Runtime Correctness Checking Tools

Slides/Handson
% git clone

Joachim P https: it.rwth-aachen.de
oachim Protze protze/tools-tutorial.git

High R“TI'I

Performance
Computing

https://git.rwth-aachen.de/protze/tools-tutorial.git
https://git.rwth-aachen.de/protze/tools-tutorial.git

Content

MUST

 MPI usage errors
* MUST reports

* MUST usage
 MUST features
 MUST future

Archer

* OpenMP data race detection
* Archer usage

« Archer GUI

Slides/Handson

% git clone
https://git.rwth-aachen.de/

protze/tools-tutorial.qgit

2 Runtime Correctness Checking Tools
TriLabs Training 2019
Joachim Protze

https://git.rwth-aachen.de/protze/tools-tutorial.git
https://git.rwth-aachen.de/protze/tools-tutorial.git

How many errors can you spot in this tiny example?

No MPI_Init before first MPI-call

Fortran type in C

int main (int argc, char** argv Recv-recv deadlock

{ RankO: src=size (out of range)

int rank, size,

Type not committed before use

Type not freed before end of main

Send 4 int, recv 2 int: truncation

No MPI_Finalize before end of main

MPI_Récv (buf, , MPI_COMM WORLD, MPI_STATUS IGNORE) ;

MPI Send (buf, ize - rank, , MPI_COMM WORLD) ;

printf ("H I am rank %d of %d. ", rank, size);

return 0; Slides/Handson

} % git clone
https://git.rwth-aachen.de/
protze/tools-tutorial.qgit

3 Runtime Correctness Checking Tools i Rm
ig

3 TriLabs Training 2019 Performance
Joachim Protze Computing

https://git.rwth-aachen.de/protze/tools-tutorial.git
https://git.rwth-aachen.de/protze/tools-tutorial.git

MPIl usage errors

* MPI programming is error prone

* Bugs may manifest as:
— Crashes
— Hangs
— Wrong results
— Not at all! (Sleeping bugs)
 Tools help to detect these issues

4 Runtime Correctness Checking Tools ieh
ig

TriLabs Training 2019 MMCHEN
y TP P UNIVERSITY

Joachim Protze

MPI usage errors

« Complications in MPI usage:
— Non-blocking communication
— Persistent communication
— Complex collectives (e.g. Alltoallw)
— Derived datatypes
— Non-contiguous buffers

* Error Classes include:
— Incorrect arguments
— Resource errors
— Buffer usage
— Type matching
— Deadlocks

5 Runtime Correctness Checking Tools Rm

TriLabs Training 2019 High

i Perfi
Joachim Protze cg:n t;rl:?izgce

MUST: Tool design

Application
MPI Librarv

Force status wrapper

Local Analyses Non-Local Analyses

| g
g |8
Q|
Sl
o |2
= | <
0 | O

MPI Library

6 Runtime Correctness Checking Tools) R“‘I‘H
TriLabs Training 2019 High
Performance

Joachim Protze Computing

MUST: Tool design

—(0\
GTI: event forwarding, netwcrk

06
2 Wl ,
Loca.” \naiyses Non-| g8n! Analyses

R —

7 Runtime Correctness Checking Tools ieh
ig

untime Ce RWTHAACHEN
e Thoining 2019 W D eormanee UNIVERSITY

MUST: Hands-on / Demo

 Load MUST

* Download the correctness examples:

% git clone https://git.rwth-aachen.de/protze/tools-tutorial.git

« Compile and execute the MPI example:

% mpicc -g must-example.c -o example.exe
% salloc -ppdebug
% mustrun --must:mpiexec srun -n4 -ppdebug ./example.exe

8 Runtime Correctness Checking Tools Rm
High

TriLabs Training 2019
. Performance
Joachim Protze Computing

Must detects deadlocks

Who? | What? Where? Details

_i MUsT

g TExampleMUST ~ i

M utput, starting date: Thu Now 28 13:38:.01 2

The application lssmd @ set of MP calls that can cause & deadlock! A graphical representation of this situation s available in & detalled deadlock view erence 1 rank 0: MPI_Recv
References 1-2 list the involved calls (limited to the first 5 calls, further calls may be involved). The 15t occurrence) called from:
nifested (e.g. caused a hang on this MPI implementation) you can attach to the involved ranks with a debugger 0 main@example.c:15

or ahort the application (if necessary).

et application still runs, if the deadloc

erence 2 rank 1: MPI_Recv
15t occurrence) called from:
) main@example.c:15

Click for graphical representation of
the detected deadlock situation.

