentation/user-guide/blockMesh.php

Figure A-5 shows the scotch method. In this method, the scotch library automatically decides
the optimal domain decomposition, so you do not need to set the number of decomposition
for each direction of X, Y, and Z.

Figure A-5 Domain decomposition by scotch method

To select the scotch method instead of the hierarchical method, modify the parameter settings
of the decomposeParDict file as shown in Example A-7.

Example A-7 Change the parameter settings in the decomposeParDict file

$ cd
$HOME/OpenFOAM/OpenFOAM-2.4.0/tutorials/incompressible/simpleFoam/motorBike/system
/
$ diff decomposeParDict.org decomposeParDict
20c20
< method hierarchical;

> method scotch;

Change the number of subdomains
To change the number of subdomains from six to forty as shown in Figure A-6, you need to
modify the parameter settings of the decomposeParDict file as shown in Example A-8 on
page 271.

Figure A-6 Forty subdomains for forty MPI processes
270 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Example A-8 shows how to modify the parameters of the ecomposeParDict file.

Example A-8 Change the parameter settings in decomposeParDict file

$ cd
$HOME/OpenFOAM/OpenFOAM-2.4.0/tutorials/incompressible/simpleFoam/motorBike/system
/
$ diff decomposeParDict.org decomposeParDict
18c18
< numberOfSubdomains 6;

> numberOfSubdomains 40;

Change the number of MPI processes
Change the number of MPI processes in the Allrun file as shown in Example A-9. Usually,
the number of MPI processes need to be the same as the number of subdomains as
described in the previous section.

Example A-9 Change the parameter settings of Allrun

$ cd $HOME/OpenFOAM/OpenFOAM-2.4.0/tutorials/incompressible/simpleFoam/motorBike/
$ diff Allrun.org Allrun
14c14
< runParallel snappyHexMesh 6 -overwrite

> runParallel snappyHexMesh 40 -overwrite
23,25c23,25
< runParallel patchSummary 6
< runParallel potentialFoam 6
< runParallel $(getApplication) 6

> runParallel patchSummary 40
> runParallel potentialFoam 40
> runParallel $(getApplication) 40

Running the motorbike simulation
After completing these preparations, run the motorbike simulation by running the Allrun
script as shown in Example A-10. After the Allrun script starts, the binart files listed in
Example A-5 on page 267 are automatically executed one by one.

Example A-10 Kick Allrun script

$ cd $HOME/OpenFOAM/OpenFOAM-2.4.0/tutorials/incompressible/simpleFoam/motorBike/
$ time ./Allrun

Note: To check what the domain decomposition looks like, use the following command:

[home/OpenFOAM/OpenFOAM-2.4.0/tutorials/incompressible/simpleFoam/motorBike]$
diff Allrun.org Allrun
13c13
< runApplication decomposePar

> runApplication decomposePar -cellDist
Appendix A. Applications and performance 271

After finishing running the series of binary files, a new directory named 500 is created. This
new directory includes some simulated values such as U (Velocity), p (Pressure), and so on.
These values show the physical state after 500 iterative calculations.

Figure A-7 shows the images of these simulated values of U (Velocity) and p (Pressure)
around the motorbike visualized by the ParaView tool.

Figure A-7 motorbike simulation result

Tuning techniques
This section introduces these tuning techniques:

� CPU binding
� SMT settings
� Linking tcmalloc

CPU binding
To get higher and stable performance, each MPI process needs to be bound to each CPU
core. In OpenMPI, the mpirun command automatically binds processes at the start of the
v1.8 series.

For more information, see the following website:

https://www.open-mpi.org/doc/v1.8/man1/mpirun.1.php

SMT settings
Generally, CAE applications such as OpenFOAM have a hard time using the advantages of
hardware threads. However, in some cases, using SMT on POWER8 and assigning some
MPI processes into a single CPU core can improve the total throughput. Therefore, trying
some combination of SMT modes and the number of MPI processes assigned to a single
core is valuable for benchmarking and performance tuning.

Linking tcmalloc
In some cases, linking a thread-caching malloc (tcmalloc) library into the OpenFOAM binary
files will improve their performance. For the nine example OpenFOAM binary files that are
listed in Example A-5 on page 267, the performance of surfaceFeatureExtract, blockMesh,
decomposePar, snappyHexMesh, patchSummary, reconstructParMesh, and reconstructPar were
improved, but the performance of potentialFoam and simpleFoam were slightly degraded by
linking to a tcmalloc library.
272 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

https://www.open-mpi.org/doc/v1.8/man1/mpirun.1.php

Therefore, link the tcmalloc library only to the binary files that are expected to be improved by
using the shell-script as shown in Example A-11.

Example A-11 Apply tcmalloc

$ cd $HOME/OpenFOAM
$ cat @apply_tcmalloc
#!/bin/sh
for i in surfaceFeatureExtract blockMesh decomposePar snappyHexMesh patchSummary
reconstructParMesh reconstructPar
do
 rm ./OpenFOAM-2.4.0/platforms/linuxPPC64leGccDPOpt/bin/$i
 cd `find ./OpenFOAM-2.4.0/applications/ -name $i -type d`
 wmake |tr '\\\n' ' ' > out.wmake
 echo `cat out.wmake` -L/opt/at9.0/lib64/ -ltcmalloc |sh -x
 rm out.wmake
 cd -
done
$./@apply_tcmalloc

For more information about tcmalloc, see the following website:

http://goog-perftools.sourceforge.net/doc/tcmalloc.html

NAMD program

Nanoscale Molecular Dynamics (NAMD) is a freeware molecular dynamics simulation
package written using the Charm++ parallel programming model.

This section introduces how to install and how to run NAMD 2.11 in an IBM POWER8 server
using NVIDIA graphics programming units (GPUs) with CUDA 7.5.

Installation of NAMD
Download the source code NAMD_2.11_Source.tar.gz from the following website:

http://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=NAMD

Before downloading the source code, complete the registration process, which requires your
name and email address, and that you answer some questions and accept the license
agreement.

Put the downloaded file NAMD_2.11_Source.tar.gz in your preferred directory, for example
$HOME/NAMD. Then build the prerequisite package as shown in Example A-12.

Example A-12 Building prerequisite package for NAMD

$ cd $HOME/NAMD
$ tar zxvf NAMD_2.11_Source.tar.gz
$ cd NAMD_2.11_Source
$ tar xvf charm-6.7.0.tar
$ cp -rp charm-6.7.0/src/arch/mpi-linux-ppc charm-6.7.0/src/arch/mpi-linux-ppc64le
$ cd charm-6.7.0
$./build charm++ mpi-linux-ppc64le -O -DCMK_OPTIMIZE=1
$ cd ../arch
$ ls -l | grep Linux-POWER
-rw-r----- 1 kame IBM1 190 6? 18 2014 Linux-POWER-g++.arch
-rw-r----- 1 kame IBM1 495 2? 7 2011 Linux-POWER-xlC.arch
Appendix A. Applications and performance 273

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=NAMD

-rw-r----- 1 kame IBM1 0 2? 7 2011 Linux-POWER.base
-rw-r----- 1 kame IBM1 467 12? 2 12:52 Linux-POWER.cuda
-rw-r----- 1 kame IBM1 138 2? 7 2011 Linux-POWER.fftw
-rw-r----- 1 kame IBM1 191 6? 18 2014 Linux-POWER.tcl

Before starting to build NAMD, prepare the FFTW package as shown in Example A-13.

Example A-13 Prepare FFTW package

[/work/NAMD]$ wget ftp://ftp.fftw.org/pub/fftw/fftw-3.3.4.tar.gz
[/work/NAMD]$ tar zxvf fftw-3.3.4.tar.gz
[/work/NAMD]$ cd fftw-3.3.4
[/work/NAMD/fftw-3.3.4]$./configure --enable-float --prefix=`pwd`
[/work/NAMD/fftw-3.3.4]$ make
[/work/NAMD/fftw-3.3.4]$ make install
[/work/NAMD/fftw-3.3.4]$ ls lib
libfftw3f.a libfftw3f.la pkgconfig

Prepare the TCL package as shown in Example A-14.

Example A-14 Prepare TCL package

[/work/NAMD]$ wget
http://www.ks.uiuc.edu/Research/namd/libraries/tcl8.5.9-linux-ppc64le-threaded.tar
.gz
[/work/NAMD]$ tar zxvf tcl8.5.9-linux-ppc64le-threaded.tar.gz
[/work/NAMD]$ ls tcl8.5.9-linux-ppc64le-threaded/lib
libtcl8.5.a libtclstub8.5.a tcl8 tcl8.5 tclConfig.sh

Prepare some files for the parameter settings as shown in Example A-15.

