
Previous Next

Limitations

Table of contents

Some IBM Spectrum™ MPI product features are subject to certain limitations, as explained in this section.

IBM Spectrum MPI is not ABI compatible with any other MPI implementations such as Open MPI, Platform MPI, or IBM® PE
Runtime Edition.

The IBM Spectrum MPI collectives component (libcollectives) does not support inter-communicators. For inter-communicator
collective support, IBM Spectrum MPI relies on Open MPI collective components.

Dynamic process management (dynamic tasking) is not supported.

The total byte size is defined as the parameter count multiplied by the size of the related data type.

There is a 2 GB restriction for the total byte size in the IBM libcoll collective function call. A libcoll collective function call fails
if the total byte size is more than 2 GB. To avoid the 2 GB restriction for the total byte size, you can call the open mpi default
algorithm instead of the libcoll collective function by using the --mca coll ^ibm option. For the MPI_Gather family of
collectives the limitation affects the size of the total receive buffer the combined size of the contributions from all the ranks
has a 2 GB limitation.

There is a 4 GB restriction for the total byte size for all message traffic over PSM and PSM2. If the total byte size is more than
4 GB, the PSM or PSM2 communication call prints an error message and aborts. For the MPI_Gather family of collectives the
limitation affects the size of the total receive buffer, therefore, the combined size of the contributions from all the ranks has a
4 GB limitation.

If you run MPI applications with the nvprof profiler (NVIDIA-supplied profiler for applications that use NVIDIA GPUs), the MPI
applications do not complete unless you run the mpirun -mca mpi_restrict_libs none command.

The PAMI and RDMA one-sided components (OSC) are not thread safe.

The following data types are not supported by reduction operations MPI_MINLOC or MPI_MAXLOC:

MPI_DOUBLE_INT

MPI_LONG_INT

MPI_SHORT_INT

MPI_LONG_DOUBLE_INT

The -HCOLL | -FCA option that enables the Mellanox hcoll library, which is also known as FCA, can hang in the MPI_Win_lock
API.

The -MXMC option is no longer available. Instead of using the -MXMC option, you can use the -MXM option that supports the PML
yalla layer.

To use GPU device memory in MPI calls for the PAMI point-to-point management layer (PML), you must specify one of the
following options when you run the mpirun command:

-gpu

•

•

•
•

•

•
•

•

•

•

Home IBM Spectrum MPI 10.1.0 ... Release Notes for IBM Spectrum MPI Version 10.1.1.0

 Change version

Search in this product...

Search in all products

https://www.ibm.com/support/knowledgecenter/SSZTET_10.1.0/rn1011/rn1011_announcement.html
https://www.ibm.com/support/knowledgecenter/SSZTET_10.1.0/smpi_welcome/smpi_kc_install.html
javascript:void(0)
https://www.ibm.com/support/knowledgecenter/
https://www.ibm.com/support/knowledgecenter/SSZTET_10.1.0
https://www.ibm.com/support/knowledgecenter/SSZTET_10.1.0/rn1011/rn1011_intro.html

-mca pmg_pami_enable_cuda 1

You might experience a decrease in application performance if you permanently enable GPU device memory support because
PAMI copies data to and from the GPU memory (device) and CPU memory (host).

You can permanently enable GPU device memory support by adding pml_pami_enable_cuda = 1 to the /opt/ibm/spectrum_mp
i/openmpi-mca-params.conf file. You can selectively disable the permanent GPU device memory support by adding
pml_pami_enable_cuda = 0 to the mpirun command.

You must enable GPU device memory support if the MPI application allocates device memory and references this memory in MPI
calls. For example, an MPI application that uses send or receive buffers that point to device memory. If the MPI application is
referencing CUDA Unified Memory in MPI calls, you must also enable GPU device memory support. CUDA Unified Memory is a
single memory address space that is accessible from any CPU or GPU in the system. CUDA runtime drivers handle memory page
migration to and from the host or device. An MPI application might request Unified Memory by issuing a cudaMallocManaged()
call. Some compilers might also provide an option to handle any dynamic allocation request, such as malloc (C), new (C++), or
ALLOCATE (Fortran), as requested for Unified Memory. For example, the PGI compiler uses the -ta=tesla:managed option to map
dynamic allocation requests to Unified Memory.

For x86 servers, the names for the following libraries changed in IBM Spectrum MPI 10.1.1:
Table 1. Library name changes

Previous library name New library name

libmpi_mpif.so.2 libmpi_ibm_mpifh.so.2

libmpi_usempi.so.2 libmpi_ibm_usempi.so.2

For backwards comparability, Spectrum MPI included symlinks for applications that are built with previous version of Spectrum
MPI to run with Spectrum MPI 10.1.1. If you are linking or compiling with Spectrum MPI and using the MPI wrapper compiler
scripts, no changes are required use the new library names. However, if you are manually linking or compiling with Spectrum MPI
without the MPI wrapper compiler scripts, you must link your applications to the new library names. You can use the --showme
option to identify where you are linking or compiling with the previous library names.

A child process that is forked from an MPI process but does not call the exec function (or other variants of the exec function),
must not return from the main function or call the exit() function (C API). In an MPI application that creates child processes,
typically only one of the processes (most often the parent) should terminate by calling the exit() function. Other processes
should terminate by calling the _exit() function. You should have only one process that calls exit handlers and flushes stdio
buffers.

The use of the MPI_File_set_atomicity() call is not supported.

When you are creating n-dimensional topologies by using MPI_Dims_create(), the ndims must be greater than 0.

When you are running Spectrum MPI over TCP, on nodes with a virtual adapter, users must specify the correct adapter to use by
using -netaddr, because Spectrum MPI does not ignore virbr# named devices.