9 Runtime Correctness Checking Tools) R“‘I‘H

TriLabs Training 2019 Eﬂ‘,,,mance
Joachim Protze '1 2 Computing

Graphical representation of deadlocks

| £ MUST Outputfie 30 | T MUST Cutputfile X [&]
l:-t file:\homepjd LE01AMUST exampleMUST_Output-filesMUST_Deadiock ki

-EE 8 a

MUST Deadlock Details, date: Tho Mov 28 13:38:06 2013,

ack 5T 8rTor repo

he application issued a set of MPI calls that can cause a deadlock! The graphs below show details on this situation. This includes a wait-for graph that s

wi active wait-lor dependencies babwean Lhe
processes that cause the deadlock. Note that this process set only includes processes that cause the deadlock and no further processes, A legend details the wait-for graph components in addition , while &
parallel call stack view summarizes the locations of the MPI calls that cause the deadlock . Below these graphs, a message queue graph shows active and unmatched point-to-point communications. This

graph only includes operations that could have been intended to match a point-to-point operation that is relevant to the deadlock situation. Finally, a parallel call stack shows the locations of any operation
in the parallel call stack. The leafs of this call stack graph show the components of the message queus graph that they span. The application still runs, if the deadlock manifested (e.g. caused a hang on this

MPI implementation) you can attach to the involved ranks with a debugger or abort the application (if necessary).

Active MP1 Call
P— Rank O waits
forrank 1
comm=4A, lag= 123} commi= Sub U[‘tl‘libl:l
and vv.
I: MPI_Recv
A Aowaits for B and O B
C
mainiexample.c:15 Slmple Ca”
stack for this -
Ranks: 0-1 n | e
¥ o
example.
MPI_Recv . .
-
C

1V Runtme Lorrectmess Lnecking 1001s

. -~ ; ISWNIFAALTEN
Triabs Taring 2019 W, o UNIVERSITY

Sometimes fixing one defect introduces several new ones

int main (int argc, char** argv)

{

int rank, size, buf[8];

MPI Init (&argc, &argv);
MPI Comm rank (MPI COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;
MPI Type contiguous (2, MPI INT, &type);

Deadlock was fixed by
non-blocking recv

MPI Type commit (&type); —

MPI Request request;

MPI Irecv (buf, , MPI_INT, size - rank - 1, , MPI COMM WORLD, &request);
MPI Send (buf, 1, type, size - rank - 1, , MPI_COMM WORLD) ;

printf ("Hello, I am rank %d of %d. ", rank, size);
MPI Finalize ();

return 0O;

11 Runtime Correctness Checking Tools ieh R“TH
ig

TriLabs Training 2019
. Performance
Joachim Protze Computing

MUST detects data races in asyn

| MUST Cutputfie

1-

4 filehome/pjd16018MUST/exampleMUST_Output.html|

MUST Output, starting date: Mon Dec 2 18:36:19 2013,

| %

The memory regions to be transfered by this send operation overlap with

Data race between send and

ascynchronous

receive operation

non-hlocking recelve operation!

