
LLNL-PRES-746155
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Sierra EA software status and plans
B453 R1001

Presented by John Gyllenhaal

February 8, 2018



LLNL-PRES-XXXXXX
2

§ Compilers auto-select GPU target based on compile host
— Can use LLNL-specific –qv100 option to cross compile for Sierra on EA systems
• Many executables built on RAY/RZMANTA used during December Sierra acceptance
• Cross-compiling works only for specific XL, clangs, and MPIs right now
• Currently –qv100/-qp100 option doesn’t specify cpu target optimizations

— Must pick GPU (v100/p100) at compile time due to GPU runtime inlining
• Inlining key to getting high GPU performance with OpenMP 4.5

— More cross-compiling details when first early users get on Sierra in March

§ Monthly beta compiler drops will continue
— Clang EA updates held up on CUDA 9.1 kernel update for CORAL EA
— CUDA 9.1 kernel update held up on Spectre/Meltdown Power kernel updates
— Hope to schedule CUDA 9.1 kernel update later this month

§ Most of April 19, 2017 Compiler/MPI tutorial still applies today
— https://computing.llnl.gov/tutorials/CORAL-EA/

EA Compiler/MPI scheme works the same on Sierra 

https://computing.llnl.gov/tutorials/CORAL-EA/


LLNL-PRES-XXXXXX
3

§ Recommend use XL FORTRAN for all FORTRAN 
— Much higher performance than gfortran
— Supports OpenMP 4.5 GPU offloading and CUDAFORTRAN (xlcuf)
— Discontinued xlflang efforts (may be used for llvm tool development testing)

§ Recommend use XL or Clang for C/C++
— Both now have similar GPU OpenMP 4.5 runtime inlining and debug info 
— XL may be currently much faster for long double math (investigating app issue)
— Use whichever works better for your app 

§ Non-export controlled reproducers required for getting compiler fixes
— Simple code examples based on issue descriptions rarely reproduce issue now
— We are doing complicated things no one thought about in the OpenMP Spec
• OpenMP/CUDA in multiple files often required to trigger issues

— I can help you generate these reproducer or train you how to generate them
• User-generated reproducers are reported and solved much faster

Current compiler guidance



LLNL-PRES-XXXXXX
4

§ jsrun designed from ground up to support regression testing and UQ
— Has a very different design focus and thus interface than srun and mpirun
• Can specify number of GPUs, CPUs, and memory needed per MPI task in a run

• Can specify complex sharing of GPUs and CPUs among multiple tasks in a run

• Designed to pack multiple simultaneous runs onto node allocation per user specification

• IBM plans develop jsrun wrappers later to emulate an interface closer to mpirun/srun

— ORNL has good documentation on the new bsub ‘easy mode’ and jsrun:
• https://beta.olcf.ornl.gov/for-users/system-user-guides/summit/running-jobs/

— New salloc-like recipe: bsub -nnodes 3 -W 60 -Is -XF -G guests /usr/bin/tcsh

§ jsrun (beta Feb 5, 2018 release) just became usable on Sierra test system
— Appears functional enough for use on EA systems after we kick the tires more
— jsrun is beta software and IBM is working on some known issues
• Currently slow to launch larger jobs 

• Does not provide enough hooks to enable mpibind functionality 

§ Sierra uses a few shared launch nodes for running bsub scripts/jsruns
— Like BG/Q, need to launch commands with jsrun to actually run on compute nodes

— Will like convert CORAL EA systems to same model with jsrun rollout

§ Plan to make CORAL EA systems more like Sierra in perhaps March 2018
— Everything will need to be rebuilt with new MPI for jsrun rollout

Shift from mpirun to jsrun coming soon

https://beta.olcf.ornl.gov/for-users/system-user-guides/summit/running-jobs/


LLNL-PRES-XXXXXX
5

§ lrun written by Edgar Leon to enable mpibind under beta jsrun
— Binding key for many apps to get good and predictable performance

§ lrun wraps jsrun and provides ‘good’ common case interface and binding
— Works around missing binding hooks expected in future (perhaps April) jsrun drop
• lrun automatically invokes mpibind (do not call mpibind explicitly with lrun)

— Generates ‘normal’ jsrun options when possible (i.e., perfectly uniform distributions)
• Generates a desired ‘spread out’ mpi task map automatically otherwise

— Should not be used with regression tests or UQ harnesses (that is jsrun’s strength)
• Also will get poor binding and mappings since lrun assumes one jsrun per allocation

§ Usage: specify -N<nodes> and either -p<tasks> or -T<tasks_per_node>
— No spaces between lsrun or jsrun arguments and values (i.e., -N3 not -N 3)
— Running app mpitest on 3 nodes of allocation and 10 MPI tasks would be
• lrun -N3 -p10 ./mpitest

— Environment variable MPIBIND enables verbose output
— Evolving, full documentation coming soon

mpibind package’s ‘lrun’ fills beta jsrun gaps