Example A-15 Prepare some files for parameter settings

[/work/NAMD/NAMD_2.11_Source/arch]$ cat Linux-POWER-xlC_MPI.arch
NAMD_ARCH = Linux-POWER
CHARMARCH = mpi-linux-ppc64le
CXX = mpCC -w
CXXOPTS = -O3 -q64 -qnohot -qstrict -qaggrcopy=nooverlap -qalias=ansi -qarch=pwr8
-qtune=pwr8
CXXNOALIASOPTS = -O4 -q64 -qaggrcopy=nooverlap -qalias=noallptrs -qarch=pwr8
-qtune=pwr8
CXXTHREADOPTS = -O3 -q64 -qaggrcopy=nooverlap -qalias=ansi -qarch=pwr8 -qtune=pwr8
CC = xlc -w
COPTS = -O4 -q64 -qarch=pwr8 -qtune=pwr8

[/work/NAMD/NAMD_2.11_Source/arch]$ cat Linux-POWER.cuda
CUDADIR=/usr/local/cuda-7.5
CUDAINCL=-I$(CUDADIR)/include
CUDALIB=-L$(CUDADIR)/lib64 -lcudart_static -lrt -ldl
CUDASODIR=$(CUDADIR)/lib64
LIBCUDARTSO=
CUDAFLAGS=-DNAMD_CUDA
CUDAOBJS=$(CUDAOBJSRAW)
CUDA=$(CUDAFLAGS) -I. $(CUDAINCL)
CUDACC=$(CUDADIR)/bin/nvcc -O3 --maxrregcount 32 $(CUDAGENCODE) $(CUDA)
274 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

CUDAGENCODE=-gencode arch=compute_20,code=sm_20 -gencode
arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode
arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode
arch=compute_52,code=sm_52 -gencode arch=compute_52,code=compute_52

[/work/NAMD/NAMD_2.11_Source/arch]$ cat Linux-POWER.fftw3
FFTDIR=/work/NAMD/fftw-3.3.4/
FFTINCL=-I$(FFTDIR)/include
FFTLIB=-L$(FFTDIR)/lib -lfftw3f
FFTFLAGS=-DNAMD_FFTW -DNAMD_FFTW_3
FFT=$(FFTINCL) $(FFTFLAGS)

[/work/NAMD/NAMD_2.11_Source/arch]$ cat Linux-POWER.tcl
TCLDIR=/work/NAMD/tcl8.5.9-linux-ppc64le-threaded/
TCLINCL=-I$(TCLDIR)/include
TCLLIB=-L$(TCLDIR)/lib -ltcl8.5 -ldl
TCLLIB=-L$(TCLDIR)/lib -ltcl8.5 -ldl -lpthread
TCLFLAGS=-DNAMD_TCL
TCL=$(TCLINCL) $(TCLFLAGS)

Modify the config file as shown in Example A-16 to avoid errors during configuration.

Example A-16 Modify the config file

[/work/NAMD/NAMD_2.11_Source]$ diff config.org config
383,390c383,390
< if ($charm_arch_mpi || ! $charm_arch_smp) then
< echo ''
< echo "ERROR: $ERRTYPE builds require non-MPI SMP or multicore Charm++ arch
for reasonable performance."
< echo ''
< echo "Consider ibverbs-smp or verbs-smp (InfiniBand), gni-smp (Cray), or
multicore (single node)."
< echo ''
< exit 1
< endif

> # if ($charm_arch_mpi || ! $charm_arch_smp) then
> # echo ''
> # echo "ERROR: $ERRTYPE builds require non-MPI SMP or multicore Charm++
arch for reasonable performance."
> # echo ''
> # echo "Consider ibverbs-smp or verbs-smp (InfiniBand), gni-smp (Cray), or
multicore (single node)."
> # echo ''
> # exit 1
> # endif

Configure NAMD as shown in Example A-17.

Example A-17 Configure NAMD

[/work/NAMD/NAMD_2.11_Source]$./config Linux-POWER-xlC_MPI --with-fftw3
--with-tcl --with-cuda

Selected arch file arch/Linux-POWER-xlC_MPI.arch contains:
Appendix A. Applications and performance 275

NAMD_ARCH = Linux-POWER
CHARMARCH = mpi-linux-ppc64le
CXX = mpCC_r -w
CXXOPTS = -O3 -q64 -qnohot -qstrict -qaggrcopy=nooverlap -qalias=ansi -qarch=pwr8
-qtune=pwr8
CXXNOALIASOPTS = -O4 -q64 -qaggrcopy=nooverlap -qalias=noallptrs -qarch=pwr8
-qtune=pwr8
CXXTHREADOPTS = -O3 -q64 -qaggrcopy=nooverlap -qalias=ansi -qarch=pwr8 -qtune=pwr8
CC = xlc_r -w
COPTS = -O4 -q64 -qarch=pwr8 -qtune=pwr8
Creating directory: Linux-POWER-xlC_MPI
Creating link: .. to .rootdir
Writing build options to Linux-POWER-xlC_MPI/Make.config
Using Charm++ 6.7.0 build found in main build directory
Linking Makefile
Linking Make.depends
Linking src directory
Linking plugins directory
Linking psfgen directory

Generated Linux-POWER-xlC_MPI/Make.config contains the following:

CHARMBASE = .rootdir/charm-6.7.0
include .rootdir/arch/Linux-POWER-xlC_MPI.arch
CHARM = $(CHARMBASE)/$(CHARMARCH)
NAMD_PLATFORM = $(NAMD_ARCH)-MPI-CUDA
include .rootdir/arch/$(NAMD_ARCH).base
include .rootdir/arch/$(NAMD_ARCH).tcl
include .rootdir/arch/$(NAMD_ARCH).fftw3
include .rootdir/arch/$(NAMD_ARCH).cuda

You are ready to run make in directory Linux-POWER-xlC_MPI now.

Then, use make to build NAMD as shown in Example A-18.

Example A-18 Make NAMD

[/work/NAMD/NAMD_2.11_Source]$ cd Linux-POWER-xlC_MPI
[/work/NAMD/NAMD_2.11_Source/Linux-POWER-xlC_MPI]$ make

xlc -w -Isrc
-I/vol/xcae1/b5p218za/work/NAMD/tcl8.5.9-linux-ppc64le-threaded//include
-DNAMD_TCL -O4 -q64 -qarch=pwr8 -qtune=pwr8 -DNAMD_VERSION=\"2.11\"
-DNAMD_PLATFORM=\"Linux-POWER-MPI-CUDA\" -DREMOVE_PROXYRESULTMSG_EXTRACOPY
-DNODEAWARE_PROXY_SPANNINGTREE -DUSE_NODEPATCHMGR -o flipbinpdb src/flipbinpdb.c
|| \
echo "#!/bin/sh\necho unavailable on this platform" > flipbinpdb; \
chmod +x flipbinpdb
cp .rootdir/charm-6.7.0/mpi-linux-ppc64le/bin/charmrun charmrun

If you succeed in running make, you can find the execution binary file named namd2 in the
directory named Linux-POWER-xlC_MPI.
276 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Running NAMD
Sample simulations are provided at the following website:

http://www.ks.uiuc.edu/Research/namd/utilities/

For this example, select ApoA1, which has been the standard NAMD cross-platform
benchmark for years as shown in Figure A-8. The official name of this gene is apolipoprotein
A-I.

The APOA1 gene provides instructions for making a protein called apolipoprotein A-I
(apoA-I). ApoA-I is a component of high-density lipoprotein (HDL). HDL is a molecule that
transports cholesterol and certain fats called phospholipids through the bloodstream from the
body's tissues to the liver. After they are in the liver, cholesterol and phospholipids are
redistributed to other tissues or removed from the body. Figure A-8 shows a visualization of
this protein.

For more information about ApoA1, see the following website:

https://ghr.nlm.nih.gov/gene/APOA1

Figure A-8 Visualization of ApoA1 protein

After preparing the data directory of ApoA1 named apoa1 on the same directory as namd2,
execute this sample model using 40 MPI processes as shown in Example A-19.

Example A-19 Execution of NAMD with each example

$ MP_RESD=poe MP_HOSTFILE=./hf MP_PROCS=40 MP_SHARED_MEMORY=yes
MP_EAGER_LIMIT=65536 MEMORY_AFFINITY=MCM MP_INFOLEVEL=4 MP_BINDPROC=yes
MP_PE_AFFINITY=yes MP_BIND_MODE=spread MP_TASK_AFFINITY=cpu time poe ./namd2
./apoa1/apoa1.namd

For more information about the environment variables for the poe command, see the following
website:

https://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.pe.v2r3.p
e100.doc/am102_poemanpage.htm

Note: NAMD seems to scale best using simultaneous multithreading (SMT) of no more
than two threads per core. For example, if you have 20 physical cores on a Power System
S822LC, running NAMD with 40 threads can get the best performance.
Appendix A. Applications and performance 277

https://ghr.nlm.nih.gov/gene/APOA1
http://www.ks.uiuc.edu/Research/namd/utilities/
https://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.pe.v2r3.pe100.doc/am102_poemanpage.htm

Effects of basic performance tuning techniques

This section evaluates the effects of basic performance tuning techniques. It uses the NAS
Parallel Benchmarks (NPB)1 suite of applications as examples.