(Information on the request associated with the other communication:
Request activated at reforence 1)
(Information on the datatype associated with the other communication:
MPI INT)

Representative location:
MPI_Send (1st occurrence) called

References of a representative process:

reference 1 rank 1: MPI_Irecv (1st
joccurrence) called from:
#0 main@example-fixd.c:17

reference 2 rank 1: MPI_Type_contiguous
H1st occurrence) called from:
#0 main@example-hxd.c:13

reference 3 rank 1: MPI_Type commit (1st
joccurrence) called from:
maind@example-hxd.c:14

#0

Eﬂfm of a representative process:
reference 1 rank 1: MPI_Type_contiguous
i1st occurrence) called from:

#0 main@example-fixd.c:13

reference 2 rank 1: MPI_Type_commit (15t

courrence) called from:
#0 main@example-fivd.c:14

References of a representative process:

reference 1 rank 1: MPI_Irecy (15t
lccurrence) called from:
#0 main@example-fixd.c:17

References of a representative process:

Missing MPI_Wait is diagnosed as

1 |Erron The other communication overlaps with this communication at position:(MPI_INT) From:
(Information on the datatype assoclated with this communication: #0 main@example-fixd.c:19
Datatvpe created at reference 2 is for C, commited at reference 3, based on the following type(s): {
MPI_INT})
This communication overlaps with the other comrmunication at position: [rnnugmtw][ﬂ]t MP1_ INIT]
A graphical representation of this situation is a\':ulnbla ina
There are 1 datatypes that are not freed when MPI_Finalize was issued, a quality application should free R i s Lt
all MPI resources before calling MPI Finalize. Listing information for these datatypes: MP?P T lisi
0-1 TOT LType.
-Datatype 1: Datatype created at reference 1 is for C, commited at reference 2, based on the following 'gcégwm’;ﬂﬂﬁ:?i 5
typels): { MPLINT} g ul
There are 1 requests that are not freed when MPI_Finalize was issued, a quality application should froe Reprosentative location:
01 [Ervor all MPI resources before calling MPI_Finalize. Listing information for these requests: MPI_Irecy (15t occurrence) called
" - from:
-Request 1: Request activated at reference #0 main@example-fixd.c:17
The memaory regions Lo be ransiered by Uhis send operation overlap with regions spa
non-hlocking receive operation!
{Information on the request associated with the other communication:
Request activated at reference 1)
(Information on the datatype associated with the other communication:
MPI_INT)
i} TOL The other communication overlaps with this communication at position:(MPI_[NT)

(Information on the datatype associated with this communication:
Datatvpe created at reference 2 is for C, commited at reference 3, based on the following typeis):
MFILINT})

resource leak.

This communication overlaps with the other communication at position:(contiquous][0]{MPI INT)

A graphical representation of this situation 18 available in a
filesMUST_Ow

CCUTTENCE) Cia
0 mnm@&:umpl&-ﬁm 14

12

Runtime Correctness Checking Tools
TriLabs Training 2019
Joachim Protze

High

Performance
Computing

Graphical representation of the race condition

MUST_Oventap_1_0 htmi ‘ Graphical representation of the datz

race location
2013, /\

ovarlap in communication bulfers! The graph below shows

hlighted.

MPI_Send:sendibul= OxTI 397 3al)

:

‘ MPI_Type_contiguousicount=2) | MPI_Irecvrecybuf= +xl})

€]

MPI_INT

MUST found no issue

[2 MusT cunputtile | & O
[& Meuihorne/pi4 1601 BMUST/exampleMUST_Output html v | % &

MUST Output, starting date: Thu Nov 28 13:56:03 2013,

| Information MUST detected no MPI usage errors nor any suspicious behavior during this application run. | |

MUST has completed successfully, end dabe: Thu Nov 28 13:56:00

No further error
detected

Hopefully this message
applies to many
applications

14 Runtime Correctness Checking Tools ieh R“‘I‘H
ig

TriLabs Training 2019

Joachim Protze ' » ggrnf;r::ia;;ce

MUST - Basic Usage

« Load MUST module/dotkit, e.g.:

% module load must

* Apply MUST with an mpiexec wrapper, that’s it:

e Instead of % $MPICC source.c -0 exe
% $MPIRUN -np 4 ./exe

- Replace: |% $MPICC -g source.c -0 exe
% mustrun --must:mpiexec $MPIRUN -np 4 ./exe

or: |% mustrun -np 4 ./exe

 After run: inspect “MUST_Output.html”

15 Runtime Correctness Checking Tools - Rm
g

TriLabs Training 2019
Joachim Protze

QU I
e o=

Remember the analysis tree?