Multi node I/O is not supported.

When you are running with PAMI, adapter affinity is enabled by default. This generally leads to better performance when CPU
binding is enabled (as it is by default). This instructs each rank to use the InfiniBand adapter that is physically closest to the core
where the rank is bound. However, either of the following circumstances can lead to SEGVs (if using the -verbsbypass option) or a
hang.

If a user runs a job across nodes that have different numbers of InfiniBand adapters per node (for example, if some nodes
have two, and other nodes only have one)

If a user runs a job across nodes that have one Infiniband adapter on one fabric, and another adapter on different fabric
In either of these situations, users must disable adapter affinity by specifying the following option with mpirun.

•

•

•
•
•

•
•

PAMI_IBV_ADAPTER_AFFINITY=0

javascript:void(0);

When running with PAMI, adapter striping is also enabled by default. However, both adapter affinity and adapter striping must be
disabled before a user runs a job across a set of nodes in which one node contains a single link only. In this situation, to disable
both adapter affinity and adapter striping, specify the following environment variables with mpirun.

At the time of this release, the MPI standard has some ambiguity about the meaning of MPI_Comm_get_info(),
MPI_Win_get_info(), and MPI_File_get_info(). In this release, the *_get_info() calls return the current internal value of
each info setting, which can differ from values provided in a previous MPI_Comm_set_info(), and so on. In the future, the MPI
standard is likely to be changed to clarify that the get calls should return the same values that were set. So, the current behavior of
MPI_*_get_info() is not compliant with the expected clarification of the MPI standard.

If your switch network topology consists of more than one Infiniband network, IBM Spectrum MPI requires that each network be
assigned a unique subnet prefix (also known as the network ID). Jobs might fail to run if disconnected networks are assigned the
same network ID.

IBM Spectrum MPI's use of libevent v2.0.22 might cause a perturbation in the random number stream that is generated by the
libc rand() and random() functions. Applications that rely on behavior should consider using the rand_r() and random_r()
APIs.

Querying or attempting to write the value of a performance variable by using the MPI Tool information interface (MPI_T) is not
supported.

All Fortran MPI applications require the libgfortran3 runtime library to be installed on each compute node, regardless of which
Fortran compiler was used to compile and link the application. This is to satisfy the libmpi_usempi.so dependency on
libgfortran.so.3.

IBM Spectrum MPI fails in MPI_Init when both HCOLL (-HCOLL/-hcoll/-FCA/-fca) and 16M huge pages (/usr/lib/libhugetl
bfs.so) are used in the same job.

If an application is built by using the NVIDIA CUDA Toolkit, the NVIDIA CUDA Toolkit must be installed on the node from which it is
launched, as well as each compute node. For Power Systems™ users, the CUDA Toolkit version 8.0 is required. For x86 users, the
CUDA Toolkit version 7.5 is required.

On a node with GPUs, it is recommended that you run the following commands shortly after the node boots and before you run
any GPU workload:

The Open MPI collectives components that are included with IBM Spectrum MPI do not support GPU buffers. For GPU buffer
collective support, you must use libcollectives (the default).

Support for GPU-accelerated applications is provided only if you are using the IBM Spectrum MPI PAMI backend and the IBM
collective library (libcollectives). These are the default options for IBM Spectrum MPI, but if you choose to use a different
messaging protocol or collective component, note that it will not support GPUs.

The libcollectives component is the only collective component that is able to support CUDA buffers. As a result, when -gpu is
specified with the mpirun command, libcollectives must be the preferred collective component. Therefore, you cannot specify mpi
run -gpu with any of the following options:

-mxm/-MXM

-tcp/-TCP

-ibv/-IBV

-ib/-IB

-openib/-OPENIB

-fca/-FCA

PAMI_ENABLE_STRIPING=0

PAMI_IBV_DEVICE_NAME=mlx5_0:1

PAMI_IBV_ADAPTER_AFFINITY=0

•

•

•

•

•

•

•

•

nvidia-smi -pm 1 # persistence mode

nvidia-modprobe -u -c=0 # pre-load uvm

•

•

•

javascript:void(0);
javascript:void(0);

/

-hcoll/-HCOLL

The following MPI functions are not CUDA-aware:

MPI_Alltoallw

MPI_Ialltoallw

MPI_Ineighbor_allgather

MPI_Ineighbor_allgatherv

MPI_Ineighbor_alltoall

MPI_Ineighbor_alltoallv

MPI_Ineighbor_alltoallw

MPI_Neighbor_allgather

MPI_Neighbor_allgatherv

MPI_Neighbor_alltoall

MPI_Neighbor_alltoallv

MPI_Neighbor_alltoallw

IBM Spectrum MPI behavior is undefined when an MPI application passes a GPU device address to an MPI API that is not CUDA
aware; the application might trigger a segmentation fault and dump core, or it might give incorrect results.
Most MPI APIs are CUDA-aware. However, IBM Spectrum MPI does not supply header files or Fortran module files that identify
which MPI APIs accept GPU device addresses as arguments. Refer to the preceding restriction for a list of MPI APIs that might not
be used with GPU device addresses.

If you are using the IBM XL Fortran compiler to build CUDA-aware MPI programs that employ the partitioned global address space
(PGAS) model, you must use XL compiler version 15.1.5 or later.

•

•

•

Please note that DISQUS operates this forum. When you sign in to comment, IBM will provide your email, first name and last name to DISQUS. That

information, along with your comments, will be governed by DISQUS’ privacy policy. By commenting, you are accepting the DISQUS terms of

service.

Sign In

https://help.disqus.com/customer/en/portal/articles/466259-privacy-policy
https://help.disqus.com/customer/portal/articles/466260-terms-of-service