The NPB suite was originally used for complex performance evaluation of supercomputers.
The developers of the NPB programs distilled the typical computational physics workloads
and put the most widespread numerical kernels into their product.

This section uses the OpenMP flavors of NPB benchmarks to achieve the following goals:

� Shows the performance variation for the different SMT modes
� Provides guidance for the choice of compilation parameters
� Demonstrates the importance of binding threads to logical processors

For benchmarking, the example used a 20-core IBM Power System S822LC (model
8335-GTA) based on the POWER8 processor. The cores run at 2.92 GHz. Each memory slot
of the system was populated with an 8 GB RAM module for a total of 256 GB. The server was
running Red Hat Enterprise Linux operating system version 7.2 (little-endian). The operating
system was installed in a non-virtualized mode. The Linux kernel version was 3.10.0-327.
Version v15.1.2 of IBM XL Fortran compiler was used to compile the sources.2

The size of the problems in the NPB benchmarking suite is predefined by the developers. The
example uses the benchmarks of class C. The source code of the NPB suite was not
changed. The code generation was controlled by setting compilation parameters in a
make.def file as shown in Example A-20.

Example A-20 NPB: A sample make.def file for the -O3 parameter set

F77 = xlf_r -qsmp=noauto:omp -qnosave
FLINK = $(F77)
FFLAGS = -O3 -qmaxmem=-1 -qarch=auto -qtune=auto:balanced
FLINKFLAGS = $(FFLAGS)
CC = xlc_r -qsmp=noauto:omp
CLINK = $(CC)
C_LIB = -lm
CFLAGS = $(FFLAGS)
CLINKFLAGS = $(CFLAGS)
UCC = xlc
BINDIR = ../O3
RAND = randi8
WTIME = wtime.c
MACHINE = -DIBM

1 The NPB suite was developed by NASA Advanced Supercomputing (NAS) Division. For more information, see
“NAS Parallel Benchmarks” at http://www.nas.nasa.gov/publications/npb.html.

2 At the time of writing, IBM XL Fortran for Linux, V15.1.3 (little-endian distributions) was available.

Note: The performance numbers that are shown in this section must not be treated as the
official results. They are provided to demonstrate the possible effect of various
performance tuning techniques on application performance. The results that are obtained
in different hardware and software environments or with other compilation parameters can
vary widely from the numbers shown here.
278 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.nas.nasa.gov/publications/npb.html

It is not feasible to cover all compilation parameters, so the tests varied only the level of
optimization. The following parameters were common for all builds:

-qsmp=noauto:omp -qnosave -qmaxmem=-1 -qarch=auto -qtune=auto:balanced

Teh example considers four sets of compilation parameters. In addition to the previous
compilation parameters, the remaining parameters are listed in Table A-2. The column
Option set name lists shortcuts used to reference each set of compilation parameters that
are presented in the Compilation parameters columns.

Table A-2 NPB: Compilation parameters used to build the NPB suite executable files

All of the runs were performed with the following environment variables:

export OMP_DYNAMIC="FALSE"
export OMP_SCHEDULE="static"

To establish the affinity of threads, the example used a simple program. The source code for
this program is listed in “Sample code for the construction of thread affinity strings” on
page 309.

The performance impact of a rational choice of an SMT mode

The POWER8 core is able to run instructions from up to eight application threads
simultaneously. This capability is known as SMT. The POWER8 architecture supports the
following four multithreading levels:3

� ST (single-thread)4

� SMT2 (two-way multithreading)
� SMT4 (four-way multithreading)
� SMT8 (eight-way multithreading)

The SMT mode, which can be used to obtain the optimal performance, depends on the
characteristics of the application. Compilation parameters and mapping between application
threads and logical processors can also affect the timing.

Option set name Compilation parameters

Varying Common

-O2 -O2 -qsmp=noauto:omp -qnosave -qmaxmem=-1
-qarch=auto -qtune=auto:balanced

-O3 -O3

-O4 -O4

-O5 -O5

Note: In several cases, performance results that are presented deviate significantly from
the general behavior within the same plot. The plot bars with deviations can be ignored
because the tests can experience unusual conditions (operating system jitters, parasitic
external workload, and so on).

3 B. Sinharoy et al, “IBM POWER8 processor core microarchitecture,” IBM J. Res. & Dev., vol. 59, no. 1, Paper 2, pp.
2:1–2:21, Jan./Feb. 2015, http://dx.doi.org/10.1147/JRD.2014.2376112.

4 Single-thread mode is referred sometimes as SMT1.
Appendix A. Applications and performance 279

http://dx.doi.org/10.1147/JRD.2014.2376112

Reason behind a conscious choice of an SMT mode
Execution units of a core are shared by all logical processors of a core (two logical processors
in SMT2 mode, four logical processors in SMT4 mode, and eight logical processors in SMT8
mode). There are execution units with multiple instances (for example, load/store units,
fixed-point units) and single instances (for example, branch execution unit).

In ideal conditions, application threads do not compete for execution units. This configuration
results in each of eight logical processors of a core running in SMT8 mode being almost as
fast as a core running in ST mode.

Depending on the application threads instruction flow, some execution units become fully
saturated with instructions that come from different threads. As a result, the progress of the
depended instructions is postponed. This postponement limits the overall performance of the
eight logical processors of a core running in SMT8 to the performance of a core running in
ST mode.

It is also possible for even a single thread to fully saturate resources of a whole core.
Therefore, adding more threads to a core can result in performance degradation. For
example, see the performance of mg.C benchmark as shown in Figure A-15 on page 287.

Performance impact of SMT mode on NPB benchmarks
The bar charts in Figure A-9 on page 281 through Figure A-17 on page 289 show the
performance benefits that come from the rational choice of SMT mode for applications from
the NPB suite (bt.C, cg.C, ep.C, ft.C, is.C, lu.C, mg.C, sp.C, and ua.C). The performance of
the applications was measured for each combination of the following options:

� Four sets of compiler parameters as shown in Table A-2 on page 279.
� Eleven core layouts:

– 1 - 10 cores from just one socket
– Twenty cores from both sockets

The plots are organized according to the following scheme:

� Each figure presents results for a particular benchmark from the NPB suite.

� Each subplot is devoted to a particular set of compiler options.

� The x-axis lists core layouts. For example, the third pair (sockets: 1, cores: 3) designates
the benchmarking run where application threads were bound to three cores within one
socket.

� The y-axis shows the performance gain as measured in percentage relative to a baseline.
As a baseline, we choose an SMT mode that is less favorable for the particular application.

The results show that the choice of SMT mode affects performance substantially.

Note: Generally, the performance of each logical processor of a core running in SMT2,
SMT4, or SMT8 mode is not equivalent to the performance of a core running in ST mode.
The performance of each logical processor of a core is influenced by all other logical
processors in a core. The influence comes from the application threads instruction flow.
280 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Figure A-9 NPB: Performance benefits from the rational choice of SMT mode for the bt.C benchmark
Appendix A. Applications and performance 281

Figure A-10 NPB: Performance benefits from the rational choice of SMT mode for the cg.C benchmark
282 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Figure A-11 NPB: Performance benefits from the rational choice of SMT mode for the ep.C benchmark
Appendix A. Applications and performance 283

Figure A-12 NPB: Performance benefits from the rational choice of SMT mode for the ft.C benchmark
284 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Figure A-13 NPB: Performance benefits from the rational choice of SMT mode for the is.C benchmark
Appendix A. Applications and performance 285

Figure A-14 NPB: Performance benefits from the rational choice of SMT mode for the lu.C benchmark
286 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Figure A-15 NPB: Performance benefits from the rational choice of SMT mode for the mg.C benchmark
Appendix A. Applications and performance 287

Figure A-16 NPB: Performance benefits from the rational choice of SMT mode for the sp.C benchmark
288 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Figure A-17 NPB: Performance benefits from the rational choice of SMT mode for the ua.C benchmark
Appendix A. Applications and performance 289

Choice of SMT mode for computing nodes
Many NPB applications benefit from SMT8 mode. So, from the general system management
point of view, it can be unwise to restrict users to lower SMT values. The administrator should
consider the following recommendations:

� Run the system in SMT8 mode
� Use a processor core as a unit of hardware resource allocation5

By using the physical processor as a unit of hardware resource allocation, you ensure that no
other applications use the idle logical processors of a physical core that is assigned to the
user. Before the users run a productive workload, they need to execute several benchmarks
for an application of their choice. The benchmarks are necessary to determine a favorable
number of software threads to run at each core. After the value is identified, that number
needs to be taken into account when users arrange productive workloads.

If possible, recompile the application with the -qtune=pwr8:smtX option of the IBM XL
compiler (where X is 1, 2, 4, or 8, depending on the favorable SMT mode), and repeat the
benchmark.

The reason for MPI applications
The same logic holds for applications that use MPI. For programs based on OpenMP, seek a
favorable number of threads to execute on each core. Similarly, for an application that is
created with MPI, find a favorable number of MPI processes to execute on each core.