* By default MUST uses a single extra node ™ g —
* In batch: Allocate the extra process(es)! O—

* Query information about required

Processes.

% mustrun --must:info -np 4 ./exe

* For distributed analysis

- Either: % mustrun --must:distributed -np 4 ./exe

— Or:

% mustrun --must:fanin 16 -np 4 ./exe

— The latter allows you to specify a branching
factor for the tree

16 Runtime Correctness Checking Tools i Rm
ig

TriLabs Training 2019
. Performance
Joachim Protze Computing

Application crash handling

* Fatal error might stop the execution before report is written @

 Default: crash-safe centralized analyis
— MPI call is only executed, when tool process finished analysis
— Serializes MPI communication (overhead might be significant)
— Assert that application does not crash (allows asynchronous analysis):

% mustrun --must:nocrash -np 4 ./exe

* Distributed: can handle crashes, but MPI might be dead
— Use alternative communication layer for MUST:

% mustrun --must:nodesize 8 -np 4 ./exe

— nodesize must be divider of processes scheduled per node
— One process per nodesize becomes tool process
— Might have some minor influence to the communication behavior

17 Runtime Correctness Checking Tools _ Rm
TriLabs Training 2019 High

Performance

Joachim Protze Computing

Analysis of multi-threaded MPI applications

» Default: MUST limits to MPI_THREAD_FUNNELED
— Only the master thread can call MPI
— The application must respect this thread-level

« Hybrid analysis: MUST requires MPI_THREAD MULTIPLE
— The application can use any MPI thread-level
— MUST raises the requested thread-level to multiple

% mustrun --must:hybrid -np 4 ./exe

- MUST adds an analysis thread to each rank
» Potentially oversubscribes the node? Should not matter for most apps.

- The additional tool processes are single-threaded
» Does not fill those nodes, intelligent batch system might help in future?

18 Runtime Correctness Checking Tools _ Rm
TriLabs Training 2019 gh

Joachim Protze

QU I
e o=

Mustrun modes: Separate prepare and run

* Prepare MUST for execution with specific config (on frontend)

% mustrun --must:mode prepare -np 4 ./exe

« Execute with MUST in a batch job (after prepare):

% mustrun --must:mode run -np 4 ./exe

« Enforce new tool configuration/building and start execution:

% mustrun --must:mode preparerun -np 4 ./exe

19 Runtime Correctness Checking Tools i Rm
ig

TriLabs Training 2019
. Performance
Joachim Protze Computing

Upcoming features based on LLVM/clang

 Data type checking
int array[10];
MPI Send(array, MPI FLOAT, 10, ..);

— Needs compile time information
— Prototype implemented, needs to be integrated into release

* Data race detection
MPI Isend(array, MPI_ FLOAT, 10, .., &req);

array|[5]++;
MPI Wait(&req,..);

— Integration of MUST and ThreadSanitizer/Archer

20 Runtime Correctness Checking Tools i Rm
ig
e

TriLabs Training 2019
Joachim Protze Computing

Installing MUST (= Sysadmins)

» Configure with Cmake
— Activate stack trace, if Dyninst is installed:
= -DUSE_CALLPATH=0N
= -DSTACKWALKER_INSTALL_PREFIX=<dyninst-install-path>
— Set a default mpiexec command:
= -DMPIEXEC=srun

* Make / Install:
— make -j16 install install-prebuilds

 Prebuilds are preconfigured tool configurations, that are
Installed with the tool
— Runs --must:mode prepare for common tool configurations

— Tool configuration not covered by the Prebuilds will trigger some tool
configuration / compilation during “mustrun”

21 Runtime Correctness Checking Tools - Rm
g

TriLabs Training 2019
Joachim Protze

QU I
e o=

Archer: OpenMP data race detection

eeeeeeeeee

Data race detection tool: Archer

 Error checking tool for
— Memory errors

— Threading errors n :rr
"l

(OpenMP, Pthreads)
« Based on ThreadSanitizer (runtime check)
 Available for Linux, Windows and Mac
« Supports C, C++ (Fortran in work)
« Synchronization information based on OMPT
« More info: https://github.com/PRUNERS/archer

* Will hopefully be part of the 9.0 release of LLVM
— Most probably missed the deadline ®

23 Runtime Correctness Checking Tools i Rm
I

TriLabs Training 2019 1
. Performance
Joachim Protze Computing

https://github.com/PRUNERS/archer

Archer - Usage

« Compile the program with -g and -fsanitize=thread flag
— clang -g -fsanitize=thread -fopenmp myprog.c -o myprog

Run the program under control of ARCHER Runtime
— export OMP_NUM_THREADS=...

./myprog
— Detects problems only in software branches that are executed

« Understand and correct the threading errors detected

Edit the source code
Repeat until no errors reported

24 Runtime Correctness Checking Tools _ Rm
TriLabs Training 2019 gh

Joachim Protze

QU I
e o=

Archer - Result Summary

OooO~NOOTUVID WNPR

(R S
N RO

##tinclude <stdio.h>

int main(int argc, char **argv)

int a = 0;
#pragma omp parallel

{

if (a < 100) {
#pragma omp critical
a++;

WARNING: ThreadSanitizer: data race
Read of size 4 at ox7fffffffdcdc by
thread T2:

#0 .omp_outlined. race.c:7
(race+0x0000004a6dce)

#1 _ kmp_invoke microtask <null>
(libomp.so)

Previous write of size 4 at
ox7fffffffdcdc by main thread:

® #0 .omp_outlined. race.c:9
(race+0x0000004a6e2c)

#1 _ kmp_invoke microtask <null>
(libomp.so)

25

Runtime Correctness Checking Tools
TriLabs Training 2019
Joachim Protze

High It““lll

Performance
Computing

Hands-on / Demo

* Load Archer module

$ cd ~/tools-tutorial/Debug-examples
$ clang -fopenmp -g prime_omp.c -1m

Try:

$ OMP_NUM_THREADS=2 ./a.out
$ OMP_NUM_THREADS=4 ./a.out
$ OMP_NUM_THREADS=8 ./a.out

26

Runtime Correctness Checking Tools
TriLabs Training 2019
Joachim Protze

High
Performance
Computing

Hands-on / Demo

« Compile with data race detection:
$ clang -fsanitize=thread -fopenmp -g prime_omp.c -1m
- Make Archer library available (could be done by module):

$ export OMP_TOOL_ LIBRARIES=libarcher.so

* Execute with some threads:

$ OMP_NUM_THREADS=2 ./a.out

Fix the issues, recompile, test again

27 Runtime Correctness Checking Tools i Rm
ig

TriLabs Training 2019
. Performance
Joachim Protze Computing

Hands-on / Demo

* To verify that ARCHER Is active, you can make ARCHER
verbose:

$ ARCHER _OPTIONS="verbose=1" OMP_NUM_THREADS=2 ./a.out
Archer detected OpenMP application with TSan, supplying
OpenMP synchronization semantics

28 Runtime Correctness Checking Tools i Rm
ig

TriLabs Training 2019
. Performance
Joachim Protze Computing

Usage for Fortran-code

* No Fortran compiler frontend with ThreadSanitizer in LLVM

« But we can use gfortran for compilation:

$ gfortran -fsanitize=thread -fopenmp -g -c app.f

« Still use clang for linking:

$ clang -fsanitize=thread -fopenmp -lgfortran app.o
$ OMP_NUM_THREADS=2 ./a.out

For OpenMP programs, always use the clang delivered with
ARCHER to avoid false alerts