The impact of optimization options on performance

Various compiler options affect the performance characteristics of produced binary code.
However, not all of the optimization options are equally suited for all types of workloads.
Compilation parameters that result in good performance for one type of application might not
perform equally well for other types of computations. Choose a favorable set of compiler
options based on the timing of a particular application.

The bar charts in Figure A-18 on page 291 through Figure A-26 on page 299 compare the
performance benefits that come from the rational choice of compiler options for the same
applications from the NPB suite (bt.C, cg.C, ep.C, ft.C, is.C, lu.C, mg.C, sp.C, and ua.C) that
are examined in “The performance impact of a rational choice of an SMT mode” on page 279.
Again, the four sets of compiler options considered are shown in Table A-2 on page 279. The
application threads are bound to either 1 - 10 cores of one socket or 20 cores of two sockets.

The organization of the plots is similar to the scheme that was used in “The performance
impact of a rational choice of an SMT mode” on page 279:

� Each figure presents results for a particular benchmark from the NPB suite.

� Each subplot is devoted to a particular SMT mode.

� The x-axis lists the number of cores that is used.

� The y-axis shows the performance gain as measured in percentage relative to a baseline.
As a baseline, we chose a compiler option set that is less favorable for the particular
application.

The results show that the rational choice of a compiler option set substantially affects the
performance for all of the considered NPB applications.

5 This recommendation is targeted to applications limited by the computing power of a processor only. It does not
take into account interaction with the memory subsystem and other devices. At some supercomputing sites and
user environments, it can be reasonable to use a socket or even a server as a unit of hardware resource allocation.
290 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Figure A-18 NPB: Performance gain from the rational choice of compiler options for the bt.C test
Appendix A. Applications and performance 291

Figure A-19 NPB: Performance gain from the rational choice of compiler options for the cg.C test
292 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Figure A-20 NPB: Performance gain from the rational choice of compiler options for the ep.C test
Appendix A. Applications and performance 293

Figure A-21 NPB: Performance gain from the rational choice of compiler options for the ft.C test
294 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Figure A-22 NPB: Performance gain from the rational choice of compiler options for the is.C test
Appendix A. Applications and performance 295

Figure A-23 NPB: Performance gain from the rational choice of compiler options for the lu.C test
296 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Figure A-24 NPB: Performance gain from the rational choice of compiler options for the mg.C test
Appendix A. Applications and performance 297

Figure A-25 NPB: Performance gain from the rational choice of compiler options for the sp.C test
298 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Figure A-26 NPB: Performance gain from the rational choice of compiler options for the ua.C test
Appendix A. Applications and performance 299

Summary of favorable modes and options for applications from the NPB suite

Table A-3 summarizes SMT modes and compiler optimization options that are favorable for
most of the runs performed in “The performance impact of a rational choice of an SMT mode”
on page 279 and “The impact of optimization options on performance”. The row headers (ST,
SMT2, SMT4, and SMT8) designate SMT modes, and the column headers (-O2, -O3, -O4,
and -O5) refer to sets of compiler options that are listed in Table A-2 on page 279.

Table A-3 NPB: Favorable modes and options for applications from the NPB suite

One can observe that favorable SMT modes can vary from ST to SMT8 and favorable
compilation options can vary from -O3 to -O5.

It is hard to know before experimenting which SMT mode and which set of compilation
options will be favorable for a user application. Therefore, do not neglect benchmarking
before production runs. For more details, see “General methodology of performance
benchmarking” on page 301.

The importance of binding threads to logical processors

The operating system can migrate application threads between logical processors if a user
does not explicitly specify thread affinity. As shown in 7.1, “Controlling the execution of
multithreaded applications” on page 230, a user can specify the binding of application threads
to a specific group of logical processors. One option for binding threads is to use system calls
in a source code. The other option is to set environment variables that control threads affinity.

For technical computing workloads, you typically want to ensure that application threads are
bound to logical processors. Thread affinity often helps to use the POWER architecture
memory hierarchy and reduce the processor usage that is related to the migration of threads
by an operating system.

To demonstrate the importance of this technique, the mg.C test from the NPB suite was
chosen as an example. The performance of the mg.C application peaks at SMT1 (see
Table A-3 on page 300). For this benchmark, you can expect a penalty if an operating system
puts more than one thread on each core.

-O2 -O3 -O4 -O5

ST — — — mg.C

SMT2 — bt.C, is.C, sp.C — lu.C

SMT4 — ua.C — ft.C

SMT8 — cg.C ep.C —
300 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Figure A-27 shows the performance improvement that was obtained by binding application
threads to logical processors. The baseline corresponds to runs without affinity. The bars
show the relative gain that was obtained after the assignment of software threads to hardware
threads. As SMT mode increases, the operating system has more freedom in scheduling
threads. As the result, the effect of thread binding becomes more pronounced for higher
values of SMT mode.

Figure A-27 Performance improvement for an application when thread binding is used

General methodology of performance benchmarking

This section describes how to evaluate the performance of an application on a system with
massively multithreaded processors. It also provides some hints on how to take advantage of
the performance of an application without access to the source code.

This example assumes the application is thread-parallel and does not use MPI6 or GPGPU7.
However, the generalization of the methodology to a broader set of applications is relatively
straightforward.

For the simplicity of table structure throughout this section, the examples make the following
assumptions about the configuration of a computing server:

� The server is a two-socket system with fully populated memory slots.
� The server has 10 cores per socket (20 cores in total).

The computing server reflects the architecture of the IBM Power Systems S822LC
(8335-GTA) system.

This section also describes performance benchmarking summarizes the methodology in a
form of a step-by-step instruction. For more informtion, see “Summary” on page 309.

6 Message Passing Interface (MPI) is a popular message-passing application programmer interface for parallel
programming.

7 General-purpose computing on graphics processing units (GPGPU) is the use of GPUs for the solution of compute
intensive data parallel problems.
Appendix A. Applications and performance 301

Defining the purpose of performance benchmarking

Before starting a performance benchmarking, it is important to clarify the purpose of this
activity. A clearly defined purpose of the benchmarking is helpful in creating a plan of the
benchmarking and defining success criteria.

The purpose of performance benchmarking looks different from each of the following two
points of view:

� Performance benchmarking that is carried out by an application developer.
� Performance benchmarking that is done by an application user or a system administrator.

Benchmarking by application developers
From the perspective of an application developer, the performance benchmarking is part of a
software development process. Application developer uses performance benchmarking in
pursuing the following goals:

� Comparison of a code’s performance with the performance model.

� Identification of bottlenecks in a code that limit its performance (this process is typically
done by using profiling).

� Comparison of the code’s scalability with the scalability model.

� Identification of parts of the code that prevent scaling.

� Tuning the code to specific computer hardware.

Basically, a software developer carries out a performance benchmarking of an application to
understand how to improve application performance by changing an algorithm. Performance
benchmarking as it is viewed from an application developer perspective has complex
methodologies. These methodologies are not covered in this publication.

Benchmarking by application users and system administrators
From the perspective of an application user or a system administrator, performance
benchmarking is a necessary step before using an application for production runs on a
computing system that is available for them. Application users and system administrators
make the following assumptions:

� An application will be used on a computing system many times in future.

� It makes sense to invest time into performance benchmarking because the time will be
made up by faster completion of production runs in future.

� Modification of an application source code is out of their scope.

The last statement implies that application users and system administrators are limited to the
following options to tune the performance:

� Choice between different compilers
� Choice of compiler optimization options
� Choice of an SMT mode
� Choice of the number of computing cores
� Choice of runtime system parameters and environment variables
� Choice of operating system parameters

Essentially, applications users and system administrators are interested in how to make an
application solve problems as fast as possible without changing the source code.
302 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

System administrators also needs performance benchmarking results to help determine
hardware allocation resources when configuring a computing system. For more information,
see “Choice of SMT mode for computing nodes” on page 290.

This books covers performance benchmarking from the perspective of an application user or
a system administrator.

Plan for benchmarking

Perfom these steps for your benchmarking project:

1. A kick-off planning session with the experts
2. Workshop with the experts
3. Benchmarking
4. Session to discuss the intermediate results with the experts
5. Benchmarking
6. Preparation of the benchmarking report
7. Session to discuss the final results with the experts

You also need to prepare the following lists:

� List of applications to be benchmarked
� List of persons who are responsible for specific applications

Planning and discussion sessions are ideally face-to-face meetings between the
benchmarking team and POWER architecture professionals. A workshop with the POWER
architecture experts is a form of knowledge transfer educational activity with hands-on
sessions.

The specific technical steps that you perform when benchmarking individual applications are
discussed in the following paragraphs.

For an example of technical part of a plan, refer to the step-by-step instructions in “Summary”
on page 309.