29 Runtime Correctness Checking Tools - Rm
g

TriLabs Training 2019
Joachim Protze

QU I
e o=

Advanced: use annotations for custom synchronization

OMP2012/371.applu331/src/syncs.fo0:
subroutine sync_left(ldmx, ldmy, ldmz, v)

if (iam .gt. @ .and. iam .le. mthreadnum) then
neigh = iam - 1
do while (isync(omp_get thread num() - 1) .eq. 9)
I$omp flush(isync)
end do

CALL AnnotateHappensAfter(FILE , LINE_ ,
isync(omp_get thread num() - 1))

CALL AnnotateHappensBefore(FILE , LINE ,
isync(neigh))

isync(neigh) = ©
I$omp flush(isync,v)
endif

30 Runtime Correctness Checking Tools i Rm
ig

TriLabs Training 2019
. Performance
Joachim Protze Computing

Upcoming: Archer GUI

* Implemented by LLNL summer student: Sam Thayer

* Archer report is redirected into json output
» Aggregated report is presented in GUI

$ archer-gui <directory with Archer report files>

» Aggregates across threads and (MPI) processes

31 Runtime Correctness Checking Tools i Rm
ig

TriLabs Training 2019
. Performance
Joachim Protze Col in

Upcoming: Archer GUI

* Implemented by LLNL summer student: Sam Thayer

* Archer report is redirected to JSON output

« Aggregates reports into user-defined categories (across
threads and MPI processes)

* Displays reports in ToolGear Ul (implemented by LLNL

employee John Gyllenhaal)
— The same Ul as other debugging tools such as MemCheckView

i
cher

: Archer
1‘ /RapldJSON — Gear —p ToolGear

TSan

32

Runti m Correctness Checking Tools _ Rm
TriLabs g 2019 High .
Joachim Computing

Upcoming: Archer GUI

% Archer Gear

‘archer

Choose a preset: v | Default
Simple deduplication Separate by data
Separate by file Raw list

Or customize configuration:
Separate races into folders by:

8 |Linet+column = | ofthe | topstackframe -

No separation (put all races in a single folder)

Wwithin folders, deduplicate by:

® Line+column « | ofthe |full stack trace

No deduplication

 Offers simple options sufficient for most
use cases

 Alternately, offers detailed control of
report aggregation

(] (] |%| 1: Archer Gear - resourcesfomp_methods.json
File Edit Font Help

|| VIEW RACE FOLDERS HERE:
—Message Folder Displayed:

[66 occurrences doCalc() at omp_methods.c:7:8 getVal() at omp_methods.c:11:10 [3 items] il

46 occurrences doCalc() at omp_methods.c 8 getVal () at omp_methods.

¥ 19 cccurrences getVal() at omp methods.c doCalc() at omp methods.
getVal() at omp_methods.c:11:10 doCalc() at omp_methods.c:7:8
-omp_cutlined._debug__ () at omp_methods.c:13:18 .omp_cutlined._debug__ () at omp_methods.c:13%:5
.omp_cutlined. () at omp_metheods.c:18:3 .omp_ocutlined. () at omp_methods.c:18:3
__kmp_invoke_microtask() at libomp.so (0x98bd2) __kmp_invoke_microtask() at libomp.seo (0x98bd2)
#1 occurrences doCalc() at omp_methods.c:7:8 getVal () at omp_methods.c:11:10

read of size 4 at omp_methods.c:11 | write of size 4 at omp_methods.c:7 | Data location | Thread 1 creation | Thread 2 creation

[1] /g/g20fthayer8farcher-gearfresources/srcjomp_methods.c:7 (Column 8: a.out+0x4b188a)
4: §#include <stdlib.h>

e

5
6: void doCale(fleat *A, int i, fleat a, fleat b) {
7: A[i] = a + b;
Launch a:)
9:
10: float getVal (float *A, int i) {
11: return A[i]; [«
12:) »
33 Runtime Correctness Checking Tools Rm
High

TriLabs Training 2019
Joachim Protze

Performance
Computing

Thank you for your attention.

T Center