Defining the performance metric and constraints

The performance metric provides a measurable indicator of application performance.
Essentially, performance metric is a number that can be obtained in a fully automated
manner. The following are examples of the most commonly used performance metrics:

� Time of application execution
� Number of operations performed by an application in a unit of time

Some applications impose constraints in addition to the performance metric. Typically, the
violation of a constraint means that running the application in such conditions is
unacceptable. The following are some examples of the constraints:

� Latency of individual operations (for example, execution of a given ratio of operations
takes no longer than a given time threshold).

� Quality metric of the results produced by the application does not fall below a specified
threshold (for example, a video surveillance system drops no more than a specified
number of video frames in a unit of time).
Appendix A. Applications and performance 303

Defining the success criteria

Satisfying a success criteria is a formal reason to finalize performance benchmarking.
Usually, success criteria is based on the performance results. Typically, success criteria is a
numeric threshold that provides a definition of an acceptable performance (see “Defining the
performance metric and constraints” on page 303).

The performance benchmarking can result in the following outcomes:

� The success criteria are satisfied. This result means that the process of performance
tuning can be finalized.

� The application does not scale as expected (see “Probing the scalability” on page 306).
This results indicates that you need to reconsider the success criteria.

� The success criteria are not satisfied. Use the following techniques to solve the problem:

– Discuss the performance tuning options that you tried over and the results you
obtained with the experts. For this purpose, keep a verbose benchmarking log. For
more details, see “Keeping the log of benchmarking” on page 305.

– Engage the experts to perform deep performance analysis.

– Seek help of software developers to modify the source code.

Performance of a logical processor versus performance of a core
It is important to understand that in the most cases, there is no sense in defining success
criteria based on the performance of a logical processor of a core taken in isolation. As
mentioned in “The performance impact of a rational choice of an SMT mode” on page 279,
the POWER8 core is able to run instructions from multiple application threads simultaneously.
Therefore, the whole core is a minimal entity of reasoning about performance. For more
information, see “Choice of SMT mode for computing nodes” on page 290.

Aggregated performance statistics for poorly scalable applications
Similarly, some applications are not designed to scale up to a whole computing server. For
example, an application can violate constraints under a heavy load (see “Defining the
performance metric and constraints” on page 303). In such situation, it makes sense to run
several instances of an application on a computing node and collect aggregated performance
statistics. This technique allows you to evaluate performance of a whole server running a
particular workload.

Correctness and determinacy

Before you start performance benchmarking, check that the application works correctly and
produces deterministic results. If the application produces undeterministic results by design
(for example, the application implements the Monte-Carlo method or other stochastic
approach), you have at least two options:

� Modify the application by making its output deterministic (for example, fix the seed of a
random number generator).

� Develop a reliable approach for measuring performance of an undeterministic application
(this can require many more runs than for a deterministic application).

During each stage of the performance tuning, verify that the application still works correctly
and produces deterministic results (for example, by using regression testing).
304 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Keeping the log of benchmarking

Preserve the history and output of all commands used in the preparation of the benchmark
and during the benchmark. This log should include the following files:

� Makefiles
� Files with the output of the make command
� Benchmarking scripts
� Files with the output of benchmarking scripts
� Files with the output of individual benchmarking runs

A benchmarking script is a shell script that includes the following commands:

� A series of commands that capture the information about the execution environment
� A sequence of commands that run applications under various conditions

Example A-21 lists several commands that you might want to include in the beginning of a
benchmarking script to capture the information about the execution environment.

Example A-21 An example of the beginning of a benchmarking script

#!/bin/bash -x
uname -a
tail /proc/cpuinfo
numactl -H
ppc64_cpu --smt
ppc64_cpu --cores-present
ppc64_cpu --cores-on
gcc --version
xlf -qversion
env
export OMP_DISPLAY_ENV="VERBOSE"

Typically, a benchmarking script combines multiple benchmarking runs in a form of loops over
a number of sockets, cores, and SMT modes. By embedding the commands that you use to
execute an application into a script, you keep the list of commands along with their outputs.

Running a benchmarking script
If you do not use a job scheduler to submit a benchmarking script, run a benchmarking script
inside a session created by the screen command. Doing so gives protection against network
connection issues and helps to keep applications running even during a network failure.

One option to run a benchmarking script is to execute the following command:

./benchmarking_script_name.sh 2>&1 | tee specific_benchmarking_scenario.log

This command combines the standard output and the standard error streams, whereas the
tee command writes the combined stream both to a terminal and to a specified file.

Choosing names for log files
It is helpful to write the output of individual benchmarking runs to separate files with
well-defined descriptive names. For example, we found the following format useful for the
purposes of the benchmarking runs presented in “Effects of basic performance tuning
techniques” on page 278:

$APP_NAME.t$NUM_SMT_THREADS.c$NUM_CORES.s$NUM_SOCKETS.log

This format facilitated the postprocessing of the benchmarking logs with the sed command.
Appendix A. Applications and performance 305

Probing the scalability

Probing the scalability is a necessary step of the performance benchmarking for the following
reasons:

� It is the way to evaluate the behavior of an application when the number of computing
resources increases.

� It helps to determine the favorable number of processor cores to use for production runs.

To be concise, the ultimate purpose of probing the scalability is to check whether an
application is scalable.

Before performing runs, the user should answer the following questions:

� Does the application has some specific limits on the number of logical processors it can
use?

(For example, some applications are designed to run with the number of logical
processors that is a power of two only: 1, 2, 4, 8, and so on)

� Is the scalability model of the application available?

The model can be pure analytical (for example, the application vendor can claim a linear
scalability) or the model can be based on the results of previous runs.

� What are the scalability criteria for the application? In other words, what is the numeric
threshold that defines the “yes” or “no” answer to the following formal question: “Given N >
Nbase logical processors, are you ready to agree that the application is scalable on
N logical processors in respect to Nbase logical processors?”

If available, the scalability model helps you to choose the scalability criteria.

Next step is to compile the application with a basic optimization level. For example, you can
use the following options:

� -O3 -qstrict (with IBM XL Compilers)
� -O3 (with GCC8 and IBM Advance Toolchain)

For more details about IBM XL Compilers, GNU Compiler Collection (GCC), and IBM
Advance Toolchain, see 4.7, “IBM XL compilers, GCC, and Advance Toolchain” on page 46
and 6.1, “Compiler options” on page 156.

For scalability probing, choose the size of a problem to be large enough to fit the memory of a
server. In contrast, solving a problem of a small size is typically just a waste of computing
cores. If you really need to process multiple small problems, run multiple one-core tasks
simultaneously on one node.

Note: In the performance benchmarking within a one-node system, the scalability is
probed only in a strong sense, also known as a speed-up metric. This metric is obtained by
fixing the size of a problem and varying the number of processor cores. For a multi-node
system, the complimentary metric is a scalability in a weak sense. It is obtained by
measuring performance when the amount of computing work per node is fixed.

8 GNU Compiler Collection (GCC) contains various compilers, including C, C++, and Fortran compilers.
306 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

When you decided on a problem size, run the application in ST mode with different number of
logical processors. Complete the Performance, Meets the scalability model? (yes/no), and
Meets the scalability criteria? (yes/no) rows as shown in Table A-4.

Table A-4 A skeleton of a scalability probing measurements table

When probing the scalability, vary the number of cores, and run each core in ST mode.
Therefore, the total number of threads used can be equal to the number of cores.

Depending on the results of the benchmarking, you end up with one of the following three
outcomes:

� The application is scalable up to 20 cores
� The application is scalable within the socket (up to 10 cores)
� The application is not scalable within the socket

If the scalability of the application meets your expectations, proceed to the next step and
evaluate the performance by using the maximum number of cores that you determined in this
section.

If the application does not meet your scalability expectations, you first clarify the reasons of
that behavior and repeat probing the scalability until satisfied. Only after that you proceed to
the next step.

Evaluation of performance on a favorable number of cores

The performance of an application heavily depends on the choice of SMT mode and
compilation modes. For more information, see “” on page 291. It is hard to know beforehand
which set of compiler options and number of hardware threads per core can be a favorable
choice for an application. That means, you need to run the application with several
combinations of options and SMT modes and select the most appropriate one.

The previous step determined the maximum reasonable number of cores to be used by an
application. For more information, see “Probing the scalability” on page 306. The next step is
to use that number of cores to run the application with different sets of compiler options and
different SMT modes.

Number of cores 1 2 3 … 10 12 14 16 18 20

Number of sockets 1 1 1 … 1 2 2 2 2 2

Number of cores per socket 1 2 3 … 10 6 7 8 9 10

Performance

Meets the scalability model? (yes/no) —

Meets the scalability criteria? (yes/no) —

Note: Remember to bind application threads to logical processors. Failing to do so
typically ends up in worse results (see “The importance of binding threads to logical
processors” on page 300).
Appendix A. Applications and performance 307

You need to try each of four SMT modes for several sets of compiler options. If you are limited
on time, try fewer sets of compiler options, but go through all SMT modes. Put the results of
your performance measurements in Table A-5 (the table is similar to the Table A-3 on
page 300). Your actual version of a table can have another number of columns and different
headings of the columns depending on the sets of compiler options you choose.

Table A-5 A skeleton of a performance measurements results table

Optionally, you can repeat the previous step (see “Probing the scalability” on page 306) with
the compiler options that give the highest performance.

Evaluation of scalability

The core of the IBM POWER8 chip is a multithreaded processor. Therefore, there is no sense
in measuring performance of a single application thread. There is more application
performance meaning when a whole core is used. The application performance depends on
the SMT mode of a core as described in “Reason behind a conscious choice of an SMT
mode” on page 280.

Before the evaluation of the scalability of an application, select a favorable SMT mode and
compilation options, as described in “Evaluation of performance on a favorable number of
cores” on page 307. After that, use that SMT mode and vary the number of cores to get the
scalability characteristics. Put the results of the measurements in the Performance row of
Table A-6 (the table is similar to Table A-4 on page 307). Compute values for the Speed-up
row based on the performance results. The number of columns in your version of the table
depends on the maximum number of cores you obtained when you probed the scalability. For
more information, see “Probing the scalability” on page 306).

Table A-6 A skeleton of a scalability evaluation results table

-O2 -O3 -O4 -O5

ST

SMT2

SMT4

SMT8

Number of cores 1 2 3 … 10 12 14 16 18 20

Number of sockets 1 1 1 … 1 2 2 2 2 2

Number of cores per socket 1 2 3 … 10 6 7 8 9 10

Performance

Speed-up —

Note: When we probed the scalability, we had been running the cores in ST mode. In the
scalability evaluation step, we ran the cores in an SMT mode that we determined in the
performance evaluation step. The total number of threads in each run of the scalability
evaluation is equal to the number of used cores multiplied by the number of threads per
core in a chosen SMT mode.
308 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Conclusions

As a result of the benchmark, you will have the following information for each application:

� The level of the application scalability in ST mode
� A favorable SMT mode and compiler options that delivered the highest performance
� Scalability characteristics in the favorable SMT mode

Summary

To summarize, use this step-by-step instruction that can facilitate your benchmarking.

1. Define the purpose of the benchmarking (see “Defining the purpose of performance
benchmarking” on page 302) and choose which of the following options you will use for
performance tuning:

– Choice between different compilers
– Choice of compiler optimization options
– Choice of an SMT mode
– Choice of the number of computing cores
– Choice of runtime system parameters and environment variables
– Choice of operating system parameters

2. Create the benchmarking plan (see “Plan for benchmarking” on page 303).

3. Define the performance metric (see “Defining the performance metric and constraints” on
page 303.)

4. Define the success criteria (see “Defining the success criteria” on page 304).

5. Verify that the application works correctly (see “Correctness and determinacy” on
page 304).

6. Probe the scalability (see “Probing the scalability” on page 306) to determine the limits of
the application scalability.

a. Complete the questionnaire on a scalability model and scalability criteria (see
page 306).

b. Complete a results table (see Table A-4 on page 307).

7. Obtain favorable SMT mode and compilation options (see “Evaluation of performance on a
favorable number of cores” on page 307) by completing Table A-5 on page 308.

8. Evaluate the scalability (see “Evaluation of scalability” on page 308) by completing
Table A-6 on page 308.

Sample code for the construction of thread affinity strings

Example A-22 provides the source code t_map.c for the program t_map. You can employ this
small utility to construct a text string that describes the mapping of OpenMP threads of an
application to logical processors. Text strings of this kind are intended to be assigned to
OpenMP thread affinity environment variables.

Example A-22 Source code t_map.c (in C programming language) for the program t_map

#include <stdio.h>
#include <stdlib.h>

#define MAX_TPC 8 // 8 is for the POWER8 processor (max SMT mode is SMT8)
Appendix A. Applications and performance 309

#define MAX_CPS 10 // 8 is for a 16-core system, 10 is for a 20-core system
#define MAX_SPS 2
#define MAX_THR (MAX_TPC * MAX_CPS * MAX_SPS)

void Print_Map(int sps, int cps, int tpc, int base) {
 const int maps[MAX_TPC][MAX_TPC] = {
 { 0 },
 { 0, 4 },
 { 0, 2, 4 },
 { 0, 2, 4, 6 },
 { 0, 1, 2, 4, 6 },
 { 0, 1, 2, 4, 5, 6 },
 { 0, 1, 2, 3, 4, 5, 6 },
 { 0, 1, 2, 3, 4, 5, 6, 7 }
 };

 const int sep = ',';

 int thread, core, socket;

 int tot = sps * cps * tpc;
 int cur = 0;

 for (socket = 0; socket < sps; ++socket) {
 for (core = 0; core < cps; ++core) {
 for (thread = 0; thread < tpc; ++thread) {
 int shift = socket * MAX_CPS * MAX_TPC +
 core * MAX_TPC;
 shift += base;
 ++cur;
 int c = (cur != tot) ? sep : '\n';
 printf("%d%c", shift + maps[tpc-1][thread], c);
 }
 }
 }
}

void Print_Usage(char **argv) {
 fprintf(stderr, "Usage: %s "
 "threads_per_core=[1-%d] "
 "cores_per_socket=[1-%d] "
 "sockets_per_system=[1-%d] "
 "base_thread=[0-%d]\n",
 argv[0], MAX_TPC, MAX_CPS, MAX_SPS, MAX_THR-1);
}

int main(int argc, char **argv) {
 const int num_args = 4;

 if (argc != num_args+1) {
 fprintf(stderr, "Invalid number of arguments (%d). Expecting %d "
 "arguments.\n", argc-1, num_args);
 Print_Usage(argv);
 exit(EXIT_FAILURE);
 }
310 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

 int tpc = atoi(argv[1]);
 int cps = atoi(argv[2]);
 int sps = atoi(argv[3]);
 int base = atoi(argv[4]);

 if (tpc < 1 || tpc > MAX_TPC ||
 cps < 1 || cps > MAX_CPS ||
 sps < 1 || sps > MAX_SPS) {
 fprintf(stderr, "Invalid value(s) specified in the command line\n");
 Print_Usage(argv);
 exit(EXIT_FAILURE);
 }

 int tot = sps * cps * tpc;

 if (base < 0 || base+tot-1 >= MAX_THR) {
 fprintf(stderr, "Invalid value specified for the base thread (%d). "
 "Expected [0, %d]\n", base, MAX_THR-tot);
 Print_Usage(argv);
 exit(EXIT_FAILURE);
 }

 Print_Map(sps, cps, tpc, base);

 return EXIT_SUCCESS;
}

To use the tool, you need to compile the code first with the C compiler of your choice. For
example, with gcc compiler you need to execute the following command:

$ gcc -o t_map t_map.c

If you run the tool without any arguments, you get a brief hint on the usage:

$./t_map
Invalid number of arguments (0). Expecting 4 arguments.
Usage: ./t_map threads_per_core=[1-8] cores_per_socket=[1-10]
sockets_per_system=[1-2] base_thread=[0-159]

The utility needs you to specify the amount and location of resources you want to employ:

� Number of threads per core
� Number of cores per socket
� Number of sockets
� The initial logical processor number (counting from zero)

Note: Example A-22 lists a revised version of the code that originally appeared in
Appendix D of Implementing an IBM High-Performance Computing Solution on IBM
POWER8, SG24-8263. The code was adjusted to better fit the architecture of the IBM
Power System S822LC servers.
Appendix A. Applications and performance 311

Example A-23 shows how to generate a thread mapping string for an OpenMP application
that usse the following resources of a 20-core IBM Power Systems S822LC server:

� Twenty OpenMP threads in total
� Two threads on each core
� Ten cores on each socket
� Only the second socket

Example A-23 A sample command for the generation of a thread mapping string

$./t_map 2 10 1 80
80,84,88,92,96,100,104,108,112,116,120,124,128,132,136,140,144,148,152,156

The runtime system of an OpenMP application obtains the thread mapping string from an
environment variable. You need to use different OpenMP thread affinity environment variables
depending on the compiler you use for your OpenMP application. Table A-7 provides a
reference on OpenMP thread affinity environment variables.

Table A-7 OpenMP thread affinity environment variables

The information in Table A-7 also applies to the OpenMP applications built with the
derivatives of GCC and IBM XL compilers (for example, MPI wrappers).

Example A-24 shows how to assign values to OpenMP thread environment variables to
implement the scenario in Example A-23.

Example A-24 Assigning values to the OpenMP thread affinity environment variables

$ export XLSMPOPTS=procs="`t_map 2 10 1 80`"
$ echo $XLSMPOPTS
procs=80,84,88,92,96,100,104,108,112,116,120,124,128,132,136,140,144,148,152,156
$ export GOMP_CPU_AFFINITY="`t_map 2 10 1 80`"
$ echo $GOMP_CPU_AFFINITY
80,84,88,92,96,100,104,108,112,116,120,124,128,132,136,140,144,148,152,156

Example A-24 shows the value of the environment variables with the echo command just to
demonstrate the result of the assignment. This command does not affect the affinity.

Compiler family Some compilers from the
compiler family

OpenMP thread affinity
environment variable

GNU Compiler Collection
(GCC)

gcc
g++
gfortran

GOMP_CPU_AFFINITY

IBM XL compilers xlc_r
xlc++_r
xlf2008_r

XLSMPOPTS, suboption procs

Note: Example A-24 implies that the t_map program is in your PATH. You need to specify
the full path to the tool if the operating system does not find it in your PATH.
312 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

ESSL performance results

The ESSL library includes the implementation of the famous DGEMM routine, which is used
in a large spectrum of libraries, benchmarks, and other ESSL routines. Therefore, its
performance is significant.

DGEMM implements the following formula:

C = alpha*A*B + beta*C

Here, alpha and beta are real scalar values, A, B, and C are matrixes of conforming shape.

Example A-25 contains sample Fortran program with multiple calls of DGEMM for different
sizes of input matrixes.

Example A-25 ESSL Fortran example source code dgemm_sample.f

program dgemm_sample
 implicit none

 real*8 diff
 integer n, m, k
 integer maxn
 integer step
 integer i
 real*8,allocatable :: a(:,:), b(:,:), c(:,:)
 real*8,allocatable :: at(:,:), bt(:,:), ct(:,:)
 real*8 rmin
 real*8 seed1, seed2, seed3
 real*8 dtime, mflop
 real*8 flop
 integer tdummy, tnull, tstart, tend, trate, tmax

 maxn = 20000
 step = 1000

 seed1 = 5.0d0
 seed2 = 7.0d0
 seed3 = 9.0d0
 rmin = -0.5d0

 call system_clock(tdummy,trate,tmax)
 call system_clock(tstart,trate,tmax)
 call system_clock(tend,trate,tmax)
 tnull = tend - tstart

 allocate(at(maxn, maxn))
 allocate(bt(maxn, maxn))
 allocate(ct(maxn, maxn))
 allocate(a(maxn, maxn))
 allocate(b(maxn, maxn))
 allocate(c(maxn, maxn))

 call durand(seed1, maxn*maxn, at)
 call dscal(maxn*maxn, 1.0d0, at, 1)
 call daxpy(maxn*maxn, 1.0d0, rmin, 0, at, 1)
Appendix A. Applications and performance 313

 call durand(seed2, maxn*maxn, bt)
 call dscal(maxn*maxn, 1.0d0, bt, 1)
 call daxpy(maxn*maxn, 1.0d0, rmin, 0, bt, 1)

 call durand(seed3, maxn*maxn, ct)
 call dscal(maxn*maxn, 1.0d0, ct, 1)
 call daxpy(maxn*maxn, 1.0d0, rmin, 0, ct, 1)

 do i = 1, maxn/step
 n = i*step
 m = n
 k = n

 flop = dfloat(n)*dfloat(m)*(2.0d0*(dfloat(k)-1.0d0))

 call dcopy(n*k, at, 1, a, 1)
 call dcopy(k*m, bt, 1, b, 1)
 call dcopy(n*m, ct, 1, c, 1)

 call system_clock(tstart,trate,tmax)
 call dgemm('N','N',m,n,k,1.0d0,a,n,b,k,1.0d0,c,n);
 call system_clock(tend,trate,tmax)

 dtime = dfloat(tend-tstart)/dfloat(trate)
 mflop = flop/dtime/1000000.0d0

 write(*,1000) n, dtime, mflop

 enddo

 1000 format(I6,1X,F10.4,1X,F14.2)

 end program dgemm_sample

Commands from Example A-26 compile and execute this program using different types of
ESSL library (serial, SMP, and SMP CUDA). For SMP runs, it uses 20 SMP threads with each
thread bound to a different POWER8 physical core.

Example A-26 Compilation and execution of dgemm_sample.f

echo "Serial run"
xlf_r -O3 -qnosave dgemm_sample.f -lessl -o dgemm_fserial
./dgemm_fserial

echo "SMP run"
export
XLSMPOPTS=parthds=20:spins=0:yields=0:PROCS=0,8,16,24,32,40,48,56,64,72,80,88,96,1
04,112,120,128,136,144,152
xlf_r -O3 -qnosave -qsmp dgemm_sample.f -lesslsmp -o dgemm_fsmp
./dgemm_fsmp

echo "SMP CUDA run with 4 GPUs hybrid mode"
xlf_r -O3 -qnosave -qsmp dgemm_sample.f -lesslsmpcuda -lcublas -lcudart
-L/usr/local/cuda/lib64 -R/usr/local/cuda/lib64 -o dgemm_fcuda
./dgemm_fcuda
314 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

echo "SMP CUDA run with 4 GPUs non-hybrid mode"
export ESSL_CUDA_HYBRID=no
./dgemm_fcuda

echo "SMP CUDA run with 3 GPUs (1st, 2nd, 3rd) hybrid mode"
export ESSL_CUDA_HYBRID=yes
export CUDA_VISIBLE_DEVICES=0,1,2
./dgemm_fcuda

echo "SMP CUDA run with 3 GPUs (1st, 2nd, 3rd) non-hybrid mode"
export ESSL_CUDA_HYBRID=no
./dgemm_fcuda

echo "SMP CUDA run with 2 GPUs (1st, 2nd) hybrid mode"
export ESSL_CUDA_HYBRID=yes
export CUDA_VISIBLE_DEVICES=0,1
./dgemm_fcuda

echo "SMP CUDA run with 2 GPUs (1st, 2nd) non-hybrid mode"
export ESSL_CUDA_HYBRID=no
./dgemm_fcuda

echo "SMP CUDA run with 2 GPUs (2nd, 3rd) hybrid mode"
export ESSL_CUDA_HYBRID=yes
export CUDA_VISIBLE_DEVICES=1,2
./dgemm_fcuda

echo "SMP CUDA run with 2 GPUs (2nd, 3rd) non-hybrid mode"
export ESSL_CUDA_HYBRID=no
./dgemm_fcuda

echo "SMP CUDA run with 1 GPU (1st) hybrid mode"
export ESSL_CUDA_HYBRID=yes
export CUDA_VISIBLE_DEVICES=0
./dgemm_fcuda

echo "SMP CUDA run with 1 GPU (1st) non-hybrid mode"
export ESSL_CUDA_HYBRID=no
./dgemm_fcuda

echo "SMP CUDA run with 1 GPU (4th) hybrid mode"
export ESSL_CUDA_HYBRID=yes
export CUDA_VISIBLE_DEVICES=3
./dgemm_fcuda

echo "SMP CUDA run with 1 GPU (4th) non-hybrid mode"
export ESSL_CUDA_HYBRID=no
./dgemm_fcuda
Appendix A. Applications and performance 315

Figure A-28 shows the dependence of performance in MFlops to size of matrixes for different
calls from Example A-25 on page 313.

Figure A-28 DGEMM performance results for different type of ESSL library

The chart shows that the GPU gives advantage in performance starting from the 3000 - 5000
problem size. A size less than that is not enough to run the computation in the NVIDIA (using
GPU) card, and it is better to let the computation run in the CPU using the ESSL SMP library.
316 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Another good conclusion from these performance results is to use hybrid calls of the ESSL
SMP CUDA library for large problem sizes, especially for runs with one GPU where
improvement of performance is about 20%. You can look closer at performance of one GPU
case in Figure A-29, and additionally can compare runs with different GPUs in the system.

Figure A-29 ESSL SMP CUDA runs with one GPU

The first GPU has slightly better results than the fourth GPU. It is possible because these
GPUs connected to different NUMA nodes and connection delays can occur. Run your
program on different GPUs to find the environment with the best performance results.
Appendix A. Applications and performance 317

Figure A-30 shows the performance chart for different combinations of two GPUs calls.

Figure A-30 ESSL SMP CUDA runs with two GPUs

Note: Performance results can have drops due other jobs are running in the system at the
same time.
318 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� IBM Power Systems S822LC Technical Overview and Introduction, REDP-5283

� Implementing an IBM High-Performance Computing Solution on IBM POWER8,
SG24-8263

� Performance Optimization and Tuning Techniques for IBM Power Systems Processors
Including IBM POWER8, SG24-8171

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� OpenPOWER Foundation

http://openpowerfoundation.org

� IBM Knowledge Center Power Systems POWER8 8335-GTA (Power System S822LC)

http://www.ibm.com/support/knowledgecenter/HW4M4/p8hdx/8335_gta_landing.htm

� xCAT (Extreme Cloud/Cluster Administration Toolkit)

http://xcat.org

� IBM Platform Cluster Manager

http://www.ibm.com/support/knowledgecenter/SSDV85/product_welcome_pcm.html

� IBM Platform HPC

http://www.ibm.com/support/knowledgecenter/SSENRW/product_welcome_hpc.html

� IBM Spectrum LSF

http://www.ibm.com/systems/spectrum-computing/products/lsf/index.html

� System Planning Tool

http://www.ibm.com/systems/support/tools/systemplanningtool/

� IBM System Storage

http://www.ibm.com/systems/storage/disk
© Copyright IBM Corp. 2016. All rights reserved. 319

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/knowledgecenter/HW4M4/p8hdx/8335_gta_landing.htm
http://openpowerfoundation.org
http://xcat.org
http://www.ibm.com/support/knowledgecenter/SSDV85/product_welcome_pcm.html
http://www.ibm.com/support/knowledgecenter/SSENRW/product_welcome_hpc.html
http://www.ibm.com/systems/spectrum-computing/products/lsf/index.html
http://www.ibm.com/systems/support/tools/systemplanningtool/
http://www.ibm.com/systems/storage/disk

� NVIDIA GPU Tesla

http://www.nvidia.com/object/tesla-servers.html

� IBM ESSL

http://www.ibm.com/support/knowledgecenter/#!/SSFHY8/essl_welcome.html

� IBM Parallel ESSL

http://www.ibm.com/support/knowledgecenter/#!/SSNR5K/pessl_welcome.html

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
320 Implementing an IBM High-Performance Computing Solution on IBM Power System S822LC

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.nvidia.com/object/tesla-servers.html
http://www.ibm.com/support/knowledgecenter/#!/SSFHY8/essl_welcome.html
http://www.ibm.com/support/knowledgecenter/#!/SSNR5K/pessl_welcome.html

IS
B

N
 0738441872

S
G

24-8280-00

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

Im
plem

enting an IBM
 High-Perform

ance Com
puting Solution on

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738441872

SG24-8280-00

®

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	IBM Redbooks promotions
	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction to the IBM Power System S822LC for high performance computing workloads
	1.1 IBM POWER8 technology
	1.2 OpenPOWER
	1.3 IBM Power System S822LC
	1.3.1 Differences between 8335-GCA and 8335-GTA models

	Chapter 2. Reference architecture
	2.1 Hardware components of an HPC system
	2.1.1 Login nodes
	2.1.2 Management nodes
	2.1.3 Compute nodes
	2.1.4 High performance interconnect
	2.1.5 Management, service, and site (public) networks
	2.1.6 Parallel file system

	2.2 Software components of an HPC system
	2.2.1 System software
	2.2.2 Application development software
	2.2.3 Application software

	2.3 HPC system solution
	2.3.1 Compute nodes
	2.3.2 Management node
	2.3.3 Login node
	2.3.4 Combining the management and the login node
	2.3.5 Parallel file system
	2.3.6 High performance interconnect switch

	Chapter 3. Hardware components
	3.1 IBM Power System S822LC
	3.1.1 IBM POWER8 processor
	3.1.2 Memory subsystem
	3.1.3 Input and output
	3.1.4 NVIDIA GPU
	3.1.5 BMC

	3.2 Mellanox InfiniBand
	3.3 IBM System Storage
	3.3.1 IBM Storwize family
	3.3.2 IBM FlashSystem family
	3.3.3 IBM XIV Storage System

	Chapter 4. Software stack
	4.1 System management
	4.2 OPAL firmware
	4.3 xCAT
	4.4 RHEL server
	4.5 NVIDIA CUDA Toolkit
	4.6 Mellanox OFED for Linux
	4.7 IBM XL compilers, GCC, and Advance Toolchain
	4.7.1 XL compilers
	4.7.2 GCC and Advance Toolchain

	4.8 IBM Parallel Environment
	4.8.1 IBM PE Runtime Edition
	4.8.2 IBM PE Developer Edition

	4.9 IBM Engineering and Scientific Subroutine Library and Parallel ESSL
	4.10 IBM Spectrum Scale (formerly IBM GPFS)
	4.11 IBM Spectrum LSF (formerly IBM Platform LSF)

	Chapter 5. Software deployment
	5.1 Software stack
	5.2 System management
	5.2.1 Build instructions for IPMItool
	5.2.2 Frequently used commands with the IPMItool
	5.2.3 Boot order configuration
	5.2.4 System firmware upgrade

	5.3 xCAT overview
	5.3.1 xCAT cluster: Nodes and networks
	5.3.2 xCAT database: Objects and tables
	5.3.3 xCAT node booting
	5.3.4 xCAT node discovery
	5.3.5 xCAT BMC discovery
	5.3.6 xCAT operating system installation types: Disks and state
	5.3.7 xCAT network interfaces: Primary and additional
	5.3.8 xCAT software kits
	5.3.9 xCAT version
	5.3.10 xCAT scenario

	5.4 xCAT Management Node
	5.4.1 RHEL server
	5.4.2 xCAT packages
	5.4.3 Static IP network configuration
	5.4.4 Hostname and aliases
	5.4.5 xCAT networks
	5.4.6 DNS server
	5.4.7 DHCP server
	5.4.8 IPMI authentication credentials

	5.5 xCAT Node Discovery
	5.5.1 Verification of network boot configuration and Genesis image files
	5.5.2 Configuration of the DHCP dynamic range
	5.5.3 Configuration of BMCs to DHCP mode
	5.5.4 Definition of temporary BMC objects
	5.5.5 Definition of node objects
	5.5.6 Configuration of host table, DNS, and DHCP servers
	5.5.7 Boot into Node discovery

	5.6 xCAT Compute Nodes
	5.6.1 Network interfaces
	5.6.2 RHEL Server
	5.6.3 CUDA Toolkit
	5.6.4 Mellanox OFED for Linux
	5.6.5 XL C/C++ Compiler
	5.6.6 XL Fortran Compiler
	5.6.7 Advance Toolchain
	5.6.8 PE RTE
	5.6.9 PE DE
	5.6.10 ESSL
	5.6.11 PESSL
	5.6.12 Spectrum Scale (formerly GPFS)
	5.6.13 IBM Spectrum LSF
	5.6.14 Node provisioning
	5.6.15 Post-installation verification

	5.7 xCAT Login Nodes

	Chapter 6. Application development and tuning
	6.1 Compiler options
	6.1.1 XL compiler options
	6.1.2 GCC compiler options

	6.2 Engineering and Scientific Subroutine Library
	6.2.1 Compilation and run
	6.2.2 Run different SMT modes
	6.2.3 ESSL SMP CUDA library options

	6.3 Parallel ESSL
	6.3.1 Program development
	6.3.2 Using GPUs with Parallel ESSL
	6.3.3 Compilation

	6.4 Using POWER8 vectorization
	6.4.1 Implementation with GNU GCC
	6.4.2 Implementation with IBM XL

	6.5 Development models
	6.5.1 MPI programs with IBM Parallel Environment
	6.5.2 CUDA C programs with the NVIDIA CUDA Toolkit
	6.5.3 Hybrid MPI and CUDA programs with IBM Parallel Environment
	6.5.4 OpenMP programs with the IBM Parallel Environment
	6.5.5 OpenSHMEM programs with the IBM Parallel Environment
	6.5.6 Parallel Active Messaging Interface programs

	6.6 GPU tuning
	6.6.1 Power Cap Limit
	6.6.2 CUDA Multi-Process Service

	6.7 Tools for development and tuning of applications
	6.7.1 The Parallel Environment Developer Edition
	6.7.2 IBM PE Parallel Debugger
	6.7.3 Eclipse for Parallel Application Developers
	6.7.4 NVIDIA Nsight Eclipse Edition for CUDA C/C++
	6.7.5 Command-line tools for CUDA C/C++

	Chapter 7. Running applications
	7.1 Controlling the execution of multithreaded applications
	7.1.1 Running OpenMP applications
	7.1.2 Setting and retrieving process affinity at run time
	7.1.3 Controlling NUMA policy for processes and shared memory

	7.2 Using the IBM Parallel Environment runtime
	7.2.1 Running applications
	7.2.2 Managing application
	7.2.3 Running OpenSHMEM programs

	7.3 Using the IBM Spectrum LSF
	7.3.1 Submit jobs
	7.3.2 Manage jobs

	Chapter 8. Cluster monitoring
	8.1 IBM Spectrum LSF tools for monitoring
	8.1.1 General information about clusters
	8.1.2 Getting information about hosts
	8.1.3 Getting information about jobs and queues
	8.1.4 Administering the cluster

	8.2 nvidia-smi tool for monitoring GPU
	8.2.1 Information about jobs on GPU
	8.2.2 All GPU details
	8.2.3 Compute modes
	8.2.4 Persistence mode

	Appendix A. Applications and performance
	Application software
	Bioinformatics
	OpenFOAM
	NAMD program

	Effects of basic performance tuning techniques
	The performance impact of a rational choice of an SMT mode
	The impact of optimization options on performance
	Summary of favorable modes and options for applications from the NPB suite
	The importance of binding threads to logical processors

	General methodology of performance benchmarking
	Defining the purpose of performance benchmarking
	Plan for benchmarking
	Defining the performance metric and constraints
	Defining the success criteria
	Correctness and determinacy
	Keeping the log of benchmarking
	Probing the scalability
	Evaluation of performance on a favorable number of cores
	Evaluation of scalability
	Conclusions
	Summary

	Sample code for the construction of thread affinity strings
	ESSL performance results

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

